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Three-Dimensional Rotor Flow 
Calculation 
 
This paper presents the numerical model developed for rotor blade 
aerodynamics loads calculation. The model is unsteady and fully three-
dimensional. Helicopter blade is assumed to be rigid, and its motion 
during rotation is modeled in the manner that rotor presents a model of 
rotor of helicopter Aerospatiale SA 341 “Gazelle” (the blade is attached to 
the hub by flap, pitch and pseudo lead-lag hinges). Flow field around the 
blade is observed in succession of several azimuth locations. Flow field 
around helicopter rotor is modeled as fully three-dimensional, unsteady 
and potential. Blade aerodynamics is modeled using a lifting surface 
model. Rotor wake is generated from the straight elements of constant 
vorticity, released from the trailing edge, at fixed azimuth angles. These 
vortices represent both trailed and shed wake components, and are 
allowed to freely convect along local velocity vectors. Wake is modeled as 
free one, and its shape at certain moment can be calculated from simple 
kinematics laws applied on collocation points of the wake. Wake distortion 
is calculated only in the rotor near-field, i.e. in finite number of rotor 
revolutions. Vortex elements are modeled with vortex core. The radius of 
the vortex core is assumed independent of time, and it depends on 
circulation gradient at the point of vortex element released from the blade. 

Keywords: unsteady aerodynamics, potential flow, lifting surface, panel 
method, free-wake model, main helicopter rotor aerodynamics  
 

 
 
1. INTRODUCTION  
 

One of the most important challenges in helicopter 
aerodynamics is the accurate prediction of rotor loads, 
especially in forward flight.  

Helicopter rotor aerodynamic flow field is very 
complex, and it is characterized by remarkably unsteady 
behavior. The most significant unsteadiness appears 
during the forward flight. In that case, the progressive 
motion of helicopter coupled with rotary motion of rotor 
blades causes drastic variations of local velocity vectors 
over the blades, where the advancing or retreating blade 
position is of great significance. In first case, the local 
tip transonic flow generates, while in second, speed 
reversal appears. 

In addition, in forward flight, blades encounter 
wakes generated by forerunning blades and so 
encounter non-uniform inflow. The wake passing by the 
blade induces high velocities close to it causes changes 
in lifting force. Besides that, in horizontal flight blades 
constantly change pitch, i.e. angle of attack at different 
azimuths. Such angle of attack variations are very rapid, 
so that dynamic stall occurs, especially in case of 
retreating blades [1, 3]. 

Various methods have been used to represent the 
rotor and its wake. The rotor blades have been 

represented by actuator disc, blade elements, a lifting 
line, lifting surface, or a finite difference and finite 
elements method. Lifting surface theory allows for a 
more realistic and general representation of the blade 
than lifting line theory, and has been shown to be more 
accurate as well [2, 3, 4]. Finite difference or finite 
element methods must be used to introduce transonic 
effect. Also, they offer the potential to predict blade 
drag [5]. However, the major drawback of finite 
elements and finite difference methods is their long 
computation times. 

 
2.  DYNAMICS 

 
In this paper the rotor of helicopter SA 341 

“Gazelle” is modeled, at which the blades are attached 
to the hub by flap, pitch and pseudo lead-lag hinges. 

Blade motion in lead-lag plane is limited by 
dynamic damper, which permits very small maximum 
blade deflection. Due to such small angular freedom of 
motion, we can assume that there is no led-lag motion at 
all.  

Pitch hinge is placed between flap hinge and pseudo 
lead-lag hinge. In derivation of the equations of motion 
[6, 7], the following was assumed: 

• the rotor does not vibrate, and its rotation 
velocity Ω is constant, 

• the blade is considered absolutely rigid. 
According to the above mentioned, the following 

frames have been selected for use: 
• fixed frame F , with x-axis in the direction of 

flight, and  z-axis oriented upwards; 
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• frame H , connected with the rotor and rotates 
together with it; it is obtained by rotating the F  
frame for a certain azimuth angle ψ ; keeping the 
common  z-axis 

• frame P , connected to the flapping hinge, so 
that the y-axis is oriented along the blade; its 
origin is displaced from the rotating axis for the 
value eβ , while it is rotated for the angle β  
with respect to the frame H ; 

• frame B , connected to the blade, displaced for 
the value eθ  from the origin of P , and tilted for 
the value θ  (pitch angle) with respect to the P . 

 
Figure 1. Coordinate systems 

 
3. AERODYNAMICS 

 
3.1. Analytical model 

 

The flow field is assumed to be potential (inviscid 
and irrotational) and incompressible. In that case 
velocity potential satisfies the Laplace equation: 

 0Φ∆ = . 

