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Influence of Simple Harmonic Speed 
Variations on the Vuk-T Sailplane 
Approach Paths and Distances  
 
When for any technical reason spoilers become inoperable in flight, the 
most critical phase of a sailplane landing procedure is final approach. 
Besides the sideslipping flight possibility, where energy is dissipated 
through the increased sideforce drag, another solution for this problem 
has been offered in literature, showing that the landing distance could be 
minimized using rather complex oscillating flight paths. The problem is 
that performing such paths in practice would require exceptional piloting 
skills. Instead of that, in this paper much simpler approach profiles have 
been analyzed, based on the simple harmonic speed variations, which 
could much easier be reproduced in practice. After establishing a quick 
convergence algorithm, numerical solutions for several typical cases, 
taking the Vuk-T sailplane as an example, have been presented. Although 
distance reductions are generally smaller than obtained by distance-
minimizing techniques, their operational simplicity and higher safety prove 
them as valuable solutions for this kind of problems. 
 
Keywords: sailplane, inoperable spoilers, harmonic speed variation, 
landing approach, distance reduction 
 

 
1. INTRODUCTION 
 
High lift-to-drag ratios of the contemporary sailplanes 
enable them to fly very long distances from a given 
height or stay in the air for a very long time without an 
engine, making them the most energy efficient flying 
vehicles. On the other hand, this capability may become 
their serious disadvantage during the landing if their 
spoilers or other available aerodynamic deceleration 
devices become inoperable in flight (cases which do not 
happen so often, but are definitely known in practice). 
Not being able to extend spoilers and dissipate the 
excess energy quickly enough during the final approach, 
a sailplane may fly over the whole available landing 
ground and finish up in front of the obstacles on its 
other end, with still too much energy to land and not 
enough to fly over them. 
 One of the known operational techniques that can be 
used to face this problem is the sideslipping during the 
final approach phase. During this intentionally 
uncoordinated flight, additionally generated sideforce 
will increase the overall drag. Principally, like with 
spoilers, this drag component will also dissipate 
additional quantity of energy and help shorten the 
approach distance. But this technique requires a certain 
amount of skill. For example, in case of a not too 
experienced pilot forced to land on a narrow countryside 
field, improper estimation of the actual flight direction 
while watching sideways during this maneuver, may 
finally place him in front of a wrong field, with no 

engine to help him go around and correct the error.  
Besides this classical technique, in a certain number 

of papers the oscillating final approach patterns without 
sideslipping, performed in a vertical plane, have been 
considered as another potential option with the aim to 
minimize the landing distance in the case of the 
aerodynamic decelerating devices failure. In order to 
emphasize a rather high complexity level of such kind 
of calculations, one of them, performed for the Vuk-T 
sailplane [6], [7], will be presented here very briefly. 

This method treated the problem of minimizing the 
landing approach distance as an optimal control 
problem, where the initial and the terminal states were 
based on recommendations from [2]. The lift coefficient 
variation was established as a variable of the control 
function ( )u t  according to [3] and the maximum lift 
coefficient value of 1.78 for the Vuk-T was applied. 
Since the total time of the final approach, originally 
denoted as kt , is initially unknown, calculations were 
done in normalized time τ , introducing another control 
parameter α , where t α τ= ⋅ , 0 kt t≤ ≤ , and 0 1τ≤ ≤ . 
Path for the minimum landing distance was obtained 
through an iterative calculation process, where the point 
was to determine such function ( )u t  and an α  that will 
minimize the so called performance index I , which is 
subjected to the dynamic, initial and terminal state 
constraints. Index I  included  the integral interior  
penalty functions [1] for the minimum speed and the 
height constraints, combined by the empirical fixed 
constraint factors. The problem was solved using a 
gradient projection algorithm [4], which incorporated 
conjugate directions of search for a rapid convergence 
of the solution. Those calculations were done in Fortran 
77 in a double precision mode. Flight path obtained by 
these calculations is shown in Fig. 1. 
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Figure 1. Minimized Vuk-T final approach path, obtained by 
calculations in [7] 

