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Empirical Control Strategy for 
Learning Industrial Robot  
 
Today’s industrial robot systems intensively include external sensors like 
cameras used for identification of objects in the working environment of 
industrial robot. Including cameras in the system of an industrial robot, 
the control problem of such learning industrial robot is set. Using 
empirical control strategy based on application of artificial neural 
networks system, the learning industrial robot can realize adaptive 
behaviour in the sense of flexible adjustment to changes in the working 
environment. Unlike natural systems which could learn on the basis of 
experience, artificial systems are thought to be unable to do so for a 
long time. However, the concept of empirical control realizes the ability 
of machine learning on the basis of experience. This paper aims to show 
that it is possible to realize the empirical control strategy for learning 
industrial robot using camera and system of artificial neural networks. 
Results obtained by the system of neural nets have shown that the robot 
can move the end-effector to the desired location of the object, even in 
the case where the location differs slightly from the learned patterns. 
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1.   INTRODUCTION 
 

Robot vision systems are available from major robot 
vendors that are highly integrated with the robot’s 
programming system. Capability ranges from simple 
binary image processing to more complex edge and 
feature based systems capable of handling overlapped 
parts [1,2]. The feature in common with all of these 
systems is that they are static. Robots that incorporate 
vision system are usually designed for task level 
programming, and such systems are generally 
hierarchical. The highest level is capable of reasoning 
about the task. So, visual servoing is no more than the 
use of vision at the lowest level, with simple image 
processing to provide reactive or reflexive behaviour. 
The task in visual servoing is to control the pose 
(position and orientation) of the robot’s end-effector, 
using information from camera (features), extracted 
from the image. The camera may be fixed or mounted 
on the robot’s end-effector. If the camera is mounted on 
the robot’s end-effector, there exists a constant 
relationship between the pose of the camera and the 
pose of the end-effector. The image of the object is a 
function of the relative pose between the camera and the 
object. The distance between the camera and object of 
interest is referred to as depth or range. 
 Some relevant poses for experimental system of the 
learning industrial robot used in this paper are shown in 
Fig. 1. Experimental robot vision system is created to 
carry out the assembly task. This experimental system 
consists of three major components: IBM PENTIUM 
PC platform equipped with a data acquisition card 

(„AVIATOR” - FAST), „Lynxarm” anthropomorphic 
robot with four degrees of freedom, and „Sony” CCD-
TR512E camera. Thus, camera captures a two-
dimensional image including objects A and B. After 
objects identification and determining of their poses, 
robot has to fulfill the assembly task, which considers 
grasping of the object A and placing the same object on 
the object B.  

 
Figure 1. Experimental robot vision system 

 
 External sensors (cameras) are used to obtain the 
location of objects. The use of vision to acquire the 
location of objects requires robust recognition 
algorithms [1,2,4]. The camera captures a two-
dimensional image, from which the vision processing 
software must extract image features. These features are 
compared to models of the objects to identify the object 
of interest, and the location of robot’s grasp points. 
Visual servoing approaches based on neural networks, 
and general learning algorithms, have been used to 
achieve robot hand-eye coordination [2,11,16]. Camera 
observes objects and the robot within the workspace, 
and robot vision system can learn the relationship 
between robot joint angles and 3D pose of the end-
effector. Such systems require training, but the need for 
complex  analytic  relationships  between image features 
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Figure 2. Binary images of objects of interest 
 

and joint angles is eliminated. So, this paper presents 
empirical control strategy for learning robot based on 
the prototype artificial neural network system developed 
to perform pattern recognition, i.e. identification of 
objects, and to determine the robot joint angles. 
Artificial neural network system consists of two neural 
nets: ART-1 which is used for identification of objects, 
and feedforward which is used to determine the robot 
joint angles. 
 
2. IMAGE PRE-PROCESSING 

 
 The image obtained by the camera has a resolution 
of 640 by 480 pixels and 224 colours, and a buffer store 
of 300 Kbytes per image. Information about colour is 
stored as well as intensity information. This image is 
changed in two steps. The first step considers 
transformation of the image into grey-scale, and the 
second one transforms the image into binary image 
consisting of pixels that are either black or white. To 
obtain a good binary image, a high contrast between the 
object and its background is established. The camera is 
placed so as to point straight down to get the best view 
of the object. 
 Today, most systems capture grey-scale information 
and, if a binary image is required, they generate that 
image by comparing it pixel by pixel to a threshold 
value [1,2]. This is an advantage of grey-scale vision as 
it allows the binary threshold to be easily adjusted. The 
advantage of this technique is that the threshold level 
can be set to discriminate between the object in the 
foreground and the background. Threshold level in our 
case is usually set to 128 (maximum 255). Placing the 
threshold in the valley produces the closest match to a 
binary vision with a good lighting. Based upon this 
procedure, the filtration of the image is done as follows: 
 