The equation is the same, both for steady and 
unsteady flows. Owing to that, methods for steady cases 
can be applied for the solution of unsteady flow 
problems, as well. Unsteadiness is introduced by 
unsteady boundary condition: 

 ( )T 0V V n− ⋅ =
G G G , 

of the Kelvin theorem: 

 D 0
Dt
Γ =
�

 

and the unsteady form of the Bernoulli equation: 

 2 2
1
2

2p p ΦV V
t

∞
∞

∞

− ∂= − −
∂ρ

, 

where: Φ  - is velocity potential,V
G

- is absolute fluid 
velocity, TV

G
 - is lifting surface velocity, nG  - is the 

normal of the lifting surface at a certain point, and Γ�  - 
is the bound circulation. 

 In order to define the aerodynamic characteristics of 
blades, two models should be established: blade model 
and wake model. 

The blade is modeled as a thin lifting surface, which 
enables a complete 3D modeling around helicopter 
blades. Unfortunately, it can not deal with compressible 
and viscous flows. 

Numerical modeling of the wake must be done very 
carefully due to it’s high influence on the lift force 
generation. The free-wake model, which is applied in 
this paper, is one of the most advanced, since it can 
cover all relevant problems connected with the wake 
influence. 

 
3.2. Unsteady Kutta condition 

 
In case of inviscid problems, it is necessary to 

satisfy Kutta condition at the trailing edge [8, 9]. 
On the basis of unsteady Bernoulli equation, the 

pressure coefficient for unsteady flow is defined as: 

 
2

2 2 21
2

21P
p p V ΦC

tV V Vρ
∞

∞ ∞ ∞ ∞

− ∂= = − −
∂

. 

According to that, the difference between upper and 
lower surface pressure coefficients is: 

 ( )U L

2 2
L

U L2 2
2U

P P P
V V

C C C Φ Φ
tV V∞ ∞

− ∂∆ = − = − − −
∂

, (1)  

where subscripts U and L denote upper and lower 
surface values. 

In case of the thin lifting surface, with the 
assumption that spanwise velocity components are 
small, the potential difference can be written as an 
integral from leading edge to a certain point M at the 
surface: 

 ( )T T

M

U L U L
LE

dΦ Φ V V l− = −∫ ,  

where the tangential velocity difference is the local 
bound vortex distribution: 

 ( )T TU LV Vγ = − .  

Final equation defining the potential difference is: 

 
M

U
LE

L dΦ Φ lγ− = ∫ . (2) 

If we assume that spanwise velocities are small, the 
difference of velocity squares can be calculated as: 

 2 2
U L 2V V V γ∞− ≈ . (3) 

By substituting (3) and (2) in (1), the following 
equation can be obtained: 

 
M

2
LE

2 dPC V l
tV

γ∞
∞

 ∂ ∆ = − γ +
 ∂ 

∫ .  



 FME Transaction VOL. 33, No 1, 2005  ▪  35

The Kutta condition can be expressed as the 
uniqueness of pressure coefficients at the trailing edge, 
which, mathematically expressed, takes the form [10]: 

 
TE

II2
LE

2 d 0pC V l
tV

γ γ∞
∞

 ∂ ∆ = + =
 ∂ 

∫ .  

Since it is impossible to be V∞ = ∞ , the relation 
within the parentheses must be equal to zero: 

 
TE

TE
LE

d 0V l
t

γ γ∞
∂+ =
∂ ∫ . (4) 

The integral in the upper equation is, in fact, the 
contour circulation which covers the lifting surface: 

 
TE

LE
dlΓ γ= ∫� ,  

so, the equation (4) can be written as: 

 0TEV
t
Γ

∞
∂γ + =
∂

�
.  

The expression for unsteady Kutta condition comes 
out directly as [11]: 

 TEV
t
Γ γ∞
∂ = −
∂

�
.  

If the right hand-side part is substituted with (3) 
written for the trailing edge, we obtain: 

 ( )TE TE TE TE
TE TE

2 2
U L U L

U L2 2

V V V V
V V

t
Γ − +∂ = − = − −
∂

�
.  

From this equation it can be clearly seen that the 
variation of the lifting surface circulation in time can be 
compensated by releasing vortices of magnitude  

( )TE TEU LV V−  at the velocity ( )TE TEU L 2V V+ . 

 
4. DISCRETIZATION AND NUMERICAL SOLUTION 

PROCEDURE  
 
The method for the solution of this problem is based 

on the coupling of the dynamic equations of blade 
motion with the equations of aerodynamics. It is not 
possible to obtain an analytical solution of this problem, 
so discretization and numerical approach must be 
accepted. 

