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V-type Hot Wire Probe Calibration 
 
Sofisticated equipment with unique hot wire V-probes, with high time and 
spatial resolution, and computer-aided calibration method for turbulence 
experimental  research are described. This method requires the V-probe to 
be pitched in the uniform jet of the unique open calibration air tunnel at 
several velocities. From the outcome signal, a calibration array can be 
generated. Corresponding experimental curves are fitted with Chebishev 
polynomials, which decreases computational time. This method requires 
fewer assumptions than one based on the King’s law.  
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1. INTRODUCTION 
 
Flow problems and their quantification arise in many 
different areas. Used equipment must ensure accurate 
and reliable flow measurements. Since nowadays, for 
measurements either in science or industry, hot wire 
anemometer probes based on constant temperature 
anemometer (CTA) concept are widely present. Today, 
CTA is a well-established technology whose advantages 
have been proven by numerous measurements.  

The measurement chain starts with the probe of 
various geometries, with sensing elements. In this paper 
is presented a V-wire probe, manufactured by Petar 
Vukoslavčević (Podgorica 2001.), its geometry and 
characteristics. It was made for exploring a complex 
phenomenon of swirl turbulent flow in conduits [1]. 
Here is also described calibration equipment and 
algorithm. Calibration procedure, as a very important 
part of every measurement, is of crucial significance for 
good interpretation of every result. 
 
2. ANEMOMETER PROBE TYPE VP-2vs 
 
Special V-type probe named VP-2vs, which belongs to 
the group CTA (constant  temperature anemometer), has 
better space and time resolution than probes of the same 
type. It has been manufactured in the Fluid Mechanics 
Laboratory, Faculty of Mechanical Engineering, 
Podgorica, for the  experiments performed in the PhD 
thesis [1]. One of the main characteristics is its great 
vitality, demonstrated in the turbulent flow field. This 
characteristic is of great importance in highly swirling 
turbulent flows [2], [3]. 

This probe has an extremely small geometrical 
parameters, what results in very satisfying space 
resultion of the measurements. Time response is very 
small, having for the consequence very wide frequency 
domain, even 1 MHz.  

Sensors are made of the wolfram fibres of diameter 

2.5 µm and length 0.7 mm. Sensors are welded at the 
ends on the prongs, wire stands, made of stainless steel. 
Prongs are of 0.4 mm diameter, sharpened on the top to 
the size of 75 µm (Fig. 1.). Wolfram fibres are welded 
to the prongs by the special apparatus for micro welding 
with highly precise mechanism which provides 
electrode and prong precise positioning.   

Each fibre has its own two prongs, having as a result 
their electrical independence, what makes them being 
possible for plugging in their own electric circuits. All 
four probe prongs are positioned in a cylindrical metal 
pipe of a small diameter, and fixed in a defined position 
with a special nonconductive epoxy glue, which, also, 
placed in two other positions, makes them being parallel 
to each other. This small pipe is fixed inside the probe, 
made of hard plastic. Each metal prong has its own 
connector at the end. Probe has the fifth, shorter prong 
with a small pin on the top, whose function is probe 
positioning in the wall vicinity. 

 

 
 
Figure 1. Anemometer probe, type VP-2vs (axonometric 
view).  On the top of the probe prongs (right side of the 
picture), two invisible, for this zoom, sensors are welded in 
the form of the capital letter “V”. Distinct fifth prong is 
clearly visible.  
 
3. CALIBRATION TUNNEL 
 
In the Fluid Mechanics Laboratory at the Faculty of 
Mechanical Engineering, University of Belgrade probe 
calibration tunnel has been made during the work on the 
PhD thesis [1]. This air tunnel is of opened type, has a 
modern concept and is similar to the tunnel constructed 
in the Fluid Mechanics Laboratory, Faculty of 
Mechanical Engineering in Podgorica [4]. 
 Turbomachine is a blower with a power of 250 W, 
which sucks the air into the tunnel. Then air streams 
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into a diffusor, followed by a straight pipe, where three 
stream straighteners (nets, combs) are positioned and at 
the end a nozzle, which is the main part of the tunnel. 
The maximum speed in the jet is 38 m/s.  

 
Figure 2. Open air  tunnel for hot-wire probe calibration. 
Pipe and diffuser are made of hard plastic, nozzle of 
duralluminium. 

