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1. INTRODUCTION

One View to the Optimization of Thin-
Walled Open Sections Subjected to
Constrained Torsion

One approach to the optimization of thin-walled open section cantilever
beams subjected to constrained torsion is considered. The aim of this
paper is to determine the minimum mass i.e. minimum cross- sectional
area of structural thin-walled I-beam and Channel section beam elements
for given loads, material and geometrical characteristics. The area of the
cross-section is assumed to be the objective function. The displacement
constraints are introduced. The starting points during the formulation of
the basic mathematical model are the assumptions of the thin-walled beam
theory from one side and the basic assumptions of the optimum design
from the other. Applying the Lagrange multiplier method, the equations of
which the solutions represent the optimal values of the ratios of the parts
of the chosen cross sections are derived. The obtained results are used for
numerical calculation applying the Finite Element Method.

optimal  dimensions,
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displacement constraints.

In most structures it is possible to find the elements
in which, depending on loading cases and the way of
their introductions, the effect of constrained torsion is
present and its consequences are particularly evident in
the case of thin-walled profiles. Thin-walled open
section beams are widely applied due to their low
weight in many structures. Thin-walled beams have a
specific behavior and because of that their optimization
represents a particular problem. The starting points
during the formulation of the basic mathematical model
are the assumptions of the thin-walled beam theory from
one side and the basic assumptions of the optimum
design from the other.

Optimization is a mathematical process through
which the set of conditions is obtained giving as the
result the maximum or minimum value of a specified
function. In the ideal case, one would like to obtain the
perfect solution for the considered design situation. But
in the reality, one can only achieve the best solution.

The quantities numerically calculated during the
process of obtaining the optimal solution are called the
design variables and the total region defined by the
design variables included in the objective function is
called the design space and it is limited by the
constraints.

Engineering design is a process of formulating a
plan for the satisfaction of human needs through a cycle
of steps that include problem  definition,
conceptualization, embodiment and detailing. Engineers
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may focus on requirements in engineering aspects, but
many of these requirements conflict with each other.
Conflicts are ubiquituos in an engineering design
process. For instance, improving reliability will increase
the cost. Therefore, conflicts always exist in design
objectives in any engineering design process, and it is
important to resolve the objective conflicts in
engineering design.

Many studies have been made on the optimization
problems treating the cases where geometric
configurations of structures are specified and only the
dimensions of members, such as areas of members’
cross-sections, are determined in order to attain the
minimum structural weight or cost. Many methods have
been developed for the determination of the local
minimum point for the optimization problem [2, 5, 9,
12].

During the process of dimensioning of a structure,
besides requested dimensions which are necessary to
permit to the particular part of the structure to support
the applied loads, it is also often very important to find
the optimal values of the dimensions. Very often used
types of cross sections, particularly in steel structures,
are the I-section and the Channel section beams.

2. DEFINITION OF THE PROBLEM

Open thin-walled steel sections subjected to twisting
moments are generally prone to large warping stresses
and excessive angles of twist. It is therefore common
practice to avoid twisting moments in steel assemblies
consisting of steel open sections whenever it is possible.
However, in a number of practical applications, twisting
cannot be avoided and the designer is compelled to
count on the torsional resistance of these members. The
classical formulation for open thin-walled sections
subjected to torsion was developed by Vlasov [13]. The
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Vlasov formulation is based on two fundamental
kinematic assumptions: (a) In-plane deformations of the
section are negligible, and (b) shear strains along the
section mid-surface are negligible.

The formulation is restricted to the torsional analysis
of open section thin-walled beams.

The considered cantilever beam of the length / is
subjected to the constrained torsion because of the fact
that its one end is fixed and the other free end is loaded
by a concentrated torque M. The cross section (Fig. 1) is
supposed to have flanges of mutually equal widths and
thicknesses by =b;, t; =13

The aim of the paper is to determine the minimal
mass of the beam or, in another way, to find the
minimal cross-sectional area

A= Anin (D

for the given loads and material and geometrical
properties of the considered beam.

Formulation of the structural design optimization
problem plays an important role in the numerical
solution process [6]. A particular choice of the cost
function and constraints affect the final solution, and
efficiency and robustness of the solution process.