Dicretization in time is done by observing the flow 
around the blade in a series of positions that it takes at 
certain times ( )0,1, 2kt k = … , which are spaced by 
finite time intervals t∆  at different azimuths. 

Discretization of the thin lifting surface is done by 
using the panel approach [12, 13]. By this method, the 
lifting surface is divided in a finite number of 
quadrilateral surfaces – panels. Vorticity distribution is 
discretized in a finite number of concentrated, closed 
quadrilateral linear vortices, whose number is equal to 
the number of panels, in such a way that one side of the 
linear vortex is placed at the first quarter chord of the 

panel, and represents the bound vortex of the 
corresponding panel. The opposite side of the vortex is 
always placed at the trailing edge, while the other two 
sides are parallel to the flow. The wake is represented 
by quadrilateral vortex in the airflow behind the lifting 
surface. One side of it is connected to the trailing edge, 
while the opposite one is at the infinity. The other two 
sides (trailing vortices), which actually represent the 
wake, are placed parallel to the airflow. The vorticity of 
the quadrilateral vortex is equal to the sum of the 
vorticities of all bound vortices of the panels that 
correspond a certain lifting surface chord, but opposite 
in direction. Then the trailing edge vorticity is equal to 
zero.  

Model established in such a manner corresponds to 
the steady flow case. On the other hand, it can be very 
easily spread in order to include the unsteady effects. 

 
Figure 2. The steady panel scheme 

 
4.1. Vortex releasing model 

 
The variation of the lifting surface position in time 

induces variation of circulation around the lifting 
surface as well. According to the Kelvin theorem, this 
variation in circulation must also induce the variation 
around the wake. According to the unsteady Kutta 
condition, this can be achieved by successive releasing 
of the vortices in the airflow [14, 15, 16].  

 
Figure 3. Vortex releasing 

Suppose that the lifting surface has been at rest until 
the moment t, when it started with the relative motion 
with respect to the undisturbed airflow. The vortex 
releasing, as a way of circulation balancing, is done 
continually, and in such a way a vortex surface of 
intensity ( )tγ  is formed. 
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Figure 4. Unsteady panel scheme 

At the next moment t t+ ∆ , the flow model will look 
like in Figure 3. The circulation of the vortex element 
joined to the trailing edges equal to the difference in 
circulations at moments t t+ ∆  and t. 

We will discretize the vortex “tail” by replacing it 
with the quadrilateral vortex loop, whose one side is at 
the trailing edge, and the opposite side is at the finite 
distance from the trailing edge (shed vortex). By this we 
can obtain the final model for unsteady case. 

 
4.2. Discretization of Wake 

 
The established vortex releasing model is 

appropriate for the wake modeling using the “free 
wake” approach [18, 19].  

During the time, by continuous releasing of the 
quadrilateral vortex loops, the vortex lattice formed of  
linear trailed and shed vortices is created. 

The collocation points of the vortex lattice are node 
points. The wake distortion is achieved by altering the 
positions of the collocation points in time, by 
application of a rather simple kinematics relation: 

( ) ( ) ( )i i ir t t r t V t t+ ∆ = + ∆
KG G . 

The velocities of the collocation points are obtained 
as sums of the undisturbed flow velocity and velocities 
induced by other vortex elements of the flow field.  

 
Figure 5. Dicretized wake 

Induced velocities are calculated using the Biot-
Savart law. In order to avoid the problems of velocity 
singularities, line vortex elements are modeled with 
core. 

The core radius varies with the gradient of the bound 
circulation at the position where vortex is released, from 
the value c 0,00275r R=  (where R  is the rotor 
diameter) for the elements at the end of the wake (high 
gradient positions), to the values c 0,05r R=  inside the 
wake (low gradients) [19]. The existence of the vortex 
core has remarkable influence in blade-wake 
interactions, since in this way large velocity 
irregularities on the blade close to the wake are avoided. 

The wake influence at large distances from the blade 
is negligible, so it is possible to neglect the wake 
distortion at a sufficient distance from the rotor. The 
area in which distortion is relevant depends on the 
helicopter flight regime, and it can be determined by the 
advance ratio µ . [20]: 

 0, 4m
µ

= ,  

where m – is the number of revolutions for which it is 
necessary to calculate the wake distortion. After that, 
the wake shape is “frozen” in achieved state, and it 
moves through the flow field keeping it for the rest of 
the time (velocity of collocation points is equal to the 
flow field velocity). 

