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Friction Pressure Loss in
Microchannel Rarefied Gas Flows

Gas flows through micro-channels are encountered in many applications
of Micro-Electro-Mechanical Systems (MEMS) Dimensions of the
MEMS are within pm range, which means that rarefaction must be
considered. It is common to use slip conditions at the wall and
continuum equations for solving these problems. In this paper
isothermal, compressible and subsonic gas flows through microchannels
with slowly varying cross sections are analysed. In order to provide a
higher accuracy, the second order boundary conditions are used. This
approach requires the higher order momentum equation, i.e. the Burnett
equation. Solutions are obtained for higher Reynolds number values
when the inertia effect is important together with the rarefaction effect.
For such flow conditions analytical relations for pressure and velocity
fields are presented. Also, analytical expressions for the friction factor
change along a microchannel with constant cross section and for the
average friction factor are obtained. The derived relations show that the
friction factor depends not only on the Reynolds number, but also on the

Knudsen number.
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1. INTRODUCTION

Two decades ago a production of very small
devices began. These devices comprise both electrical
and mechanical components, have a size between lum
and lmm and are called Micro-Electro-Mechanical
Systems. They have found application in various fields
of industry and medicine [1, 2, 3]. Accelerometers with
a size of the order of microns are used for the activation
of air bags in cars. Small pressure sensors are placed at
the top of catheters that are used for the examination of
blood vessels. Microactuators govern the electronic
microscope in order to detect atoms. Micro heat
exchangers are used for the cooling of electrical circuits.
Micropumps are a part of inkjet printers. Micropumps
and network of microchannels are applied in biomedical
experiments for analyses of a drug deposition in the
living tissue. One of the first examples of the
phenomena of fluid flow in microchannels was
encountered in the computer industry. The head of the
Winchester hard disk is positioned at a distance of
50 nm above the rotating disk surface. The decrease of
that distance leads to the increase of a disk capacity.
NASA has encountered a need for a development of
microsatellites. Their application increases a flexibility
of a mission, and they can also be used as
communication satellites in the Earth orbit. Movement
and control of the microsatellites are achieved by
micronozzles.
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The flow of gases through microchannels of
different shapes is present in the MEMS systems
mentioned above. The first conclusion could be that
there was no difference between the gas flow through
the channels of ordinary dimensions and the
microchannels. But, in the system of small dimensions,
the surface effects are dominant [4]. The surface to
volume ratio in machines with dimensions of 1 m is of

the order of 1 m™, while this ratio is 10°m™" in the

MEMS devices with characteristic length of 1 um . This

fact directly influences the transport of mass,
momentum and energy at the interface of fluid and wall
of a MEMS device. The application of the continuum
models in the calculation of the fluid flow in channels of
small dimensions is questionable, together with the
application of the corresponding boundary conditions
that a fluid in contact with wall has the same velocity as
the wall surface due to the viscosity forces. Various
effects must be taken into account in case of
microchannel flows, such as gas rarefaction, slip
conditions, thermal creeping and temperature jump at
the wall.

The Knudsen number characterises the gas
rarefaction. It is defined as the ratio of the mean free
path A and the characteristic length 4: Kn=A/h . The

mean free path is proportional to the temperature and
inversely proportional to the pressure. The effect of gas
rarefaction occurs not only in devices that operate with
low pressures and high temperatures, but also in devices
with  small dimensions (MEMS), since their
characteristic dimensions are not negligible in
comparison with the mean free path. The different
Knudsen number regimes can be classified as:
Kn<0.001 - continuum flow, 0.001<Kn<0.1 - slip
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flow, 0.1<Kn<10 - transitional flow and Kn>10 -
free molecular flow.