 The most important part of this tunnel is a specially 
profilled nozzle. Its contour is defined with the 
equation: 

2 3
ul ul iz ul iz

3( ) - ( - )( / ) ( - )( / )
2

R x R R R x L R R x L= + . (1) 

As equation (1) represents the third order polynomial 
function, this is the cubic nozzle formed in this way, 
where  ulR  represents inlet diameter, izR  outlet 
diameter and L is the length. 

Anemometer probe calibration needs a variety of 
speeds in the measuring section, at the nozzle outlet. 
Speed variation is achieved by use of frequency 
regulator, of resolution 0.1 Hz. Outlet speed has been 
measured by etalon Pitot tube, whit top positioned in the 
calibration tunnel axis in the plane on 10 mm from the 
nozzle outlet section, connected to the Betz manometer 
of 5 Pa resolution.  

 
Figure 3. Speed in an uniform jet-frequency dependence  

Multiple repeated measurements in the above 
defined positions, in the jet, are presented with 
functional dependency speed of frequency, by linear 
equation (2): 

0.7958 - 0.8482V f= .                         (2) 

Speed uniformity in the calibration section is in the 
limit of satisfyingly 1%, which is experimentally 
proved. Average turbulence intensity in this section is 
around 0.5%. This calibration tunnel is reliable, one of 
the most important parts of the calibration equipment, 
for hotwire anemometer probes.  

4. HOTWIRE CALIBRATION METHOD 
 
Sensing elements of the VP-2vs probe, during 
measurements are in the tangential plane forming 
measuring volume. Averaged flow field of this volume 
is defined with the speed vector v~ , which is almost in 
the tangential plane, changing its direction and intensity 
in the time. Two CTA units (each connected with its 
own sensor) constantly induce voltages 1

~e  and 2
~e , i.e. 

deliver signals which are a measure of the flow velocity 
changeable vector. Afterwards, it is necessary to 
perform hardware signal processing, i.e. A/D 
conversion of the continual voltage signals in the digital 
ones.  

In the further signal analysis, the method where, for 
each pair of voltages collected at the same time 

1 2(e , e )n n , direction and intensity of the velocity vector 

v~ is estimated, i.e. an adequate pair ( , )n nv ϕ  is found. 
To accomplish this, hotwire probe calibration must  
precede. 

During calibration process probe VP-2vs is 
positioned in the jet measuring section of air tunnel 
under known angle iϕ  and exposed to the known 
average velocity vector iV  (Fig. 4), which induces 
average voltages 1iE  and 2iE . 
 

 
 

Figure 4.VP-2vs probe calibration 
 

By varying angle iϕ , which is constituted between 
directions of the probe main axis and the average 
velocity vector, two pairs are found (V,ϕ ) and 
( 1E , 2E ), where only one pair ( iV , iϕ ) corresponds to 
the pair ( 1iE , 2iE ), which is defined with the calibration 
mapping function. Pair of chosen voltages 1 2(e , e )n n  is 
transformed to the correspondent pair ( , )n nv ϕ  with the 
inverse calibration mapping function. 

If all the pairs 1 2(e , e )n n  and their correspondent 
ones ( , )n nv ϕ  were realized during measurements, we 
would have an almost ideal calibration process. In this 
process a huge number of data are collected, and 
consequently ideal calibration process would take a long 
period of time.  

On the other side, sensors, depending on the air 
pollution, change their own characteristics more slowly 
or faster, which requires calibration and measuring 
process in as short as possible period of time. 

Balancing the need for as big as possible number of 
correspondent calibration pairs ( iV , iϕ )⇔( 1iE , 2iE ) 
and calibration time duration, requires optimal solution. 
Static calibration has been performed on the calibration 
tunnel, described in section 3. 
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Considering hotwire anemometer probe calibration 
and measuring process as similar, but with opposite 
enter and exit information, the idea about realization of 
new signal processing algorithm for these two 
procedures has come into sight. 
 
4.1. Probe calibration in a stationary field 

 
Signal sampling frequency and acqusition time have to 
be determined at the beginning of the calibration 
process. The signal was recorded at some average speed 
of 5 m/s, with sampling frequency of 2 kHz lasting 60 s. 
Recorded analog (voltage) signal is first averaged for 
the maximum number of chosen data. Afterwards,  an 
average voltage is calculated for the half and fourth of 
this number. This method of bisection stopped at the 
0.1% difference between two successive average 
voltages. This procedure has been solved by dividing 
with two total time or sampling frequency. It was 
concluded that enough recording time is sb 10 sT = , and 
sampling frequency sb 200 Hzf = . 