The “frozen” part of the wake still influences the 
adjacent area in which it is still being distorted. After 
some distance, even the influence of the “frozen” part 
becomes negligible, and then it is eliminated from the 
model. 

In this way, a dicretized wake model, consistent with 
the panel model of the lifting surface and vortex 
releasing is obtained. 

 
4.3. Discretization in Time of Unsteady Kutta 

Condition 
 

Let us consider the unsteady Kutta condition from 
the aspect of the assumed discretized model. The 
condition can be written as: 

 TE 0V
t
Γ

∞
∂γ + =
∂

�
. (5) 

In case of transition to the discretized time domain, 
it is necessary to substitute the partial derivative with 
the finite difference form: 

 
( ) ( )t t t

t t t
Γ ΓΓ Γ+ ∆ −∂ ∆= =

∂ ∆ ∆

� �� �
.  

By substituting this equation in (5), we obtain: 

 
( ) ( )

TE 0
t t t

V
t

Γ Γ
γ∞

+ ∆ −
+ =

∆

� �
. (6) 

In case of numerical solutions, it is customary to 
satisfy Kutta condition in vicinity of the trailing edge. 
According to that, the intensity of the distributed 
vorticity at the trailing edge TEγ  is treated as equal to 
the intensity of the distributed vorticity at the trailing 
edge panel nγ . The intensity of the distributed vorticity 
is constant at every panel, so it can be written: 



 FME Transaction VOL. 33, No 1, 2005  ▪  37

 TE
n

n
nl
Γγ γ= = ,  

where nγ  is intensity of the distributed vorticity at the 
trailing edge panel, and il  is the panel cord length. 
Substituting this equation in (6), we have: 

 
( ) ( )

0n

n

t t t
V

l t
Γ ΓΓ

∞
+ ∆ −

+ =
∆

� �
,  

i.e. the difference of circulations around the lifting 
surface at the moments t t+ ∆  and  t can be calculated 
by: 

 ( ) ( ) n

n
t t t V t

l
ΓΓ Γ ∞+ ∆ − = − ∆� � .  

 
5. DEFINITION OF EQUATION SET 

 
The boundary condition of impermeability of the 

lifting surface should be satisfied at any moment of 
time, ( )0,1, 2kt k = …  in a finite number of points of 
lifting surface: 

 ( )T, 0; 1,2, ,i i iV V n i n− ⋅ = =
G G G … . 

Points at which this condition must be satisfied are 
called the control points. One of them is placed on each 
panel, at the three-quarter chord panel positions. By 
this, at every moment of time, the number of lifting 
surface impermeability conditions is equal to the 
number of unknown values of circulations of bound 
vortices. 

The equations of motion of the lifting surface are 
known, as well as the velocities T,iV

G
 of all characteristic 

points, and their normals inG  as well. 
At each flow field point, velocity can be divided to 

the free stream velocity and perturbation velocity: 

 i iV V w∞= +
G G G .  

The perturbation velocity is induced by lifting 
surface and wake vortex elements. It is calculated by 
Biot-Savart law. At every moment, the wake shape and 
circulations of its vortex lines are known, and so the 
wake induced velocity at every flow field point is 
known as well. On the other hand, the circulations of the 
bound vortices are unknowns (their positions are 
defined by the lifting surface shape). The boundary 
condition for the i-th control point can be written as: 

 ( ),
1

n

i j ji i
i

a t bΓ
=

=∑ , 

where ,i ja  are the coefficients depending of the blade 

geometry, and ib  are the coefficients containing the 
influence of the wake and free-stream flows. 

This way, by writing equations for all control points, 
the equation set of the unknown bound circulations is 
obtained. 

Besides this equation set, the Kutta condition must 
be satisfied. By adding the Kutta conditions to the 

equation set, an overdetermined equation set is 
obtained. It can be reduced to the determined system by 
the method of least-squares. After that, it can be solved 
by some of the usual approaches, by which the unknown 
values of circulations iΓ  at the time t are obtained. 

 
6. DETERMINATION OF THE AERODYNAMIC 

FORCE 
 
After unknown circulations iΓ  are obtained, 

velocity at every point of the flow field is known, and 
we can use them for the determination of aerodynamic 
forces that act on the blade. The calculation 
aerodynamic force is necessary for the defining of the 
blade position at the next moment of time. The total 
aerodynamic force is calculated as the sum of forces 
acting on all panels. 

 
1

n

i
i

F F
=

=∑
G G

. 