Gas microchannel flows in MEMS devices are
mostly performed in the slip flow regime. It was
observed by experiments that pressure distributions
along microchannels are not linear. Also, higher mass
flow rates were measured than the values predicted with
the continuum theory. These suggested that continuum
theory cannot be used any more in the slip flow regime.
The deviation from continuum is taken into account
through velocity slip and temperature jump boundary
conditions that were first defined by Maxwell in 1879
and Smoluchowski in 1898
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where u, and fg refer to the gas velocity and

temperature at the wall, i,, and T, are the velocity and
temperature of the wall. Operators d/dii and
d/05 denote the normal and tangential derivates at the

surface respectively, o, and op are accommodation

coefficients of the solid surface, i, P, i, T are

dynamic viscosity, density, velocity and temperature
respectively, y is specific heat ratio and Pr is the

Prandtl number. Sign ~ denotes dimensional velocity,
temperature, density, viscosity and coordinates.

Beskok and Karniadakis [5, 6, 7, 8] included a
second order effect in boundary conditions leading to an
increased accuracy
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2. PROBLEM STATEMENT AND GOVERNING
EQUATIONS

An isothermal, compressible and steady-state gas
flow will be analysed and modelled for the low Mach
number flow conditions in the microchannel with a
slowly varying cross section, as shown in Fig. 1. The
gas flow is driven by a pressure difference between the
channel inlet and exit.

The stated problem is two-dimensional and could be
described with the following mass and momentum
conservation equations:
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where pO is density, p is pressure, u and VvV are
velocity components. Viscous stresses are denoted with
7j;. The equation of the ideal gas p = PRT is added to

the above set.

Figure 1. Microchannel with the slowly varying cross
section.

In this paper the second order boundary conditions
defined by Beskok and Karniadakis [5, 6, 7, 8] are used
in order to obtain the higher accuracy. According to this
approach, the second order equations for the viscous
stresses are applied in the momentum equations. These
are Burnett equations [6, 9, 10, 11].

The system of basic equations is transformed into a
non-dimensional form by the introduction of the
following scales: 5‘2 for all lengths, the exit average
velocity u, for all velocities, the exit pressure p, and
the exit density p, at the axes in the outlet cross section

for pressure and density, respectively. Non-dimensional
velocity, pressure, density, temperature and coordinates
will be denoted by wu, v, p, o, T, x, y. The

assumption of low Mach number flow conditions
enables the definition of the small parameter

& =yMe’/Re , where ¥ is the ratio of specific heats, Me
is the referent Mach number value defined as

Me =u, / JyD./p, and Re is the referent Reynolds
number value Re = p,ii, 5, / £ . Dynamic viscosity @ is
constant. From the definition of the small parameter &,
e=pim/2p,p,0,

m=2 [)eﬁege represents channel mass flow rate per unit

the relation follows, where

width. The assumption of the slowly varying channel
cross section (a=ée<<l, «a is channel wall
inclination, Fig. 1.) implies that all flow parameters
change vary slowly in the x - axes direction, which is
explicitly expressed by the introduction of the slow
coordinate £=éex. Also, the crosswise velocity

component v is much smaller than the streamwise
component u, which leads to the following relations

v(x,y)=€V(&,y), V=0(1). Hence, the obtained
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continuity and momentum equations and the equation of
state have the following non-dimensional form:

o(pu)/0&+a(pV)/ay=0, ®)
2 Ju ou) dp 0%u b
j/Me p(uﬁ‘l—l/gj——%‘i'ay—z‘l'O(E ), (9)
P _ .2
g_o(g ) (10)
p=p. (1)

Obtained Eqgs. (9) and (10) are the Burnett equations,
which have the same form as the Navier-Stokes
equations under the stated flow conditions. Here,
presented analytical derivation shows that the Navier-
Stokes equations can describe the flow conditions with
larger deviations from the continuum if the values of the
Mach and Reynolds numbers enable a definition of the
small parameter & This conclusion confirms the usage
of the Navier-Stokes equations with the second order
boundary conditions for a slip flow regime under
conditions defined in this paper.