For i = 0 To 639 

For j = 0 To 479 
k = BackInGrey(aNiz1(j, i)) 
If k >= nThresholdLevel Then 

aNiz2(j, i) = 1 
Else 

aNiz2(j, i) = 0 
End If 

Next j 
Next i, 

where aNiz1 is 2D matrix with the colour, and aNiz2 is 
2D matrix with black/white region. 
 The next step in the image pre-processing procedure 
defined the subfield of the image, including part A and 
part B. The binary images of parts A and B are obtained 
in a subfield of 80 by 80 pixels, as shown in Fig. 2. 
Now, the vision system wants to recognize objects of a 
known shape in any position and orientation in the 
image. Also, the vision system wants to obtain their 
positions and orientations. Features that capture this 
information are the centroid, the moments, and angle θ. 
To determine these data, the following equations are 
used: 
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These data are used as input values of the 
feedforward neural network discussed in the following 
sections of the paper. Binary images of objects A and B 
obtained by image pre-processing present input vectors 
for two ART-1 neural networks (for each object 
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separately), which carry out the identification of objects 
A and B. 

 
3. IMAGE UNDERSTANDING USING ART-1 

SIMULATOR  
 

Artificial Neural Network ART-1 (Adaptive 
Resonance Theory neural network paradigm ART-1) 
was introduced by Carpenter and Grossberg (1987) on 
the basis of the idea of coding and competitive learning 
[6]. The mechanism of recurrent connections between 
the competitive and the input layer is used in ART-1 
ANN for the retention of old when learning new 
information. The architecture of ART-1 neural network 
is given in Fig. 3. Two main ART-1 neural network 
subsystems are the attentional subsystem and orienting 
subsystem. The attentional subsystem includes F1 and 
F2 layers which by activation of their neurons (nodes) 
create ANN associative conditions in a short duration 
(Short Term Memory - STM) for each input pattern. 

 
Figure 3. ART-1 System diagram 
 
 The weights associated with bottom-up and top-
down connections between F1 and F2 are called Long 
Term Memory (LTM). These weights are the encoded 
information that remains a part of the network for an 
extended period. The orienting subsystem is needed to 
determine whether a pattern is familiar and well 
represented in the LTM or if a new class needs to be 
created for an unfamiliar pattern. 

For each neuron in F1 layer we have three possible 
input signals: input pattern ( kI ), vector gain control 
signal (G) and the pattern created from F2 layer (T ) 
and two output signals. The neuron in the F1 layer 
becomes active when at least two, out of three possible, 
input signals are active ("2/3 rule"). As far as F2 layer 
neuron is concerned there exists similar condition of 
input and output signals. 

*k

 Input vector kI  is given in a binary form and the 
number of neurons in F1 layer usually coincides with 
the input pattern dimensions. The connections between 
F1 and F2 layers are given through weight vector 

. The F2 layer also forms a 
representative or an exemplar pattern 

. When an input vector 
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 is presented at the F1 layer of the 
ART-1 network, the gain vector G is initially set to 

= . The output neurons compete next with 
one another to respond to the input vector kI , and the 
output neuron k* which has the closest weight vector to 
the input vector identified as: 
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Dot product is used as the metric to identify the 
weight vector closest to the input vector. After 
identifying the output neuron ,  is fed back into 

the input layer, and if any of the T  components is '1', 
the gain vector G is then set to G . By the 
"2/3 rule" the output of the F1 layer is then (

*k *kT

*k
[0= ,0,...

k ) AND 
(T ), a new vector, whose elements are obtained by 
applying the logical AND on the corresponding 
elements of the two vectors, giving the following 
estimate of the similarity between  and *kT : 
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This similarity measure is compared with a 
prespecified threshold called the vigilance parameter ρ. 
If the computed similarity measure is greater than ρ, 
then the stored representative pattern associated with the 
output neuron  is changed to ( kI ) AND (T ). The 

 is also changed to: 
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where Ci is the i-th component of ( kI ) AND (T ), and 
L is the constant (usually set to 2). If the similarity is 
not greater than the prespecified vigilance parameter, 
then the output neuron with the next highest W I  is 
selected, and the same procedure is repeated. 