Aerodynamic force acting on a single panel can be 
defined by introducing the Kutta condition in a vector 
form: 

 ( )ef.i iF V BCρ Γ
→

∞= ×
G G

,  

where BC
→

 is bound circulation vector, and effective 
circulation can be defined by using: 

 ( )ef.
1 d

iM

ii
LE

l
V t

Γ Γ γ
∞

∂= +
∂ ∫ .  

The integral should be calculated from the leading 
edge to the quarter-chord position of the i-th panel. 

 ( )
1

ef.
1

1
4

i
i

i ki
kV t

ΓΓ Γ Γ
−

∞ =

 ∂= + +  ∂  
∑ .  

 
7. RESULTS 

 
Presented method for blade airloads calculation has 

been implemented in a computer code. Forward flight 
application is presented for SA 341 “Gazelle” helicopter 
at moderate forward speed condition (advance ratio µ is 
0.35). The rotor has three blades with constant NACA 
0012 cross sections, and the blade has a linear twist of 

6 20′− ° . In presented case, blade is modeled with 20 
non-uniformly spanwise spaced panels (more panels at 
the tips), and 9 chordwise panels, also non-uniformly 
spaced (more panels near leading and trailing edges). 
Depending of the advance ratio and number of panels, 
typical code execution times ranges from 3 to 4 hours 
on a Pentium III class computer. By analyzing the 
drawings of the blade wakes (Fig. 6 and 7), it can be 
concluded that model applied in this paper gives 
reasonable simulation of actual wake behavior, specially 
in the domain of wake boundaries, where wake roll-up 
occurs (although it is slightly underestimated compared 
with existing experimental data). Also, larger wake 
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distortion in the domains of the forerunning blades or 
their wakes is noticeable. 

 
Figure 6. Calculated free wake geometry; µ = 0,35 (3D view) 

 

 
Figure 7. Calculated free wake geometry; µ = 0,35 (top 

view) 

 

 

 
Figure 8. Circulation distribution on the rotor disk; µ = 0,35 

(different points of view) 

The program results (Fig. 8 and 9), show the 
difference in circulation distributions at different 
azimuths, as well as the disturbances caused when 
blades are passing the wakes of other blades, and the 
characteristic reversal flow domains. 

 
8. Conclusion  

 
A solver for potential, incompressible helicopter 

main rotor flow field has been developed, and 
preliminary validations were done. 

Obtained results can define suggestions for the 
future solver upgrading. Firstly, by incorporating the 
transonic flow calculations, the advancing blade tip 
simulation would be more appropriate. Secondly, 
viscous interaction should be included as well, which 
would improve the wake roll-up simulation. The viscous 
vortex core simulation in time would improve the 
results concerning the wake vanishing effects far 
enough from the blade. Finally, introduction of the 
curvilinear vortex elements would give better results 
from the aspect of wake self-induction. 

With these enhancements, this solver should prove 
to be a useful and efficient tool to the rotorcraft 
performance evaluation. 
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ПРОРАЧУН ТРОДИМЕНЗИОНАЛНОГ 

СТРУЈНОГ ПОЉА ОКО РОТОРА 
ХЕЛИКОПТЕРА 

 
Александар Бенгин 

 
У раду је приказан нумерички модел за 
израчунавање аеродинамичких сила на главном 
ротору хеликоптера. Модел је нестационаран и у 
потпуности тродимензионалан. Лопатица ротора 
хеликоптера се сматра крути телом, а њено кретање 
у току ротације је моделовано тако да ротор 
представља модел ротора хеликоптера Aerospatiale 
SA 341 “Газела” (лопатица је повезана са главом 
ротора преко зглоба махања, зглоба за промену 
корака и псеудо-забацујућег зглоба). Струјно поље 
око лопатице се прорачунава у низу сукцесивних 
азимутних положаја. Струјно поље око ротора је 
моделовано као потпуно тродимензионално, 
нестационарно и потенцијално. Лопатица је 
аеродинамички моделована као танка носећа 
површина. Вртложни крак ротора се састоји од 
праволинијских вртложних нити константне 
вртложност које напуштају излазну ивицу лопатице 
у одређеним азимутним угловима. Вртложни траг се 
моделује као слободан (free-wake модел), а његов 
облик се израчунава у сваком тренутку времена на 
основу једноставног кинематског закона 
примењеног у колокационим тачкама вртложног 
трага. Промена облика вртложног трага се 
израчунава само у близини лопатице, тј. за одређени 
број револуција ротора. Вртложни елементи трага се 
моделују са језгром вртлога. Полупречник језгра је 
непроменљив током времена, а зависи једино од 
градијента циркулације у тачки у којој вртложни 
траг напушта лопатицу 
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