Since the mean free path of molecules under
isothermal flow conditions is inversely proportional to

pressure, the local Knudsen number (Kn =/1/ 5‘8)
would be expressed as Ke/p [12], where Ke is the

referent Knudsen number Ke = %% (Ke=4, / 56 )
e

and p is the non-dimensional pressure in any channel
cross section. By using already defined scales for length
and velocity, Beskok and Karniadakis boundary
condition can be written in non-dimensional form:

3 2 2
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Also, symmetry conditions at the channel axes will be
used. In non-dimensional form they are

y=0: 8u/8y=a3u/8y3=...=0, V=0. (13)

For low Mach number values the following relation
holds yMe* = Be™, B=0(1), as well as Ke=ne",
n=0(1) for low Knudsen number values. Parameter

€, Me and Ke numbers are dependant on mass flow
rate, which leads to the conclusion that parameters £

and 7 are also function of m. The non-dimensional
flow channel length is defined as &; = £(l~ / 5‘6) . Since

the small parameter € contains the mass flow rate, it can
be concluded that the non-dimensional channel length
&, is proportional to the mass flow rate. Further, it can

be concluded that parameter £ is proportional to i m
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and parameter 77 is proportional to 7" . They can be

written as
B=M sz-m ,
where
- 2~ ~ 2—-m
M= pefiezpe [%} =0(1)
and
n=N&™",
where

N= \Eﬁ(%) o).

Since, only the Mach and Reynolds numbers are
independent of each other, there is a relation between m
and n, as well as between parameters £ and 77, i.e. M

and N: 2n+m =2, n=\/z/2f and N =/z/2M . For
low Mach and Knudsen number flows, m and n values
must be positive and within the following ranges 0<m<2
and 0<n<l. In these ranges two characteristic cases are
analysed:
1.1<m<2 = 0<n<1/2 when Re<1. Chosen
values of the parameters m and n, which represent
the range of low Reynolds numbers are:
m=3/2 and n=1/4, which implies that
Re= ,351/ 2 yMe* = ,353/ 2 and Ke = 7751/ 4,
2. 0<m<l = 1/2<n<1 for Re>>1. Chosen values

of the parameters m and n, which represent the
range of moderately high Reynolds number are:

m=n=2/3,  which  implies Re = ,Hg_l/ 3,

yMe? = [)’52/3 and Ke= 7752/3.
In this paper solutions for Re>>1 are obtained. The
aim was to take into account the inertia effect together
with the rarefaction. From momentum equation (9) and

boundary condition Eq. (12) follows that a relation
between Mach and Knudsen number must be satisfied:

yMe* =O(Kn). If we write the Much number as
Me?* = O(Eq) , the relation requires that Ke = 0(5‘7) ,

and |q| <1. However, if the reference Reynolds number
is eliminated between our assumption Me’ / Re=0(¢)
and the relation Ke=O(Me/Re), another relation
between Me and Ke is obtained MeKe=0O(¢€), which
leads to the single value for ¢: ¢=2/3. Thus, our

theory holds for Ke= 0(52/3) and yMe® = 0(62/3),

which means that m=2/3 and n=2/3. Now,
assumptions for Reynolds, Much and Knudsen numbers
are Re= ﬂ£_1/3 , yMe* = ,862/3 and Ke = 7782/3 .

All the dependant variables from Egs. (8)-(11), i.e.
pressure and velocity F = F(u,v,p), are presented in

the form of the perturbation series
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F:FO +€2/3F2/3, (14)

where £y is the solution for flow with no-slip boundary
conditions, and Fj;3 is the correction of physical

parameters due to the slip effects on the wall and the
inertia effect. The system of equations for two
approximations is obtained with the standard method
under the corresponding boundary conditions.

It seems that three flow parameters u, V, p can not be
determined from two equations (continuity and
momentum conservation equations in x direction). But,
the number of boundary conditions is higher by one
than the number of unknown parameters, and the
problem is mathematically correctly defined. The
solutions are obtained with the similar method for every
approximation. The expression for the streamwise
velocity is derived from the momentum equation in x-
direction, by assuming that the pressure is known and
with the application of appropriate boundary conditions.
Crosswise velocity component V' (&, y) is derived from
the equation of continuity (8). Integration of the
continuity equation in the range from y=0 to
y =0 gives

5

J.pu dy=1,or

0
5 5
Ipouody =1 and J(Pou2/3 +py3ug)dy=0.  (15)
0 0

Their solution provides the pressure differential
equation.  Defining streamwise  coordinate  as
X =¢/&; , equations for velocity and pressure for the

first two approximations have the following form:
-the first approximation:

’r Q2 2
PoO y
S <\ P 16
0Ty [ 52] (e
P60 5
v, =209 Y| (17)
Y [ 52J
popy =3¢, /5% (18)

-the second approximation:
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where B = 9,8(p05)//(4§Lp0253 ) ,
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(20)
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while prime denotes d/dX , and & is the function for

the channel cross section dependence on X.
For the known geometry of the channel and the
pressure at the outlet, which are completely comprised

within the first approximation (X =1, p=p,=1),
solutions for pressure and velocity fields in the whole
channel will be obtained. Ratio of parameters £ and 7
in the case analysed in this paper can be expressed as

,3/77 = j/Mez/Ke ie. ,3/77 = 2KeRez/7Z' .

3. FRICTION FACTOR IN MICROCHANNEL FLOWS
BETWEEN PARALLEL PLATES

For channel with constant cross section J(X)=1,
the  expression  for the  pressure  change
p=py+ P P23 1s obtained in the following form:

= po +3ke 20w (L—l}rﬁ—KezRez Inpy
oy \Po 357
(21)
where p, is the solution for the first approximation

po =A1+6&, (1-X). (22)

The second term on the r.h.s. in Eq. (21) is due to
rarefaction, and the third term shows the influence of
inertia. The comparison between them leads to the
conclusion that the inertia is dominant when

2- -
Re> |20y 357 [1=ml 23)
o, 36Ke Inp,

v

Now, the friction factor (f =7,/ % [)172 ) for

rarefaction gas flow can be defined. According to the
conclusion that the Burrnet equations have the same
form as the Navier Stokes equations within the
approximations made in this paper, the shear stress on
_ ol
H PY
average cross section velocity. In this paper a change of
the friction factor along the microchannel with the
constant cross section will be analysed. Using the same
scales for velocity, pressure, density and length, and
including the fact that for isothermal flow conditions the
dimensionless average velocity is inversely proportional
to the dimensionless pressure, the expression for the
friction factor in non-dimensional form becomes:

__2p(u
f= Re(ay jyzl . (24)

the wall surface is 7, =—( j , and u is the
=6

Substituting equations for velocity (16) and (19) and
pressure Egs. (21) and (22) for the flow between parallel
plates, into Eq. (24), the following expression is
obtained
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This expression shows the friction factor dependence
upon Reynolds and Knudsen number. The friction factor
for compressible flow without slip is obtained as

) (p'—EKezRezp—gJ. 25)

2popo
fcomp(Ke:O) == Reéx;L : (26)

Introducing Eq. (18) in (25) the following equation is
derived

6

fcomp(Ke=0) = E : 27

Equation (27) shows that the friction factor is constant
along the channel and it has the same form as in case of
the incompressible flow between parallel plates.

In order to design microdevices properly, it is
necessary to know the average friction factor in

-
microchannels f :-[0 f dX . Substituting Eq. (25) in

this integral, the following expression for the average
friction factor is obtained

_7:[1)2 —1—%1@21@21@0 +
T

2
- R-1
+ 2V KSR | | -
St oy I

- ketret|1- 20T JRes, 3
1757 B

The ratio of inlet to outlet pressure for the slip flow
condition is P, and for the no-slip condition is £y . Both

pressure ratios are obtained for the same mass flow,
geometry and conditions at the exit cross section. P
and Ry follow from Egs. (21) and (22) when X =0. As

it could be expected, the average friction factor depends
on the Reynolds and Knudsen number and parameter

§L = f(g,l/d) .

