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One View to the Optimization of Thin-
Walled Open Sections Subjected to 
Constrained Torsion 
 
One approach to the optimization of thin-walled open section cantilever 
beams subjected to constrained torsion is considered. The aim of this 
paper is to determine the minimum mass i.e. minimum cross- sectional 
area of structural thin-walled I-beam and Channel section beam elements 
for given loads, material and geometrical characteristics. The area of the 
cross-section is assumed to be the objective function. The displacement 
constraints are introduced. The starting points during the formulation of 
the basic mathematical model are the assumptions of the thin-walled beam 
theory from one side and the basic assumptions of the optimum design 
from the other. Applying the Lagrange multiplier method, the equations of 
which the solutions represent the optimal values of the ratios of the parts 
of the chosen cross sections are derived. The obtained results are used for 
numerical calculation applying the Finite Element Method. 
 
Keywords: optimization, thin-walled beams, optimal dimensions, 
displacement constraints. 
 

 
 
1. INTRODUCTION 
 

In most structures it is possible to find the elements 
in which, depending on loading cases and the way of 
their introductions, the effect of constrained torsion is 
present and its consequences are particularly evident in 
the case of thin-walled profiles. Thin-walled open 
section beams are widely applied due to their low 
weight in many structures. Thin-walled beams have a 
specific behavior and because of that their optimization 
represents a particular problem. The starting points 
during the formulation of the basic mathematical model 
are the assumptions of the thin-walled beam theory from 
one side and the basic assumptions of the optimum 
design from the other. 

Optimization is a mathematical process through 
which the set of conditions is obtained giving as the 
result the maximum or minimum value of a specified 
function. In the ideal case, one would like to obtain the 
perfect solution for the considered design situation. But 
in the reality, one can only achieve the best solution. 

The quantities numerically calculated during the 
process of obtaining the optimal solution are called the 
design variables and the total region defined by the 
design variables included in the objective function is 
called the design space and it is limited by the 
constraints. 

Engineering design is a process of formulating a 
plan for the satisfaction of human needs through a cycle 
of steps that include problem definition, 
conceptualization, embodiment and detailing. Engineers 

may focus on requirements in engineering aspects, but 
many of these requirements conflict with each other. 
Conflicts are ubiquituos in an engineering design 
process. For instance, improving reliability will increase 
the cost. Therefore, conflicts always exist in design 
objectives in any engineering design process, and it is 
important to resolve the objective conflicts in 
engineering design. 

Many studies have been made on the optimization 
problems treating the cases where geometric 
configurations of structures are specified and only the 
dimensions of members, such as areas of members’ 
cross-sections, are determined in order to attain the 
minimum structural weight or cost. Many methods have 
been developed for the determination of the local 
minimum point for the optimization problem [2, 5, 9, 
12]. 

During the process of dimensioning of a structure, 
besides requested dimensions which are necessary to 
permit to the particular part of the structure to support 
the applied loads, it is also often very important to find 
the optimal values of the dimensions. Very often used 
types of cross sections, particularly in steel structures, 
are the I-section and the Channel section beams. 
 
2. DEFINITION OF THE PROBLEM  
 

Open thin-walled steel sections subjected to twisting 
moments are generally prone to large warping stresses 
and excessive angles of twist. It is therefore common 
practice to avoid twisting moments in steel assemblies 
consisting of steel open sections whenever it is possible. 
However, in a number of practical applications, twisting 
cannot be avoided and the designer is compelled to 
count on the torsional resistance of these members. The 
classical formulation for open thin-walled sections 
subjected to torsion was developed by Vlasov [13]. The 

Received: April 2007, Accepted: May 2007 
Correspondence to: Nina Anđelić 
Faculty of Mechanical Engineering, 
Kraljice Marije 16, 11120 Belgrade 35, Serbia 
E-mail:’nandjelic@mas.bg.ac.yu 

  
© Faculty of Mechanical Engineering, Belgrade. All  rights reserved FME Transactions (2007) 35, 23-28              23   
 



Vlasov formulation is based on two fundamental 
kinematic assumptions: (a) In-plane deformations of the 
section are negligible, and (b) shear strains along the 
section mid-surface are negligible. 

2 1z b b=        (3) 

will be the optimal relation of the dimensions of the 
considered cross sections. 