 The result of this obviously quite complex calculus 
is an unevenly oscillating flight path, which does give 
an effective reduction of the approach distance. A 
practical problem associated with it is that it would 
require exceptional piloting skills to be accurately 
replicated under operational conditions. If only several 
flying errors were accumulated, its advantages could be 
lost to a large extent and a pilot, attempting to land on a 
short terrain, could easily find himself landing at its end 
(and again - without an engine to help him go around 
and correct the error). Also, the last part of that flight 
path is flown oscillating at around minimum speeds at 
very small heights, when any sudden change of the wind 
speed under real life conditions may stall the sailplane 
and cause a disaster. 
 Quite opposite to the previous example, the primary 
aim of this paper is to investigate the possible approach 
distance reduction techniques (rather than focusing on 
the distance minimizing) through very simple speed 
variations with constant periods and speed amplitudes, 
which could be easily, safely and quite accurately 
performed by the pilots of average flying skills. The 
second aim is to perform the calculations using an 
algorithm that is as simple as possible, but sufficiently 
accurate for the required purposes. (It should be kept in 
mind that the primary end-users of these calculations 
should be the sailplane pilots, rather than highly trained 
engineers or programming experts.) 

Suppose that a sailplane pilot, with just a general 
knowledge of informatics and mathematics, could be 
able to perform such calculations using a custom written 
computer program which would not require 
sophisticated coding skills or recompiling, for example, 
the spreadsheet-type program. (The use of genetic 
algorithms to solve this kind of problems would 
presently be a true challenge for engineers and 
mathematicians, but the idea of treating the problem in 
this paper is quite opposite.) In such case, a pilot would 
have an opportunity to experiment with the data for 
other sailplanes, or even do major editing, for example, 
assigning some different laws of speed variation or 
combining them for different portions of the path. This 

way, he could define several efficient approach paths 
for the sailplane he flies in advance, for the eventual 
case of spoilers becoming inoperable in flight. The 
necessary input parameters could be obtained from the 
sailplane manufacturers, operation manuals supplied 
with the sailplanes, or from other available resources, 
primarily the Internet. 

Such an algorithm, based on a rather simple but 
efficient iterative approach, has been developed and 
presented in this paper. To stay compatible with the 
calculations done in [7], the Vuk-T sailplane has also 
been used for the analyses. Also, the initial and 
terminals states for the calculations are based on the 
same references cited for their determination in [7]. 
 
2. CALCULATION PROCEDURE 
 
The sailplane configuration in final approach for these 
calculations is gear-down and spoilers-in, corresponding 
to the posted problem. According to the flight test 
measurements performed on the Vuk-T sailplane 
prototype at the Flight Test Center VOC-Batajnica, the 
polar curve for this configuration is defined by the 
equation: 

20.01756 0.0095 0.021D L LC C C= − +  ,          (1) 

where DC  and LC  are the drag and the lift coefficients, 
respectively. Like in [7], in this paper it will also be 
assigned that the nominal mass of the sailplane in flight 
is 320m = kg, wing area is 12S = m2, and that the air 
density is 1.225ρ = kg/m3. Using these values and (1), 
it can be calculated that the maximum glide ratio for this 
configuration is max( / ) 34.59L D = and the speed that 
corresponds to it is 77.99 km/hV =  (for the gear-up 
configuration these values are different; the speed will 
additionally differ if some other reference mass is 
selected). For the default glide regime, which will be 
used for comparisons with approaches based on 
harmonic velocity variations, the rounded value of 

80 km/hV =  will be applied, for which the glide ratio is 
/ 34.52L D = . 

 
Figure 2. Notation for the forces and components of speed 
used in the approach path calculations 

 Neglecting rotation dynamics and assuming that the 
wind speed is equal to zero, equations of motion [5] for 
the purpose of these calculations (see also Fig.2. for the 
notation applied) can be rewritten as: 
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where the lift and the drag forces are:  

21
2LL C V Sρ= ⋅ ⋅ ,                              (7) 

and 

21
2DD C V Sρ= ⋅ ⋅ .                             (8) 

In this paper the speed variations in final approach 
will be assigned using the following cosine law:  

2cosAVV V V t
T
π = − ∆  

 
                     (9) 

in which AVV  represents the average speed, V∆  is the 
half-amplitude, T  is the period, while time t  is the 
independent variable. 

For all presented cases, the glide path angles are 
smaller than ten degrees, so the small angle 
approximations may be applied. Thus, with the path 
angle γ  expressed in radians, (2) and (3) can be 
simplified as: 

d
d

XVm D L
t

γ= − − ⋅                        (10) 

and:                 d
d
Wm mg D L
t

γ= − − ⋅ +                    (11) 

It should be noted that all variables on the right 
hand-side of (2) and (3), or (10) and (11), with such an 
assigned speed variation law, are also time dependant. 