*k

·j k

 So, ART-1 neural network paradigm is selected for 
identification of objects [8,10,12,14]. This architecture 
of neural network has the capability of updating its 
memory with any new input pattern without corrupting 
the existing information. This is especially important in 
automated assembly process where the product designs 
change with time [8,10]. In a typical assembly process 
the components are usually well defined, and the images 
can be obtained fairly noise free. It is also necessary to 
learn new components quickly to reduce set-up time. 
The fast learning algorithm of ART-1 neural network is 
used, because applications like robot assembly have 
crisp data sets and require immediate learning [10,12].  
 This paper aims to show that it is possible to identify 
objects using binary input vectors which represent 
images captured by camera. ART-1   Simulator is 
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developed for this purpose [14]. The software for 
running the system is developed in Visual Basic [18]. 
 The parameters of the ART-1 structure are in 
accordance with images and learning procedure.   ART-
1 Simulator sets all parameters for learning process 
very easily.  Learning process of the ART-1 neural 
network is adopted for identification of objects. This is 
because the machine vision operations include the ART-
1 neural network simulations for pattern recognition. 
Input vector consisting of 1s and 0s represents the 
image. In the learning process of the ART-1 net, the 
number of neurons in the comparison layer, representing 
input binary vector might be very large. The maximum 
number of processing nodes required at any instant is at 
the comparison layer and equals 10.000. The maximum 
width W and maximum height H for any pattern in the 
image are assigned the value of 500 pixels. In this 
paper, the resolution of each input binary vector is 
reduced by a factor of 6.25 from W x H and of 250.000 
pixels to a grid of 80 by 80 pixels, i.e. of 6400 pixels. 
The binary matrix of 80 x 80 is then presented to the 
ART-1 neural network paradigm to determine the object 
identity. 
 The parameters of the ART-1 Simulator structure 
used are: 6400 comparison layer neurons (F1 layer), 
initially 19 recognition layer neurons (F2 layer), and 
vigilance parameter ρ=1.0. The bottom-up weights Zji, 
and the top-down weights Zij within the network are 
initialised by other parameters: A1=1, B1=1.5, C1=5, 
D1=0.9, L=3. During the image understanding phase, 
ART-1 Simulator used for pattern recognition and 
identification of objects took several different numbers 
of iterations, considering the most similar input vector, 
for which  ART-1 net is trained, in accordance with 
required vigilance ρ, as shown in Fig. 4. 

 
Figure 4.  Working environment of the ART-1 Simulator 
 
4. EMPIRICAL CONTROL STRATEGY  

 
 Learning robots [7] are able to carry out adaptive 
behaviour based on experience (in a given 
environment), without the man-operator to take part in 
it, above all thanking to empirical control [8]. This 
statement has to be verified, which means a scientific 
challenge presented in this paper. However, the 
scientific goal is connected to carrying out the ability of 
„empirical machine-robot” to learn, i.e. to be able to 

develop behaviour on the basis of its own experience. 
The ability of „empirical machine” is in generating such 
autonomous behaviour which allows searching for 
special relations within its own environment as well as 
its implementation into its future behaviour.  
 Empirical control strategy objectively has to realize 
three steps in order to accomplish necessary behaviour 
using its own ability of machine learning, and they are: 
STEP 1:   To produce certain behaviour under certain 

conditions. 
STEP 2:   To measure (by testing) whether that 

behaviour  is carried out. 
STEP 3:  To produce the behaviour  that  has the 

highest probability of successful realization 
of the task according to given conditions.  

On the basis of these three steps, the empirical 
control algorithm (Alg. 1), defined by four rules, is 
realized for learning industrial robot. These four simple 
general rules of empirical control algorithm create the 
growth, evolution, i.e. successful development of all 
empirical systems, including the learning industrial 
robot.  

However, within conventional systems of visual 
servoing of industrial robot, the application of empirical 
control algorithm is complex, because it is already 
complicated enough to impose relative position and 
orientation of robot end-effector related to the object in 
the environment. The concept of  hierarchical intelligent 
control [13,15,16,17] on the basis of empirical control 
algorithm presented in this paper excludes particular 
nonlinear transformations, because this robot control 
strategy is based on the backpropagation (BP) learning 
ability of the artificial neural network (ANN). 
 