The flexural-torsion cross section characteristic 
[7,11] is given by the expression 

The formulation is restricted to the torsional analysis 
of open section thin-walled beams. 

The considered cantilever beam of the length l is 
subjected to the constrained torsion because of the fact 
that its one end is fixed and the other free end is loaded 
by a concentrated torque M. The cross section (Fig. 1) is 
supposed to have flanges of mutually equal widths and 
thicknesses , . 1 3b b= 1 3t t=

ωEIGIk t= ,      (4) 

where: 
-  tI  – torsion constant, 

-  Iω  – sectorial moment of inertia, 
The aim of the paper is to determine the minimal 

mass of the beam or, in another way, to find the 
minimal cross-sectional area 

-   –  modulus of elasticity and E
-   –  shear modulus. G
If the allowable angle of twist per unit length θ0

` is 
taken as the constraint, the constrained function ϕ  can 
be written in the form [7,11] 

minA A=        (1) 

for the given loads and material and geometrical 
properties of the considered beam. 
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, (5) Formulation of the structural design optimization 
problem plays an important role in the numerical 
solution process [6]. A particular choice of the cost 
function and constraints affect the final solution, and 
efficiency and robustness of the solution process. 

or in the form 
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kl tθϕ ,   (6) The process of selecting the best solution from 

various possible solutions must be based on a prescribed 
criterion known as the objective function. In the 
considered problem the cross sectional area will be 
treated as an objective function and it is obvious from 
the Fig. 1 that 

where: 
-  M – torque, 
-  l   – beam length, 
-  k  – flexural-torsion cross section characteristic, 

,     1,2,3i iA b t i= =∑ ,    (2) 
- `θ  – angle of twist per unit length. 

where  and  are widths and thicknesses of the parts 
of the considered cross sections. 

ib it  
4. LAGRANGE MULTIPLIER METHOD 

 

 
Lagrange Multiplier Method [2-5, 9, 12, 14] is the 

classical approach to the constraint optimization. 
Lagrange multiplier, which is labeled as λ, measures the 
change of the objective function with respect to the 
constraint. 

Applying this method to the vector depending on 
two parameters , (ib 1,2i = ), the system of equations 
‘‘(7)’’ will be obtained 
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After the elimination of the multiplier λ, it will become  

,     ( ,  1,  2).
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Figure 1. a) I - section; b) Channel-section 
 

 3. CONSTRAINTS 
5. ANALYTICAL APPROACH   
 Only the displacements will be taken into account in 

the calculations that follow and the constraints treated in 
the paper are the displacement constraints. 

The torsion constant for the considered symmetrical 
open sections [7,11] is given by the expression  

The considered displacement constraint is allowable 
angle of twist per unit length, denoted by `

0θ . ( )ztbIt
33

11 2
3

1
ψ+=  ,     (9) 

The ratio  
where: 
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, is the ratio of thicknesses of the parts of the cross 
section.  

The sectorial moments of inertia for the considered 
sections are given in the following forms: 
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5.1 The results obtained by analytical approach 
 

Applying the Lagrange multiplier method, after the 
differentiation of the expression ‘‘(8)’’ with respect to 
the variables b1 and b2, the expressions ‘‘(6)’’ take the 
forms ‘‘(13)’’ and ‘‘(15)’’, respectively: 

The following expression will be introduced 

2

1
1
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1 cosh
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kl kl
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.     (17) 

• I-beam 

In the considered case when the I-section beam is 
the object of the optimization, the equations ‘‘(8)’’ are 
reduced to the equation ‘‘(13)’’. The equation of the 
second order is obtained and its solutions represent the 
optimal ratios of the cross-sectional dimensions for the 
chosen shape 

The length of the considered cantilever beam is 
taken as 25  200l≤ ≤  (cm). The values ( ) are 
calculated using the data for the JUS standard profiles 
and the ratio ‘‘(12)’’ is taken as 

kl

 10.5;  0.75;ψ = . 
The results for the ratios ‘‘(3)’’ obtained 

from the equations ‘‘(8)’’ are given in Tables 1 and 2: 
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Table 1. Optimal ratios z for the I-beam (Fig. 2a) 

where the coefficients ci are given in the form ‘‘(14)’’: 
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ψ 1 0.75 0.5 