First iteration step 

The lift coefficient variation with time along the 
flight path is initially estimated from the equation: 

2
2( )

( )
L

m gC t
V t Sρ
⋅ ⋅

=
⋅ ⋅

                       (12) 

using (9) to define speed changes. After that, the time 
dependant drag coefficient is calculated using (1). Both 
in this and all the following iterations, the time step of 

0.1 st∆ =  for numerical analyses proved to be quite 
satisfactory. It should be noted that the equation (12) is 
actually obtained from (11), omitting the product D γ⋅  
and assuming that d / d 0W t = . In usual sailplane 

descents, products sinD γ⋅  are about 1000 times 
smaller than cosL γ⋅ , thus omitting D γ⋅  does not 
affect the accuracy noticeably. On the other hand, for 
the here applied cosine speed changes, the assumption 
d / d 0W t =  is not true, but it has been taken as an 
intentional "sacrifice" in the first step of the 
calculations. 
 Lift and drag forces are then evaluated using (7) and 
(8). To a first approximation, it may be assumed that 
d / d d / dXV t V t≈ . Since the variation of ( )V t  is a 
known differentiable function, d / dV t  can be obtained 
both numerically and analytically (doing it both ways 
and comparing the results could be one of the 
verifications whether t∆  is selected adequately). The 
initial estimate of the flight path angle γ  can now be 
obtained directly from (10): 

(d / d ) ( )( )
( )

m V t D tt
L t

γ +
= − .                  (13) 

 The velocity components are determined as: 

( ) ( ) cos ( )XV t V t tγ= ⋅ ,                      (14) 

( ) ( ) sin ( )W t V t tγ= ⋅ .                       (15) 

In the sense of numerical calculations, time 
derivatives at the "i"-th time step can be obtained as: 

1 1( ) ( )d
d 2

i i i iX

i

V V V VV
t t

− +− + −  =  ⋅ ∆ 
,             (16) 

1 1( ) ( )d
d 2

i i i i

i

W W W WW
t t

− +− + −  =  ⋅ ∆ 
           (17) 

(this approach proved to be quite satisfactory using the 
0.1 second time step). 

Second iteration step 

Equation (12) for the lift coefficient is now 
upgraded, this time including values obtained from (17): 

2
2 ( d / d )( )

( )
L

m g W tC t
V t Sρ

⋅ ⋅ +
=

⋅ ⋅
,                  (18) 

while (13) is upgraded using the values obtained by 
(16): 

(d / d ) ( )( )
( )

Xm V t D tt
L t

γ
+

= − .                 (19) 

Lift, drag, and the velocity components with their 
derivatives are then recalculated applying the same 
algorithm as in the first iteration step, but including the 
refined values obtained by (18) and (19). 

 Third iteration and further iteration steps  

The whole procedure is repeated using d / dXV t  and 
d / dW t  from the previous steps, and theoretically 
speaking this calculation process could be repeated as 
many times as necessary. 
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After the desired level of accuracy has been 
achieved, the ( )X t  and ( )H t  coordinates, which 
determine the flight path profile, are calculated by 
numerical integration of ( )XV t  and ( )W t  from the last 
iteration step with respect to time (coming out from (4) 
and (5)), using initial conditions (0) 0 mX =  and 

(0) 50 mH =  for all the cases considered in this paper. 
The length of the flight path ( )P t  is obtained by 
numerical integration of the total velocity ( )V t .  
 To quantify the obtained accuracy, results from the 
last iteration step of the final approach calculations were 
substituted in full equations (2) and (3). Differences 
between the left and the right-hand sides, calculated at 
each time step, were then compared with the calculated 
drag force in case of (2) and lift force in case of (3). 
Limit for the so defined relative errors, which could be 
accepted for practical considerations, was established at 
the order of 1% or smaller. The presented algorithm has 
shown very high convergence rate, since practically all 
analyzed cases with the cosine speed variations have 
fulfilled this requirement after only three iteration steps. 
The only exception was the one denoted as "case 3" (see 
next chapter, Fig.6.), where the fourth step was 
introduced to reduce the maximum relative error from 
2.2% to 1.2% in equation (2). Since the differences 
between the calculated X  and H  values in the third 
and fourth step were of the order of centimeters, it has 
been assumed that any further accuracy improvements 
would be unnecessary from the practical point of view.  
 Terminal state is reached at the 1H ≈ m and 

72 km/hV = . Thus, besides the final approach, the 
round-out phase and the hold-off phase also had to be 
calculated for the default case, and cases 1 and 4 (see 
next chapter), while for the other two approaches the 
velocity amplitudes and the corresponding periods have 
been selected in a way that the round-out phase is the 
integral part of the final approach flight segment.  