During calibration process VP-2vs probe is 
positioned under defined angle iϕ   in the jet of constant 
fluid flow (Fig. 5.). Angle iϕ  and air velocity iV  
(determined by appropriate frequency  if , described in 
the 3. section) are defined in this calibration equipment.  

 
Figure 5. VP-2vs probe static calibration in the tunnel air jet 

 Two sensor independent voltage signals are 
converted into digital in the form of chosen data: 

nb1e ( , )i iV ϕ  and nb2e ( , )i iV ϕ  and then recorded. 
Average values of these two sample assemblies are time 
averaged voltages 1iE  and 2iE . In this way, for one 
chosen pair ( iV , iϕ ) is determined correspondent pair 
( 1iE , 2iE ). By repeating this procedure we get around a 
hundred of these pairs, which is satisfying exact and no 
time consuming comparing to the classical approach.  
 Preliminary calibration and measurements have been 
conducted using the programs with incorporated 
generalized algorithm [5], [6]. It was shown that 
maximum speed didn’t exceed 15 m/s, and 98 percents 
of ϕ  angle values were in the interval (-20°, 20°). This 
is the domain that was considered in the main 

calibration procedure. Probe was positioned in a defined 
angle ϕ,  and ten  arbitrary velocity values were varied 
until the value of 20 m/s. The whole procedure was 
repeated for other ϕ  values, which were in the interval 
(-24°, 24°), with step of  6°. After the calibration for all 
values of angle ϕ and calibration speed V, average 
values E of selected voltage signals for both sensors are 
then calculated.  In this way we get the third “space” 
coordinate - E for the calibration diagram (ϕ , V, E) of 
one sensor (Fig. 6.).  
 

 
Figure 6. Second sensor calibration points in space 

Calibration points of the same angle ϕ are all positioned 
around one parabola of the fifth order, with mean square 
error around  zero, which lies in the plane parallel to the 
coordinate plane (V , E ).  
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Figure 7. First sensor calibration points in the V-E plane 

Result of the calibration points projection from the 
space (Fig. 6.) to the plane ( E ,V ) is next the diagram. 
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Figure 8. Second sensor calibration points in the V-E plane 
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 What is the function relation ( )E V , for constϕ = , 
which approximates the curves with calibration data in 
the best manner? Generally, there is no universal 
solution for this representation. One of the best ways is 
to use the physical law which represents this 
phenomenon and its analytic expression.  

It was done by King [7], where it has been 
considered the process of heat convection from the hot 
wire to the surrounding fluid flow. The following 
equation, named King’s law, presents this phenomenon 
analytically: 

2 nE A BV= + .                             (2) 

Numerous experiments have shown that exponent n 
has an average value 0.45. In some other approaches 
calibration speed is divided into few intervals, with 
empirical curve calculated for each with its own 
exponent. Jankov has proposed and tested modified 
(universal) King’s law, defined with the following 
expression [8]: 

2 2
0

N
E E

V
B

 −
=   

 
,                        (4) 

where E0 is the zero speed (V=0) voltage.  
 Opposite to the King’s law, here B and N are not 
constants, but implicit functions of the argument 

2 2
0( )E E− : 

2 2 2 2 2
0 1 0 2 0

2 2 2 2 2
0 1 0 2 0

( - ) ( - )  ,

( - ) ( - )  .

B B B E E B E E

N N N E E N E E

= + +

= + +
      (5) 

Coefficients B and N are determined with the Gauss 
least-squares method on the calibration point 
population.  

This very interesting functional dependency wasn’t 
tested here, but the dependency ( )E V  was searched 
among the parabola of various degrees. 

 
4.2. Algorithm for processing dual-sensor probe 

signals 
 
There are various methodologies for probe 
measurements. Among these an outstanding one is 
Generalized algorithm for measuring turbulent velocity 
and swirl fields based on the papers [5], [9] and 
described in details in [6].   

Calibration results analysis, based on the above 
stated method, provides four calibration coefficients. It 
calculates from the simultaneously chosen voltages 1e~n  
and 2e~n , velocity components in the probe main axis 
direction ( )nsu  and perpendicular to it ( )nsw . If the 
coefficients are calculated on the basis of the results 
obtained in static calibration, the problem of numerical 
procedure convergence will be of importance. If the 
coefficients of the static calibration procedure were not 
calculated on the basis of the whole calibration velocity 
domain, but on some of its intervals, this problem would 
be eliminated. In this way, almost each pair of  

1 2( , )n ne e  would give ( , )ns nsu w . 