 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rule1: The empirical  control  system  must select
the right output (after expected delay)
having the highest level of reliability,
according to its memory, for a specific given
input. 

Rule2: If  the  output  selected  can be  carried  out,
memorized level of reliability of that output
for that given input must be increased, so
that the probability of later successful
selecting that output for that input has the
same increasing trend. 

Rule3: If the output selected for a specific given
input cannot be fulfilled (because it is
inhibited, restricted, or something similar
interfered with by the environment or some
other outside influence such as a „teacher-
trainer” in training, or by some internal
signals, actuators, or structure of its own),
the level of reliability which is memorized
must be decreased, so that the probability of
the controller later successful selecting that
output for that  input is increased. 

Rule4: If some other new output is carried out,
memorized level of reliability of that output
for that given input must be increased, so the
probability of later successful selecting that
output for that given input is increased. 

Alg. 1 Empirical control algorithm 
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 Within the set up control strategy, position and 
orientation of the object in relation to the robot world 
coordinate system is not known. However, through the 
robot learning the desired relative pose of the robot end-
effector  in relation to the object is well known (Fig. 5). 
Relations between the object data obtained from the 
recognition system and robot joint angles for the desired 
pose of the robot end-effector are extremely nonlinear. 
Developed empirical control system is self-organized in 
solving this nonlinearity in such a way where it uses the 
abilities of artificial neural networks (ART-1 and BP 
nets) which can overcome the problem of nonlinear 
corelations through the learning process [5]. So, the 
realized intelligent control system directly integrates 
visual data information of the object into servo-control 
system of the robot. The described empirical control 
algorithm supports hiararchical intelligent robot control 
through development of artificial neural network system 
(ANNS) for object recognition as well as for sensor-
motor coordination in approaching to the recognized 
object and its manipulation. Fig. 5 shows the robotic 
assembly process with object A and B, i.e. manipulation 
of object A. The robot usually carries out this process in 
three phases: 
 
Phase 1: Robot gripper approach to the recognized 

object A. 
Phase  2:  Grasping the object A. 
Phase 3: Moving the object A  in  order to solve 

assembly task. 
 

 Learning industrial robot must carry out the 
necessary relative pose of the gripper in relation to the 
object A, which can be in a totally arbitrary position and 
orientation. This means that if the robot end-effector is 
in desired relative pose in relation to the object A after 
phase 1, phase 2 and phase 3 of object manipulation, the 
assembly process will be done easily and successfully, 
because small position errors can be tolerated and 
sometimes compensated for by using the system with 
adaptive behaviour. Owing to visual feedback and 
machine learning on the basis of artificial neural 
network system, robot end-effector can take the final 
pose in relation to the recognized object A, i.e. B. 
According to this observation, the experimental system 
is realized which confirms this statement for the 
physical model of anthropomorphic robot called Don 
Kihot [16,17] (Fig. 5). 
 
4.1 Empirical control strategy based on feedforward 

neural network 
 
 In situations where the structure of the robot and the 
geometrical features of the object are exactly known, 
the position and orientation of the end-effector and the 
object can be calculated by a geometric method. 
However, the accuracy of the geometric method largely 
depends upon camera and image memory resolutions 
and lens linearity, but also upon camera system 
parameters, such as focal length and image center 
offsets [2,11]. In the established approach presented in 
this paper, the amount of movement of the 

 
 

 
 

Camera  
 Object B Object A 
 
 
 
 
 
 
 
 
 
 
 Robot plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Relative pose of the robot end-effector in relation to the object in order to solve robotic assembly task 
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robot is determined using image data and system of 
neural networks. The proposed and described empirical 
control strategy is based on two mechanisms, as shown 
in Fig. 6. One is feedforward controller, and another is a 
neuro-vision feedback controller based on the 
feedforward neural network. 
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Figure 6.  Neuro-vision control block diagram 
 

 Feedforward controller is based on the camera 
system, robot model, and object model. The camera 
system is used as a recognition observer. The relative 
position between the robot’s end-effector and object in 
its environment (Fig. 5) can be decomposed into some 
non-linear transformations.  
 The co-ordinate transformations are needed in order 
to determine the control inputs to the joints angles from 
visual data. Thus, the transformation matrix from the 
object frame to the camera frame is represented in terms 
of the homogeneous co-ordinate , and the position 
and orientation of the end-effector can be represented by 
the homogeneous co-ordinate . The position and 
orientation of the object with respect to the world co-
ordinate system (w.c.s.) is calculated by the 
homogeneous co-ordinate , as follows:    

c
oT

.
. .
s

e eT. .w c

.s
oT

. .w c

. . . . . . . .
. .

w c s w c s e e c
o e e c oT T T= ⋅ ⋅ T                    (10) 

where  is the transformation matrix from the 
camera co-ordinate system to the end-effector.  