 The round-out phase of landing  

In practical calculations it is usual to treat the round-
out phase path as a circular arc, so its R = const., 
through which the approach speed APV  changes are 
negligible. On the other hand, changes of the load factor 

/( )n L m g= ⋅  are not. Radius of such modeled round-
out phase can be determined from the equation: 

2 1
cos

APVR
g n γ

= ⋅
−

,                        (20) 

where n  is the load factor at the end of this phase. For 
both mentioned cases, the reasonable value 1.05n =  
has been assigned. Total variations of the height and the 
horizontal distance through the round-out phase are: 

(1 cos )H R γ∆ = − − ,                       (21) 

sinX R γ∆ = −                              (22) 

(having in mind the assumed convention for the sign of 
the flight path angle). 

The hold-off phase of landing 

 The hold-off phase has been modeled in the same 
way for all analyzed cases, through which the speed is 
gradually reduced to the intended touchdown value of 

72 km/hTV = . Although for 320 kgm = , the Vuk-T's 
stalling speed is stall 55.7 km/hV =  km/h, it should be 
noted that for many modern sailplanes, decelerating 
down to the stallV  would lead to the tail-first 
touchdowns (simulated case shown in Fig. 3), which can 
cause the structural damage.  

 
Figure 3. The DG-100 sailplane tail-first touchdown at Vstall 
(flight simulation for the visual presentation of the problem 
performed using the MS-FS9) 

Although under operational conditions there is 
usually a small loss of height through this phase, and 
strictly speaking the rate of descent is not exactly zero, 
the equation of level flight with center of gravity at a 
constant average height 1H ≈ m to calculate its length 
can be used without any penalties. Substituting o0γ =  
in (2), it becomes: 

d d
d d

XV Vm D m
t t

= − =                       (23) 

and thus: 

2d
d 2

DV C SV
t m

ρ ⋅ ⋅ ⋅
= − .                     (24) 

 Initial condition is defined by V at the end of round-
out phase (parameters at this point will be denoted using 
the asterisk symbol "(*)" in the following analyses), and 
for each consecutive time step speed reduction is 
calculated using (24), the new LC  for the reduced speed 
is obtained from the equation of level flight, while the 
corresponding DC  is calculated using (1). The iteration 
process is repeated until 72 km/hTV =  is reached. 
Distance X  flown in this phase is obtained by the 
integration of speed with respect to time, and for this 
phase, the horizontal distance is equal to the path length.  

The ground roll after touchdown is not considered in 
this paper, because theoretically speaking, after the 
same terminal state parameters have been reached, 
ground rolls for all analyzed cases must be exactly the 
same. 
 
3. RESULTS AND DISCUSSION 
 
For all analyzed cases, the initial (energy) state 
condition is defined by the height of 50H = m above 
the terrain and the speed of 80 km/hV = , while the 
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terminal (energy) state is defined by 72 km/hV =  and 
1H ≈ m. Also, wind effects are not considered in this 

paper and the sideslip is excluded. The reference, i.e. 
the default linear flight path, flown at the constant speed 
of 80 km/hV = , has been selected for the comparisons 
with paths based on the cosine law speed variations. 
Because the assigned initial and terminal states must 
apply for the reference path as well, the 
80 km/h const=  case is the only one that satisfies the 
initial condition requirement. On the other hand, this is 
practically the best glide ratio speed for the analyzed 
sailplane configuration, and it is known that any other 
constant approach speed selected would give a shorter 
approach distance. But then, to preserve the consistency 
of the analyses, all cosine approaches analyzed in this 
paper would also have to commence at the initial state 
which is defined by this different speed (instantaneous 
velocity changes are not possible), and results obtained 
for such paths would be different as well. Before 
commencing a final approach, the most common 
practice is to fly a sailplane at the best glide ratio – so 
the here applied selections of the initial state and 
reference path speed are closest to the real life 
situations. 
 The four typical cases, selected for presentation in 
this paper, are shown in Fig.s 4 ÷ 7. In all cases the 
speed initially increases from 80 km/h. 
 