In this paper is presented a new processing method, 
which is first tested on some pilot measurements, 
resulting in a very good agreement with results obtained 
by generalized method. 

The main idea is in the fact that calibration and 
measuring process, use the same transfer function, for 
transforming inlet (velocity vector v~ ) into outlet signal 
(voltage pair 1 2( , )e e ). Transfer function is physically 
realized by sensors with CTA bridge, and it is an 
anemometer characteristic. Calibration process is an 
experimental identification of this function on the basis 
of known signals. Measurements consider this function 
as almost known, and inlet signal as only unknown. 
There are two unions of calibration points with 
coordinates (ϕ, kE , V), ( 1, 2k = ). Number of 
calibration data is the same in these two populations, for 
each sensor, and equal to the number of correspondent 
pairs  ( iϕ , iV ) ⇔ ( 1iE , 2iE ).  

 In this text is presented a method, which was 
mostly used in these researches. Graphical presentation 
is given in Fig. 9-11. Fig. 9. corresponds to Fig. 7.,  just 
axes switched their places.  
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Figure 9. First sensor calibration points in the E-V plane 

The same for the Fig. 10.  and its correspondent Fig. 8.  
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Figure 10. Second sensor calibration points in the E-V 
plane 

 What is the function relation ( )E V , for constϕ = ?  
 Various order parabola have been tested. The test 
has been performed on the both sensors sample of 
calibration points for different ϕ values. These 
calibration points present the result of various dynamic 
and static calibrations. It has been shown that all 
functions ( )i jV f E= , with constϕ = , are presented 
with the following equation:  

[m/s]V
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2 3 4
0 1 2 3 4( , ) .i j i i j i j i j i jV E C C E C E C E C Eϕ = + + + +     (7) 

Defining functional relations ( )i jV f E=  for all the 
calibration curves of both sensors, finalizes the process 
of calibration.  
 
5. MEASUREMENTS 

 
5.1. Algorithm for defining velocity field 
 
Benefit of the calibration process is defining velocity 
vector ( , )nv v ϕ . Algorithm is the same for all voltage 
pairs 1 2( , )e e , as explained here on one example. 

 Here it is known a functional relation of the 
calibration curves and one measured voltage pair 

1 2( , )e e . For the value 1 1e E=  in Fig. 9. from the 
curves 1 1( , )V F Eϕ=  till 9 9( , )V F Eϕ=  nine points 

1iM  are derived. In the same manner, for the known 
voltage e2=E2 in Fig. 10., nine other points are 2iM  
derived. These points are presented in Fig. 11.  

 
Figure 11. Final solution definition 

 It is obvious that all these points are situated in the 
vicinity of curves 1p  and 2p , whose analytical 
definitions should be parabolic functions. Unknown 
parameters, parabola coefficients, are found by the 
least-square fit method. It was shown that the best 
agreement for representative pairs 1 2( , )e e  chosen by 
accident had coefficients of the parabola of the fifth 
order:  

2 3 4 5
1 0 1 2 3 4 5

2 3 4 5
2 0 1 2 3 4 5

,

,

p :v A A A A A A

p :v B B B B B B

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

= + + + + +

= + + + + +
   (8) 

where coefficients Ai and Bi  depends on voltages 1e  and 

2e , respectively. Minimizing angle ϕ  step would 
increase number of points M1i and M2i, which would  
lead to more accurate estimations of the curves p1 and 
p2. Solution is the intersection point of these curves 
M12 ( )v~,~ϕ . Coordinate φ is the angle between the probe 

main axis and the instantaneous speed v~ , and 
coordinate v is the velocity intensity. 
 In Fig. 11. it is also presented curve p, whose 
coordinates present differences of the appropriate 1p  

and 2p  cordinates. It is obvious that unknown angle ϕ  
could be graphically achieved in the intersection of the 
p curve and abscise. Angle ϕ  is also one of two real 
solutions of the fifth order polynomial function. The one 
with smaller absolute value is valid.  
 If curve p intersects abscise at angle ϕ  which 
belongs to the calibration interval, good validation is 
achieved. If this is not the case, then there is no good 
estimation for the angle, and consequently for the speed.  
It happens when the measured flow field velocity and 
angle are not appropriately predefined, and not taken 
into consideration during measurements. Another reason 
could be positioning of the probe in the average velocity 
direction. 