. .e e
cT

 The desired position and orientation of the end-
effector with respect to the world co-ordinate system is 
calculated as follows:  

. . . . . . 1 . . 1
. .

w c s w c s c e e
e e o o cT T T T−= ⋅ ⋅ −               (11) 

 After all of these co-ordinate transformations, 
inverse kinematics is solved to determine the joint 

angles Θi of the robot from the desired position and the 
desired orientation of the robot’s end-effector. However, 
control ∆Θ to the robot generated by computing the 
difference between the desired joint angles Θd and the 
current joint angles Θcur. In the present paper, a control 
strategy is proposed to control the robot without any co-
ordinate transformation, which needs a lot of 
calculation. So, the control strategy for our robot is 
based on learning capabilities of the feedforward neural 
net. 

Feedforward neural net is developed to determine 
the robot joint angles. This neural net has a capability to 
learn to map a set of input patterns (location of object) 
in a set of output patterns (robot joint angles). The 
learning algorithm used in this non-linear mapping is 
backpropagation [3]. The learning process is off-line. A 
neural network learns the area in the neighborhood of 
the object for adjusting object location misalignment. 
The non-linear relation between the image data and the 
control signals for the changes in the joint angles is 
learned by fedforward neural net. Developed BPnet-
software [16,17], based on backpropagation learning 
algorithm [3], is used as a neural simulator. Simulation 
program package BPnet uses a gradient search 
technique to minimize error function, called generalized 
delta rule [5]. BPnet-software is developed in Visual 
Basic [18], and its working enviroment is shown in Fig. 
7.  
 

 
 
Figure 7.  Working environment of the BPnet 
 
4.2 BPnet-software and experimental results 
 
 Experimental results for the anthropomorphic robot 
called Don Kihot (Fig. 5), with four degrees of freedom, 
are shown in this section. Two four-layered feedforward 
neural networks (3x10x10x4) for part A, and 
(2x10x10x4) for part B, are used in simulation. One 
neural net maps the three inputs characterizing the 
position and orientation of the object A onto the four 
outputs, which are the robot joint angles used for 
grasping of the object A. Another neural net maps the 
two inputs characterizing the position of the object B 
onto the four outputs, which are the robot joint angles 
used for execution of assembly process by placing 
object  A  on  the object B. Positions and orientations of 
the object A,  and  positions of the object B are given in 



Table 1. 
 

  Object A  Object B 

 Kx
C  Ky

C  θ  Kx
C  Ky

C  

1 26 31.3 -9.5 53.7 119.5 
2 27.3 43.5 -4.2 49.5 122 
3 29 64.5 -1 52.5 109 
...      
18 52 36.8 -8 28.2 76.6 
19 48.7 20.5 -12.2 21.6 56 

 

Table 2. 
 

 Object A Object B 
 Θ1 Θ2 Θ3 Θ4 Θ1 Θ2 Θ3 Θ4 

1 -11 -18 13 -20 12.5 -22.5 3 -19 
2 -9 -17 14 -20 14 -21 7.5 -15 
3 -2 -17 12.5 -19.5 10 -23 3.5 -16.5
...         
18 -10 -23.5 11.5 -4.5 0 -11 16 -20 
19 -13.5 -23 13 -3.5 -6 -7 20 -19 

 
Table 3. 
 

 Object A Object B 
 Desired values Final values Desired values Final values 
 Θ1 Θ2 Θ3 Θ4 Θ1 Θ2 Θ3 Θ4 Θ1 Θ2 Θ3 Θ4 Θ1 Θ2 Θ3 Θ4 

1 -11 -18 13 -20 -11 -17.5 13 -19 12.5 -22.5 3 -19 13 -23 3 -18.5 
2 -9 -17 14 -20 -8.5 -17 14 -19.5 14 -21 7.5 -15 13 -21 17.5 -15.5 
3 -2 -17 12.5 -19.5 -3 -17.5 13 -19.5 10 -23 3.5 -16.5 10.5 -22.5 2.5 -16.5 
...                 
18 -10 -23.5 11.5 -4.5 -10 -23.5 12 -4.5 0 -11 16 -20 -0.5 -10.5 16.5 -20 
19 -13.5 -23 13 -3.5 -13 -23 12.5 -4 -6 -7 20 -19 -6 -8 20 -19 

 
Table 4. 