The average
c’ =(]_"-Re) /( Ske=0 - Re) based on the second order
model is obtained from Egs. (27) and (28) as

normalised friction factor

c* =[P2 -2 kRPInR +
157
362-0 B -1Y
+ 20270V gARA 0|
St oy I

6482 Ke*Re* 1—21L<;+1 6Z, . (29)
1757 B

Obtained expression represents a deviation of the
friction factor for slip flow from the friction factor for
no-slip conditions.
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4. RESULTS AND DISCUSSION

Figure 2 shows the friction factor changes along the
microchannel for different Re and Ke numbers and
under flow conditions that satisfy & =1. The results

presented with the full lines are calculated with Eq.
(25), which is derived by taking into account the inertia
effects (the complete model solution), while the dashed
line represents a solution obtained with the simplified
model that does not comprise the influence of inertia
forces on the friction factor. The simplified model
solution is given with the following equation, obtained
by neglecting the second term in the parentheses of Eq.
(25) and the last term on the r.h.s. of Eq. (21)

f==2 R’:’; . (30)
L

The complete model solutions (full lines in Fig. 2) show
that for low Knudsen number values the friction factor
decreases along the microchannel, and for higher
Knudsen numbers (for Re=10 and Ke=0.1, and
Re =20 and Ke=0.03 and 0.05 in Fig. 2) the friction
factor increases in the end part of the microchannel due
to the inertia effect. This influence of inertia is clearly
demonstrated by comparison with the dashed line,
which is obtained by simplified model that neglects the
inertia effect. Figure 2b) shows that the inertia effect
leads to the increase of the friction factor, whose values
are even higher than in case of no slip flow (denoted
with Ke=0).

0.62 -
g E Ke=0
/ 061 Ke=001
0.58 3
0.56
0.54 1
0.52 1
05 1 SN
0.48 7 with inertia effect
B with out inertia effect
a) 0.46
0.44 1 [Re=10, &, =1
ot
0 0.2 0.4 0.6 08 1
0.32 ]
f ] Re=20, £,=1
0.31
] Ke=0
031 Ke=001
020 I N
1.0 Ke=005_ Tt . K00
028 1 RN -
0.27 ]
with inertia effect
b) 0.26 1------ with out inertia effect
oi—
0 0.2 0.4 0.6 0.8 1
X

Figure 2. Friction factor change along microchannel for
£, =1: a) Re=10, b) Re=20.
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In Fig. 3 the average friction factor dependence on
Re and Ke numbers is shown. The average friction
factor is calculated with Eq. (28) for known flow
conditions. In spite of the phenomenon that the local
friction factor values in some cases increase in the exit
part of the microchannel (due to the inertia effect), and
even reaches values higher than in case of no slip
conditions, here obtained average values of the friction
factor are lower than the values of no slip flow
conditions.

In [13] the local normalised friction factor is derived
on the basis of the first order slip model in the form

Cc* = 1/ (1+3Kn) . The first order model does not take

Figure 3. Average friction factor for £, =1.

into account the inertia effect and the second order slip
conditions. In the work presented herein the relation for
local normalised friction factor leads from Egs. (25) and
27)

o p'—EKezRezp—g . 6D
3'§L hY/4 1)

This relation is obtained as a result of the second order
theory, and, as described, it also includes the inertia
effect. If the inertia terms from Eq. (31) are neglected, it
becomes the same as the above mentioned equation
obtained from the first order theory.

In Fig. 4 the normalised friction factor
C" dependence on Re and Ke number is shown. Results
presented in this figure are obtained for a typical value
&; =1. Presented values of C* are lower than 1 for slip

flows (curves for Ke>0). Parameter C* decreases with
the increase of Ke number, which means that the
deviation from no slip condition is higher for a higher
value of the Knudsen number. The appearance of the
maximum of the curve for Ke = 0.1 is the result of the
inertia effect included in the work presented herein.

In order to compare results of the work presented
herein with available experimental data, the friction
factor calculation is performed with the value of
dimensionless parameter &; =0.01, because it is

estimated that the experimental value of parameter &;

is about 0(10_2) .
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Lo Keso
Ke=0.01

Ke=0.05

Figure 4. Normalised friction factor for &, =1.