The process of selecting the best solution from
various possible solutions must be based on a prescribed
criterion known as the objective function. In the
considered problem the cross sectional area will be
treated as an objective function and it is obvious from

the Fig. 1 that
A = Zbltl’

where b; and ¢; are widths and thicknesses of the parts

i= 13293 s (2)

of the considered cross sections.

Figure 1. a) | - section; b) Channel-section

3. CONSTRAINTS

Only the displacements will be taken into account in
the calculations that follow and the constraints treated in
the paper are the displacement constraints.

The considered displacement constraint is allowable
angle of twist per unit length, denoted by 9(; .

The ratio
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z=b, [b (3)

will be the optimal relation of the dimensions of the
considered cross sections.

The flexural-torsion cross section characteristic
[7,11] is given by the expression

k=,Gl,/EI, , “)

where:
- I, —torsion constant,
- 1, —sectorial moment of inertia,
- E - modulus of elasticity and
- G — shear modulus.

If the allowable angle of twist per unit length 6 is
taken as the constraint, the constrained function ¢ can
be written in the form [7,11]

. . M 1 .
¢7='9max=9(1)=—(1— Jﬁé’Oa (5)
GI, cosh k/
or in the form
-Gl
;o:coshkl[l—eo—t]—lso, (6)
M
where:
- M —torque,
-l  —beam length,
-k —flexural-torsion cross section characteristic,

-0 - angle of twist per unit length.
4. LAGRANGE MULTIPLIER METHOD

Lagrange Multiplier Method [2-5, 9, 12, 14] is the
classical approach to the constraint optimization.
Lagrange multiplier, which is labeled as A, measures the
change of the objective function with respect to the
constraint.

Applying this method to the vector depending on
two parameters b;, ( i =1,2), the system of equations

““(7)”’ will be obtained

%(A+lgo):0, i=12,. (7

1
After the elimination of the multiplier A, it will become

6_A@_¢):8_A8_¢)’ i#j,i=1j=2).(8)
ob; ob; b ob;

5. ANALYTICAL APPROACH

The torsion constant for the considered symmetrical
open sections [7,11] is given by the expression

1
o= o yz), ©)
3

where:
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v=t/t (10)

is the ratio of thicknesses of the parts of the cross
section.

The sectorial moments of inertia for the considered
sections are given in the following forms:

— I-section
1 3.2
I, =—bbst, 11
» 241’1 24 (11)

— Channel-section

1 342
1, =—bibde 2TV 2
12 6+yz

(12)

Applying the Lagrange multiplier method, after the
differentiation of the expression ‘‘(8)’’ with respect to
the variables b; and b,, the expressions “‘(6)’’ take the
forms “(13)’” and ““(15)’, respectively:

e I-beam

In the considered case when the I-section beam is
the object of the optimization, the equations ““(8)’” are
reduced to the equation ‘‘(13)’’. The equation of the
second order is obtained and its solutions represent the

optimal ratios of the cross-sectional dimensions for the
chosen shape

2
3eiz'=0, (13)

where the coefficients ¢; are given in the form ““(14)’’:

CO :—8,
2
B ) yo -1
A=y 2oy 2 |
1—cosh &l
ey =3yt (14)

¢ Channel-section beam

In this case, when the Channel-section beam is the
object of the optimization, the equations °‘(8)’’ are
reduced to the equation of the fourth order *“(15)”’

z(:,-z"zo, (15)

where the coefficients ¢; are given in the form ““(16)’’:

Co =-72 N

2 —
e vl |
ki tanh &/

1—coshkl

c =—6y 7+3W2
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2 2 p? -1
= 1 R A
=y | 33y 30 |
1—cosh &/
2
3 2,y -l
— 4y |1+t L
WY T anh il |
1—cosh &/
cq =30°. (16)

5.1 The results obtained by analytical approach

The following expression will be introduced

2
7|
D =—1 1

U™ ki tanh kI a7

1—coshkl/

The length of the considered cantilever beam is
taken as 25< /<200 (cm). The values (kl) are

calculated using the data for the JUS standard profiles
and the ratio *“(12)’’ is taken as w =0.5; 0.75; 1.