D1 0 0.22 0.58 437.5 0.38 1 750 

z 1.33 1.78 1.50 0 2.67 1.94 0 

 

Table 2. Optimal ratios z for the Channel-section (Fig. 2b) 

ψ 1 0.75 0.5 

D1 0 0.22 0.58 2.88 0.38 1 4.93 

z 1.72 2.28 1.90 0.79 3.43 2.39 0.74 

4
2 3c ψ= .               (14) 

 
 

• Channel-section beam The results are also presented graphically in Fig. 2a 
and 2b. In this case, when the Channel-section beam is the 

object of the optimization, the equations ‘‘(8)’’ are 
reduced to the equation of the fourth order ‘‘(15)’’  

It is possible to conclude (Tables 2 and 3 and Figure 
2) that when ψ is decreasing (i.e. if D1 is increasing) the 
value for z will be decreasing. Based on the performed 
calculations, the regions of optimal dimension values of 
the considered cantilever beams are defined in the 
following way: 

∑
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4
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i zc ,      (15) 

where the coefficients ci are given in the form ‘‘(16)’’: 
• I-section beam:  
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− 10.75  0.22 437.5  1.78 0D zψ = ⇒ ≤ ≤ ⇒ ≥ ≥ , 

− 10.5  0.38 750  2.67  0D zψ = ⇒ ≤ ≤ ⇒ ≥ ≥ . 
The calculations show that the optimal values of z 

for the I-section beam are very small for the lengths 
. Because of that it is possible to say that the 

application of this criterion makes sense for the 
following lengths: 

100 cml >
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- for 0.75ψ = :   ⇒   and 95 cml ≈ 45.0≥z

 

- for 0.5ψ = :     . 90 cml ≈ 51.0≥⇒ z

• Channel-section beam: 

− 11   0   const 1.72D zψ = ⇒ = ⇒ = = , 

− 10.75  0.22 2.88  2.88 0.79D zψ = ⇒ ≤ ≤ ⇒ ≥ ≥ , 

− 1 0.5  0.38 4.93  3.43 0.74D zψ = ⇒ ≤ ≤ ⇒ ≥ ≥ . 
 a) 

 

 

 

b) 
Figure 3. Middle surface, load, supports 
  a) I- beam; b) Channel-section beam  
 
 
6.1 The results obtained by FEM 
 a)  

As the example for the numerical calculation, one I-
beam section (I 10 - JUS C.B3.131) and one Channel 
section (U 10 - JUS C.B3.141) are considered. The 
problem is analyzed in three different ways [1]: 

 

 
a) Taking into account the initial dimensions that 

represent the initial model the optimal relations 
are obtained from the expressions derived 

in this paper. 
optimal z

• I-beam section (I 10): For b b , 1initial 3initial 5 cm= =

2initial 9.32 cmb = , 1 0.68t  cm= , , the 
initial ratio is 

2 0.45 cmt =

initz ial 1.86= . For the initial values  
and  the optimal relation  is 
obtained. 

1t

optimal 1.65z =2tb) 
Figure 2. The optimal ratios z  

a) I-beam, b) Channel-section beam 
• Channel section (U 10): For b1initial 4.7 cm= , 

2initial 9.15 cmb = , 1 0.85 cmt = , , the 
initial ratio is 

2 0.60 cmt =

initz ial 1.95= . For the initial values  
and  the optimal relation  is 
obtained. 

1t

optimal 2.34z =2t

 
 
 
 
 
6. APPLICATION OF THE FINITE ELEMENT 

METHOD 
 b) The optimal dimensions of the cross section b1optimal 

and  are obtained by equalizing initial and 

optimal areas ( ) and by using the 

calculated optimal relation  (it represents 
the optimal model no. 1) 

2optimal b

initial optimalA A=

optiz mal 

Using the optimal values of z, obtained in the 
previous chapter by the `

0θ criterion, the numerical 
calculation applying the Finite Element Method (FEM) 
was done. 

As the numerical example, considered cantilever 
beam having the lengths , fixed at one end 
and subjected to the concentrated torque 

 at its free end (Fig. 3), will be 
considered by the FEM using the software programme 
KOMIPS [8]. 