Time consumption could be minimized by using the 
same method as in calibration, forming array of 
correspondent pairs.  There is a number of pairs 

1 2( , )e e , which is a processor time consuming. This 
could be diminished by calculating corresponding 
values (ϕ, v)  for each pair 1 2( , )e e   in advance, forming 
data base in such manner, and during the analysis to 
choose, the closest, appropriate one. This has been 
programmed for, the number defined with resolution of 
the data acquisition system, 512 × 512 different values, 
selected in the whole domain with equal steps.  

Error estimation was done on the population of 100 
measured values, i.e. angle/velocity combinations. 
Angle was varied in the segment ϕ ∈[ 24 , 24− ] and 
speed in v ∈ [1m/s, 19m/s ]. Maximum error with 
respect to v was 2.5%, for both velocity components. 
Above 2 m/s these errors drop to maximum 0.5% . 

 

5.2. Software for the new algorithm 

This algorithm incorporates the number of calculations 
of empirical curves using pairs of measured values 
( , )i ix y ( 1, 2 ... )i n= . Usually, this curve is presented 
like linear combination of ordinary functions: 

( )
0

ˆ
m

j j
j

y xβ ψ
=

= ∑  ,     (9) 

where m should be smaller than n, ψj (x) are known 
functions, while parameters jβ ( 1, 2 ... )j m=  are 
unknown and should be determined on the population of 
n times measured y for various x. It is accepted that all 

ix  values are accurately determined, while iy  values 
are measured with some error 22 σσ =i , for the chosen 
empirical curve, sum of squares of standard deviation 
value iy of ˆiy  is:  

( ) ( )22

1
ˆ ˆ

n

i i
i

E y y y
=

= −∑ .    (10) 

Condition of minimum value of this sum gives a system 
of linear equations, which is called a system of normal 
Gauss equations [10]: 
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or in short:  
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Unknown coefficients of the empirical curve ˆ ( )y f x=  
are calculated from this system of equations.  
 Approximation of the real curve produces an 
additional error, which influences the final solution. The 
first information obtained in this case is given by the 
standard regression error, whose square 2 ˆ( )yε  is 
calculated as an average value of the square deviation:  

2 2

1

1ˆ ˆ( ) ( ) .
n

i i
i

y y y
n

ε
=

= −∑  

named square average deviation. 
 The smaller the value of the square average 
deviation, the better approximation. This could be 
achieved by increasing the number of estimated points. 
Here are chosen polynomial functions of various 
exponents for empirical functions. With increasing of 
the polynomial degree, residuum sum decreases. 
Starting with one polynomial degree, the sum increases. 
Adopted value is the one with minimum residuum sum. 
 Polynomial degree identification can be performed 
by appropriate dispersion analysis, which leads to the 
Fisher’s F-criterion, a general criterion of regression 
quality [11]. 
 Processing of the measured results with the above 
stated method has been programmed. All empirical 
functions were of the fifth order, which was first 
determined on the representative population. Unknown  
parameters of the empirical curve are very sensitive to 
small mistakes in coefficients of the system of 
equations. This results in a significant numerical 
instability that increases with increment of functions in 
a sum, i.e. polynomial degree.  
 This instability can be eliminated if orthogonal 
Chebishev (Pafnuty Lvovich Chebyshev, 1821-1894.) 
polynomial functions are used [10-13]. 
 Using these orthogonal basic functions system, the 
matrix of the normal Gauss equations becomes 
diagonal, where each unknown coefficients iβ  are 
calculated independent of each other. 
 The system of basis functions 0 ( )xψ , 1( )xψ , …, 

( )m xψ , in series (9), is called orthogonal on the 
population 1x , 2x , …, mx , if two random functions of 
this system are orthogonal, i.e. if satisfied for various k, 
j values in interval (0, m):  

( ) ( )
1

0 for ,
is

0 for .

n

k i ij
i

j k
ψ x x

j k=

≠ =
= ≠

∑   (13) 

Chebishev polynomial functions are here orthogonal 
basis functions, where first two members and a 
recursive formula for polynomial functions of greater 
degree [13]:  

0 1

2 1

( ) 1, ( ) ,
( ) 2 ( ) ( ) .m m m

P x P x x
P x x P x P x+ +

= =
= −

          (14) 

If experimental results are equally distributed on the 
interval of the independent value x, i.e. if it is satisfied 

1i ix x h+ − = , introducing shift: ( ) hxxz /−=  Chebi-
shev polynomials are:  

   
0 1

2 2 2

1 12

( ) 1, ( ) ,

( )( ) ( ) ( ).
4(4 1)

m m m

P z P z z

m n mP z zP z P z
m

+ −

= =

−
= −

−

    (15) 

Empirical curve ( )zfŷ = is now:  

0
ˆ ( ).

m

i i
i

y C P z
=

= ∑           (16) 

Coefficients Ci are calculated independently of each 
other:  

1 1
0

2

1

( )
, , 1, 2,..., .