The results for the ratios ‘“(3)’” z = b, /b obtained
from the equations “‘(8)’” are given in Tables 1 and 2:

Table 1. Optimal ratios z for the I-beam (Fig. 2a)

v 1 0.75 0.5

D, 0 0.22 0.58 | 437.5 | 038 1 750

z 1.33 1.78 1.50 0 2.67 1.94 0

Table 2. Optimal ratios z for the Channel-section (Fig. 2b)

% 1 0.75 0.5

D, 0 0.22 0.58 2.88 0.38 1 4.93

z 1.72 2.28 1.90 0.79 3.43 2.39 0.74

The results are also presented graphically in Fig. 2a
and 2b.

It is possible to conclude (Tables 2 and 3 and Figure
2) that when i is decreasing (i.e. if D, is increasing) the
value for z will be decreasing. Based on the performed
calculations, the regions of optimal dimension values of
the considered cantilever beams are defined in the
following way:

o I-section beam:

-y=1= D =0= z=const=1.33,

-y =075= 022<D; <4375 = 1.782z20,
-y =05 = 038<D; <750 = 2,672z 20.

The calculations show that the optimal values of z
for the I-section beam are very small for the lengths
/>100 cm . Because of that it is possible to say that the
application of this criterion makes sense for the
following lengths:
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-for y=0.75: /=95cm =z>045 and
-for y=0.5: [=90cm = z>0.51.

e  Channel-section beam:
-y=1= D =0= z=const=1.72,
-y =075= 022<D; <288 = 2.88>22z2>0.79,
-y =05 = 038<D; <493 = 343>22>0.74.
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Figure 2. The optimal ratios z
a) I-beam, b) Channel-section beam

6. APPLICATION OF THE FINITE ELEMENT
METHOD

Using the optimal values of z, obtained in the
previous chapter by the 9(; criterion, the numerical
calculation applying the Finite Element Method (FEM)
was done.

As the numerical example, considered cantilever
beam having the lengths /=100 cm, fixed at one end
and subjected to the concentrated torque
M =10kNem at its free end (Fig. 3), will be

considered by the FEM using the software programme
KOMIPS [8].
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a)

b)
Figure 3. Middle surface, load, supports
a) I- beam; b) Channel-section beam

6.1 The results obtained by FEM

As the example for the numerical calculation, one I-
beam section (I 10 - JUS C.B3.131) and one Channel
section (U 10 - JUS C.B3.141) are considered. The

problem is analyzed in three different ways [1]:

a) Taking into account the initial dimensions that
represent the initial model the optimal relations
Zoptimal are obtained from the expressions derived

in this paper.

o I-beam section (I 10): For byipitial = D3initial =5 cm,
byinitial =9-32 cm, # =0.68 cm, t, =0.45 cm, the
initial ratio is zjp;,; = 1.86 . For the initial values ¢
and 7, the optimal relation zgm, =1.65 is
obtained.

o Channel section (U 10): For b&jpitial =4.7 cm,
byinitial =9-15em, 4 =0.85cm, £, =0.60 cm, the
initial ratio iS zj,j4,) = 1.95 . For the initial values
and 7, the optimal relation zypiy, =2.34 is

obtained.

b) The optimal dimensions of the cross section bigptimal
and bygpima)  are obtained by equalizing initial and

optimal areas ( Ajpitial = 4optimal ) @nd by using the
calculated optimal relation =z, (it represents

the optimal model no. 1)
c) The optimal dimensions of the cross section
bioptimal @nd  bygpiimal  are  obtained from  the

assumption  bygpiimal = binitial @nd by using  the
calculated optimal ratio zypy, (it represents the

optimal model no. 2).
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For each model the optimal values z are calculated
and the results are given in Table 3:

Table 3. Optimal ratios z

Model z
I-beam U-beam
1 Initial 1.86 1.95
2 Optimal no.1 1.65 2.34
3 Optimal no.2 1.65 2.34

The cross-sectional areas are also calculated and the
results are given in Table 4:

Table 4. Cross-sectional areas and angles of twist per unit
length &

Model 4 (em®) 0 (Vm)
I-beam U-beam I-beam U-beam
1 10.99 13.49 5.05 2.68
2 10.99 13.49 4.79 2.25
3 11.88 12.14 3.64 2.68

Applying the FEM, the angle of twist per unit length
@ is calculated for each model. The results obtained for
the cantilever beam of the length /=100 cm (Figs. 4
and 5), are also presented in Table 4.