 Object A Object B 
 Kx

C Ky
C θ  Kx

C  Ky
C  

1 43 94 12.5 21.6 56 
2 45 56 -5 52.5 109 
3 44 72 0 57.9 106.9 

Table 5. 

 Object A Object B 
 Expected values Final values Expected values Final values 
 Θ1 Θ2 Θ3 Θ4 Θ1 Θ2 Θ3 Θ4 Θ1 Θ2 Θ3 Θ4 Θ1 Θ2 Θ3 Θ4 

1 6 -18 15 -10.5 7 -21.5 10.5 -15 -6 -7 20 -19 -6 -8.5 20 -19 
2 -5.5 -19.5 13 -10.5 -7 -23 12.5 -7 10 -23 3.5 -16.5 10.5 -23.5 2.5 -16.5 
3 0 -19.5 13 -10.5 -1.5 -23.5 8 -14 9.5 -25 0 -16 9 -24.5 1 -16 

 

 
Table 1 (after using image pre-processing procedure, 
described in section 2). Desired values of the robot joint 
angles for successfully assembly process with objects A 
and B are given in Table 2.  

Experimental results obtained by BPnet-software, 
present experimental results for learned patterns. After 
20000 iterations in the learning process, the final errors 
obtained by moving the robot using four-layered neural 
network are about 1° . The accuracy of this feedforward 
neural net is 99.6%. The final output vectors are given 
in Table 3 (robot joint angles which are different from 
desired ones are marked and underlined). It is observed 
that the feedforward neural network lets the robot 
approach the object. The end-effector can move to the 
neighbourhood of the desired position and orientation of 
objects A and B.  

For experimental process with not-learned patterns, 
the object location is slightly changed (Table 4). Several 
experimental results for not-learned patterns are given 
in this paper too (Table 5). The final errors in that case 
are larger ( ), compared with the ones for the 
learned patterns. Thus, maximum absolute error for 
simulation process with not-learned patterns is 5° , and 

relative error is 5.5%. However, the robot’s end-
effector can move to the neighbourhood of the desired 
not-learned patterns, and to execute the assembly task 
too. Because the structure of the feedforward net is 
suited to parallel processing, the execution time using 
BPnet -software is very fast. 

5°

 
5. CONCLUSION 
 

In the present paper, the control strategy of a 
learning industrial robot with visual sensor is described. 
The control strategy is based on the empirical control 
algorithm, as well as on the system of two artificial 
neural networks:ART-1, and feedforward. The artificial 
neural network system organizes itself for a robot 
configuration through a learning process. Identification 
of objects is based on ART-1 neural network. Non-
linear mapping between the image data of objects and 
the control signals for the changes in the joint angles is 
learned by feedforward neural network. The proposed 
empirical control strategy is effective because the 
generalization ability of the neural networks assures 
control robustness and adaptability in the event of 
slightly changed object location. 
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ЕМПИРИЈСКА УПРАВЉАЧКА СТРАТЕГИЈА 
ЗА ИНДУСТРИЈСКИ РОБОТ КОЈИ УЧИ 

 
Зоран Миљковић, Бојан Бабић 

 

Данашњи системи индустријског робота интензивно 
укључују спољашње сензоре као што су камере које 
се користе за идентификацију објеката у радном 
окружењу индустријског робота. Укључивањем 
спољашњих сензора-камера проблем управљања 
индустријским роботом који учи постаје значајно 
изражен. Коришћењем емпиријске управљачке 
стратегије, базиране на систему вештачких 
неуронских мрежа, индустријски робот који учи 
може да оствари адаптивно понашање у погледу 
флексибилног прилагођавања променама у радном 
окружењу. Поред природних система који могу да 
уче на бази искуства, за вештачке системе се у 
дужем периоду говорило да то нису у стању да 
остваре. Овај рад има за циљ да покаже да је могуће 
остварити емпиријску управљачку стратегију за 
индустријски робот који учи, коришћењем камере и 
система вештачких неуронских мрежа. Резултати 
добијени коришћењем система неуронских мрежа 
показали су да хватач робота може да дође у 
захтевани положај у односу на објекат хватања, чак 
и у случају када је тај положај различит од научених 
примера. 
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