Figure 5 shows a comparison of analytical results
calculated with the work presented herein and the
correlation derived from the experimental data [14] in
the following form

f=24/(Re(1+4.7Ke)) (32)

where Re is the Reynolds number based on the
hydraulic diameter of the channel ( Re = ﬁﬁﬁh / ) and

Ke is the Knudsen number defined as Ke = /1/ 25 . The

acceptable agreement is shown. Analytical results show
a dependence of the average friction factor on the
Reynolds number and the rarefaction effect expressed
with the Knudsen number. At lower Reynolds numbers
the average friction factor decreases with the Ke
increase. The opposite holds for higher Reynolds
numbers due to the inertia effect.

f % I
L Ke=0
5 —2—Ke=0.05
, —%—Ke=0.1
410 O Ref[l4], Ke=0.1

Figure 5. Average friction factor for £, =0.01.

The local values of the friction factor along the
dimensionless microchannel length are shown in Fig. 6
for two Reynolds numbers and several Knudsen
numbers. The friction factor is practically constant
along the channel, but its value strongly depends on the
Ke and Re numbers. The increase of the Knudsen
number up to a certain value leads to the friction factor
decrease, while further Ke number increase leads to the
friction factor increase (the friction factor for Ke=0.05
and Re=20 is even higher than the value for the no slip
conditions presented with line Ke=0 in Fig. 6b). This
behaviour is caused by the inertia effect, and it is
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equivalent to the behaviour shown in Fig. 2. As
explained, the influence of inertia is manifested at the
exit part of the channel in Fig. 2 (obtained under
dimensionless parameter &£; =1), but in Fig. 6 the

influence of inertia is felt along the whole channel due
to the lower value &; =0.01.

The influence of inertia shown in Figs. 5 and 6 is
also demonstrated in Fig. 7 where dependence of the
normalised friction factor on the Reynolds number is
depicted.

0.61
f Ke=0
OAG, e
0.59 ]
Ke=0.01
0.58 ]
0.57 4 Re=10, £,=0.01
0.56
0.55 Ke=0.1
Ke=0.05
a) 0.54
0.53 ++——r——————
0 0.2 0.4 0.6 0.8 1
X
0.325
f 0.32 - Ke=0.05
0.315
Re=20, £,=0.01
0.305
Ke=0
03 o e i iemiim e e ee i e e e aem e
Ke=0.03
b) 0.295 A Ke=0.01
0.29

0 0.2 0.4 0.6 0.8 X 1

Figure 6. Friction factor change along microchannel for
£, =0.01: a) Re=10, b) Re=20.

1.8

c* &£=0.01

Figure 7. Normalised friction factor for £, =0.01.

The classical one-dimensional theory for isothermal
compressible gas flow between parallel plates gives

]7();2—?;61)=1//(Ma2)—1//(Ma1) (33)
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1 .
5 —lnMaz, where subscript 1
yMa

refers to the Mach number in the cross section at
distance X; from the inlet cross section and subscript 2

Here I/I(Ma) =-

refers to the channel exit (Ma, = Me ). For isothermal

flow conditions, the Mach number along the
microchannel can be defined as Ma; = Me/p . Then
equation (30) can be written in the following form
sz 2
7(x2txl)zp _21—1np2. (34)
o yMe

According to the two-dimensional theory already
described in this paper, the following relation holds

%:§L£. Employing this relation and well-known
£

relation between Me, Re and Ke numbers in Eq. (34) it
follows:

2p 2
7 Re&; AX = p? —1—@1@ , (35)

where AX is the distance from the exit expressed with X.

)2 Re=10, &, =1

E slip two-dimensional model
123 slip one-dimensional model
iL- - © - -no-slip
I+
0 0.2 0.4 0.6 0.8 x 1
3 ]
LYE Re=20, & =1
263 Ke=0.05
244
221
2 4
1.8
16
144 slip two-dimensional model |
123 slip one-dimensional model
4 —°—no-slip
14 >

0 0.2 0.4 0.6 0.8 X 1

Figure 8. Pressure distribution in microchannel for £, =1.

For known flow conditions, the average friction
factor can be calculated from Eq. (28), and then
pressure distribution from two-dimensional Eq. (21) and
one-dimensional Eq. (35) theory. In Figs. 8 and 9 a
comparison of these two theories is presented.
Differences between results of the pressure distribution
along the channel obtained with these two theories are
not large. For higher rarefaction effect (higher Kn
number value) the difference is more pronounced.