( )

n n

i i j i
i i

j n

j i
i

y y P z
C y C i m

n
P z

= =

=

= = = =
∑ ∑

∑
   (17) 

Orthogonal polynomial functions also have a few more 
advantages. Determined polynomial function of degree 
k provides all equal coefficients, except one new 1kC + , 
for defining polynomial function of k+1 degree. 
 Chebishev polynomials, contrary to the ordinary 
polynomials, have significantly simpler residuum sum 
calculation, where for the k-th degree function states:  

2 2 2 2

1 0

ˆ ( )
n k

k i j j
i j

n Y n C P zε
= =

= −∑ ∑ ,    (18) 

while residuum sum of the polynomial function of the 
k+1-th order represents the following difference, much 
simpler for calculation: :  

2 2 2 2
1 1 1

ˆ ( )k k k kn n nC P zε ε+ + += − .    (19) 

This shows that increment of the function degree results 
in residuum sum value decrement. Reaching the best 
approximate curve, residuum sum reaches minimum 
value equal to the average dispersion of error 2

iσ , with 
deviations smaller than this dispersion [10]. 
 Use of Chebishev polynomials, instead of ordinary 
for estimation of empirical curve, avoids possible 
numerical instabilities and significantly decreases total 
time consuming for calculation of unknown parameters. 
 This new procedure for signal analysis has been also 
programmed. Various empirical functions have been 
presented in the form of Chebishev polynomials, 
contrary to the previous procedures where ordinary 
polynomials had been used. Identification of a degree of 



 
FME Transactions VOL. 35, No 2, 2007  ▪  61

 
 

polynomial has been previously done on a 
representative population, and afterwards processed. 
  Calibration curves in Fig. 10., present random 
function. Besides this, these voltages, in various 
calibration points, have been calculated with various 
accuracies, i.e. error dispersions 2

iσ . It is the most 
complicated case of evaluation of the approximation 
curve parameters and confidence interval. In a statistical 
meaning these estimations belong to the group where 
dependent and independent variables are random 
quantities. Besides this, error dispersion depends on 
random variable [10-12]. 

For the experiment the most important facts are 
small square deviation and ratio of mean square 
deviation and random quantity along the major part of 
empirical curve to be almost equal. It is desirable to 
form a new population of calibration points with almost 
equal statistical weight, i.e. error dispersion. Statistical 
weight of unevenly correct measurements has been 
adopted here as inverse value of appropriate dispersion.  

 
6.  CONCLUSION  
 
Quality of the measuring results depends on calibration 
quality. Measuring error, besides other, depends on 
calibration and measuring procedure and obtained data 
analysis. Measuring-calibration procedure presented in 
this paper is almost identical with the one presented in 
papers [14] and [15]. However, in this paper calibration 
curves are fitted with the use of Chebishev polynomials. 
By use of them presented numerical analysis procedure 
instability is avoided and calculation time consumption 
reduced. 
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MЕТОДА БАЖДАРЕЊА СОНДЕ V-ТИПА СА 
ЗАГРЕЈАНОМ ЖИЦОМ  

М. Лечић, С. Радојевић, Ђ. Чантрак, А. Ћоћић 

Приказана су веома прецизне, оригиналне сонде са 
загрејаним  влакнима високе просторне и временске 
резолуције и калибрациони метод за турбулентна 
експериментална истраживања. Овај метод захтева 
позиционирање V-сонде под одређеним углом у 
односу на униформну брзину млаза отвореног 
аеротунела. Из добијеног сигнала формира се 
калибрациона матрица. Оцене одговарајућих 
експерименталних кривих су облика Чебишевљевих 
полинома, чиме се време прорачуна мерних тачака 
значајно смањује. Oвај калибрационо-мерни 
поступак захтева мање претпоставки него у случају 
стандардних метода заснованих на Кинговом 
закону. 
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