Figure 4. I-beam deformations (f,.x=0.4cm):
(a) Isometric view, (b) xy — plane

a) b)

Figure 5. Channel-section beam deformations
(fmax=0.334cm): (a) Isometric view, (b) xy — plane

Results obtained by applying KOMIPS program
(Table 4) correspond to the analytically obtained values
for the initial model of the length /= 100 cm:

FME Transactions

e I-section beam:
90analytical =5.15°m and HOKOMIPS =5.05°m.
¢ Channel section beam:

QOanalytical =2.64 °/m and QOKOMIPS =2.68 °/m.

7. CONCLUSION

In this paper, one approach to the optimization of the
thin-walled open-section beams, using the Lagrange
multiplier method is presented. Accepting the cross-
sectional area for the objective function and
displacement constrains for the constrained functions, it
is possible to find the optimal relation between the
dimensions of the web and the flanges of the considered
cross-section. First, the analytical calculations were
done, and then the obtained results were used for the
calculations applying the Finite Element Method.

Results obtained by the Finite Element Method
show:

e I-section beam:

The initial and optimal model no. 1 (Table 4) have the
same mass, but the optimal model no. 1 has lower angle

of twist per unit length 6’6 . Optimal model no. 2 has the

lowest value of the 9(‘) , but this is the optimum model

with the highest mass. This model is the best regarding
the displacement constraints, but it is also the heaviest
one.

¢ Channel-section beam:

The initial and optimal model no. 2, which have the
minimum mass (Table 4), have the same angle of twist

per unit length 06 . Initial and optimal model no. 1 have

the same mass, but the optimal model no. 1 has the
lower values of the angle of twist per unit length 6, .

As a conclusion, it is possible to say that all optimal
models are better than the initial one. On the basis of the
proposed optimization procedure, it is possible to
calculate the optimal ratios between the parts of the
considered thin-walled profiles in a simple way.
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JEJAH ITPUCTYII OIITUMHU3ALININ
TAHKO3UAUX OTBOPEHHUX NONNPEYHUX
IPECEKA U3JIOKEHUX OT'PAHUYEHOJ
TOP3UIN

Huna Anhesnh

Y oBOM papy je pa3maTpaHa ONTHMHU3AINja TAHKO3UIAUX
KOH30JIHUX KOHCTPYKLIMOHHMX eJleMeHaTa OTBOPEHHX
MOMPEYHUX MpPeceka M3JI0KEHUX OrPAHUYEHO] TOP3HjH.
um paga je oapehuBame MHHHMANHE Mace, Tj,
oupeleBafbe MHWHHUMAJIHE TMOBPIIUHE nmonpeyHor
npeceka TAHKO3UIUX KOHCTPYKIMOHUX elleMeHaTa
ooumka | wm U-mpodmia 3a 3amara onrepehema,
MarepHjan ¥ FeOMETPHUjCKe KapaKTephcTHKe. 300r Tora
je 3a GyHKIMjy Iba oabpaHa MOBPIIMHA MTOMPEYHOT
mpeceka Hocaya. 3a KPUTEPHjyM OTrpaHHYeHa 0JadpaH
je xpurepujym orpaHumdema agedopmarmja. I[lpu
(bopMuEpamy OCHOBHOT MaTeMaTHYKOT MOZENA MOILIO
Ce OJ MPETIIOCTaBKH TEOPHj€ TAHKO3UIMUX IITAIloBa Ca
jemHe CTpaHe M OCHOBHHMX HPETIOCTaBKH Hpodiema
ONTHMAJHOI IpojeKToBama ca apyre. [IpumeHom
merone JlarpaHkKoBOr MHOXHTE/ba HW3BEEHE CY
jeAHaUMHE 4YMja pellela IPeJCTaBba)y ONTHMAIIHE
OJJHOCE JHMMEH3HMja MONPEYHOI TIpeceKa H3adpaHor
obimka. JloOujeHn pesynratu cy HCKOpuIIheHH INpH
HYMEPHYKOM MpopadyHy OpuMeHoM MeTroae KOHauHHX
eJIeMeHaTa.
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