The pressure distribution for the compressible flow
is not linear. This effect is more exaggerated in Fig. 8.
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P slip two-dimensional model
1.06 N slip one-dimensional model
. *. [ L—°—no-slip
1.05
1.04
1.03 §
1.02
1.01
Re=10, £,=0.01
1 —————— e
.2 .4 . . 1
0 0 0 0.6 0.8 X
1.08
p 1. slip two-dimensional model
1.074 . | slip one-dimensional model
E . [ —°—no-slip
1.06 N
1.05
1.04
1.03 <
1.02
LOT 4 Re=20, £,=0.01
1 T T T T o
0 0.2 0.4 0.6 0.8 X 1
Figure 9. Pressure distribution in microchannel
for &, =0.01.

5. CONCLUSION

Two-dimensional model for the isothermal
compressible subsonic gas flow in microchannels are
presented in this paper. Analytical solutions for the
pressure and friction factor change along microchannels
are obtained. Influences of both rarefaction and inertia
effects are analysed.

It is concluded that the rarefaction effect causes a
lower pressure in the microchannel than in case when
the rarefaction is neglected. The inertia has the opposite
effect, leading to the pressure increase, and in some
cases the pressure becomes even higher than in the no-
slip flow.

The same holds for the friction factor. If the
rarefaction were the only analysed effect, the friction
factor would be always lower than in the no-slip
conditions. But the influence of inertia makes that in
some cases the friction factor becomes higher than in
no-slip flow. Analytical results show that the friction
factor depends not only on the Reynolds number, but
also on the Knudsen number.
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A ITPUTUCKA YCJIE TPEBA ITPH
CTPYJABY PABPEBEHOI' TACA Y
MHUKPOKAHAJIMMA

HeBena CreBanoBuh

Crpyjame raca Kpo3 MHKpPOKaHaje MPUCYTHO je Y
MHKpPO eleKTpo MexaHndkuM cucremuma (MEMCO).
JuMeHsmje MHUKpOKaHama Cy pela BeNIHYHHE Wm, ma
Jy>KHHA CIIOOOIHOT TIyTa MOJIEKYJa HUje 3aHEMapJbHBO
mana. Edexar paspehenoct monasu no mspaxaja, na je
moTpeOHO y3eTH y 003Hp TpaHWYHE yCIOBE KIIM3ama Ha
3uxy. Y OBOM paxy [noOujeHa Cy pemema 3a
JIBOJMMEH3HJCKO, H30TEPMCKO, CTHILBUBO CTpYjabe
raca Kpo3 MHKpPOKaHale CIOpPO  MPOMEHJBHBOT
MONPEYHOT TpeceKa, MPH BEOMa MajkM BpPEIHOCTHMA
Mach-oBor broja. Kopumrhenu cy rpaHu4HH ycioBH
KIM3amka JPYTor pefa, IITO je YCIOBIIO Kopuimheme u
jeAHauYMHa KOJIMYUHE KpeTama APyror peaa, Tj. Burnett-
oBux jenHaumHa. [lokasamo ce ma ce 3a IOMEHyTe
yCIIOBE CTpyjama OHe cBojie Ha Navier-Stokes-oBe. Y
pany je NmpHKa3aHO aHAIUTHUYKO PELICHE 3a CIydajeBe
CTpyjama raca kajga je BpeaHoct Reynolds-oBor 6poja
Beha, ma ocuM paspeheHOCTH IO HM3paxaja HONa3H U
yTHUIIa] UHEpIHje. 3a TakBe YCIOBE CTpyjama 100HjeHa
Cy peliema 3a I0Jb€ IPUTUCKA M Op3uHe, Kao H
AQHAIMTYKU U3pa3u 3a oapehuBame Gakropa Tpema ayxK
KaHaJla M HhEroBe Cpelme BPeAHOCTH. U3 BHX ce BUIU
Ja mpu crpyjamy paspeheHor raca Qakrop Tpema
3aBucH 1 o1 Reynolds-oBor u og Knudsen-oBor 6poja.
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