100 cml =

10 kNcm M =

c) The optimal dimensions of the cross section 
and  are obtained from the 

assumption and by using the 

calculated optimal ratio (it represents the 
optimal model no. 2). 

1optimal b 2optimal b

2optimalb = 2initial  b

optimaz l 
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For each model the optimal values z are calculated 
and the results are given in Table 3: 

• I-section beam:  

`
0analytical 5.15 /m θ = °  and . `

0KOMIPS 5.05 /mθ = ° 
Table 3. Optimal ratios z 

• Channel section beam: 
z 

Model 
I-beam U-beam 

1 Initial 1.86 1.95 

2 Optimal no.1 1.65 2.34 

3 Optimal no.2 1.65 2.34 

`
0analytical 2.64 /m θ = °  and . `

0KOMIPS 2.68 /mθ = °

 
 
7. CONCLUSION 
 

In this paper, one approach to the optimization of the 
thin-walled open-section beams, using the Lagrange 
multiplier method is presented. Accepting the cross-
sectional area for the objective function and 
displacement constrains for the constrained functions, it 
is possible to find the optimal relation between the 
dimensions of the web and the flanges of the considered 
cross-section. First, the analytical calculations were 
done, and then the obtained results were used for the 
calculations applying the Finite Element Method. 

 
The cross-sectional areas are also calculated and the 

results are given in Table 4: 
Table 4. Cross-sectional areas and angles of twist per unit 
length θ0

` 

A (cm2) θ 0’ (°⁄m) 
Model 

I-beam U-beam I-beam U-beam 

1 10.99 13.49 5.05 2.68 

2 10.99 13.49 4.79 2.25 

3 11.88 12.14 3.64 2.68 

Results obtained by the Finite Element Method 
show: 

• I-section beam: 
 

The initial and optimal model no. 1 (Table 4) have the 
same mass, but the optimal model no. 1 has lower angle 
of twist per unit length `

0θ .. Optimal model no. 2 has the 

lowest value of the `
0θ , but this is the optimum model 

with the highest mass. This model is the best regarding 
the displacement constraints, but it is also the heaviest 
one.  

Applying the FEM, the angle of twist per unit length 
θ0

` is calculated for each model. The results obtained for 
the cantilever beam of the length  (Figs. 4 
and 5), are also presented in Table 4. 

100 cml =

 

M

 

• Channel-section beam: 

a) b) 

The initial and optimal model no. 2, which have the 
minimum mass (Table 4), have the same angle of twist 
per unit length `

0θ . Initial and optimal model no. 1 have 
the same mass, but the optimal model no. 1 has the 
lower values of the angle of twist per unit length θ0

`. 
As a conclusion, it is possible to say that all optimal 

models are better than the initial one. On the basis of the 
proposed optimization procedure, it is possible to 
calculate the optimal ratios between the parts of the 
considered thin-walled profiles in a simple way.  

 
Figure 4. I-beam deformations (fmax=0.4cm):  

(a) Isometric view, (b) xy – plane 
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ЈЕДАН ПРИСТУП ОПТИМИЗАЦИЈИ 

ТАНКОЗИДИХ ОТВОРЕНИХ ПОПРЕЧНИХ 
ПРЕСЕКА ИЗЛОЖЕНИХ ОГРАНИЧЕНОЈ 

ТОРЗИЈИ 
 

Нина Анђелић 
 
У овом раду је разматрана оптимизација танкозидих 
конзолних конструкционих елемената отворених 
попречних пресека изложених ограниченој торзији. 
Циљ рада је одређивање минималне масе, тј, 
одређивање минималне површине попречног 
пресека танкозидих конструкционих елеменaтa 
облика I и U-профила за задата оптерећења, 
материјал и геометријске карактеристике. Због тога 
је за функцију циља одабрана површина попречног 
пресека носача. За критеријум ограничења одабран 
је критеријум ограничења деформација. При 
формирању основног математичког модела пошло 
се од претпоставки теорије танкозидих штапова са 
једне стране и основних претпоставки проблема 
оптималног пројектовања са друге. Применом 
методе Лагранжовог множитеља изведене су 
једначине чија решења представљају оптималне 
односе димензија попречног пресека изабраног 
облика. Добијени резултати су искоришћени при 
нумеричком прорачуну применом Методе коначних 
елемената.
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