 
Figure 4. Case 1: distance reduction XA - XB = 33.1 m 

 
Figure 5. Case 2: distance reduction XA - XB = 56.7 m  

 
Table 1. L/D ratios for some characteristic speeds 

Configuration: gear down, spoilers in, m = 320 kg 

V [km/h] 80 90 110 

L/D 34.5 32.7 26.0 

 
Figure 6. Case 3: distance reduction XA - XB = 78.9 m 

 

 
Figure 7. Case 4: distance reduction XA - XB =101.8 m 

Table 2. The most relevant flight path parameters 

Para- 
meter 

Default 
case 

Case  
1 

Case 
2 

Case 
3 

Case 
4 

∆X 
[m] 

/ 33.1 56.7 78.9 101.8 

*
AVD  

[N] 
90.9 92.1 93.1 94.1 103.9' 

96.6all 

T 
[s] / 120 17 7 26 

∆V 
[km/h] 0 10 10 10 30 

∆ L/D 0 -5.2% -5.2% -5.2% -24.6% 

γ [o] 
change 

none -2.12 
-1.54 

-4.69 
+1.31 

-9.02 
+5.62 

-7.76 
+4.07 

n 
change none 0.999 

1.001 
0.956 
1.049 

0.743 
1.298 

0.943 
1.078 

* - distance averaged drag force DAV shown in this table 
does not include the hold-off phase 
 
 For the clarity of presentation, the applied scales for 
height H  and horizontal distance flown X  in Fig.s 4 ÷ 
7 had to be substantially different. Due to that, the 
graphical appearances of the paths are largely distorted 
with respect to their true forms. For example, the 
calculated horizontal distance of the path up to the end 
of the round out phase (parameters denoted by the (*) 
symbol) for the default case (denoted as "(A)" in all 
graphs) is (*) 1706.0X = m, while the path length 
obtained through numerical calculations is 

(*) 1706.7P = m. Thus the difference between them is 
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only 70 cm, while the path appearance in the diagrams 
suggests that it should be much larger. A simple 
approximate verification could be done by neglecting 
the path curvature of the round-out phase and knowing 
that 49H∆ = m: 2 21706 49 1706.7+ = m. 
 The same applies for the oscillating paths. For 
example, for the case 4, the calculated difference 
between (*)P  and (*)X  is only about 2.5 m, while the 
appearance of diagram also suggests much larger value. 
For the verification, let us just approximate the path of 
the first half of the period T  with a straight line - it will 
be only some 1.6 m longer than the horizontal distance 
X  (see Fig.s 7 and 8): 2 2390 35 391.57+ = m. 

 

 
Figure 8. Even a simplified calculation of the path length 
leads to a conclusion that the flight path curvatures are 
actually very small 
 
 Proceeding with such simple analyses would finally 
lead to a very important general conclusion that the 
cosine path curvatures are actually very small. Thus, the 
fact alone that instead of linear, the curved oscillating 
paths are flown, does not contribute significantly to the 
overall X  distance reduction. 
 For all presented cases the distance averaged drag 
forces AVD  were calculated, first by obtaining the sums 
of products of the drag forces and the path lengths for 
each time segment, and then dividing them with the 
total path lengths (the hold-off phase was not included 
in these calculations). As can be seen from Table 2, 
progressive increase of those values is proportional to 
the larger X  distance reductions. This is quite logical, 
knowing that the dissipation of energy between the 
initial and the terminal energy states (same for all cases) 
is obtained through the work done by the drag force 
along the flight path. Thus increasing the drag (rather 
than curving the path in the vertical plane) is the 
primary aim in attempts to shorten the landing approach 
distance from 50 mH =  (making full turns to reduce 
altitude from such a small height is strictly forbidden).  
 According to Fig.s 4 ÷ 7 and Table 2, there are 
obviously two ways to increase the drag. The first one is 
to alter the speed as much as possible from the best 
glide ratio speed (but to a reasonable extent and through 
a safe maneuver, because the most important pilot's aim 
is to stay alive). By increasing the speed from 80 km/h 
to 110 km/h, the glide ratio drops from 34.5 to 26.0 (see 
Table 1.), so for the same amount of the generated lift, 
the more drag is produced. Applied only in a single 

oscillation with quite large period of 26 sT = , in case 
4, such maneuver has generated the X  distance 
reduction of more than a hundred meters, which is the 
largest value of all presented cases. (This particular case 
could be further developed to give even higher 
reductions.) 
 To define the second influential factor on the drag 
increase, we will focus on cases 1, 2 and 3. In all of 
them, the speed variations are the same, between 80 and 
90 km/h, which causes rather small changes in /L D  
ratio between 34.5 and 32.7, as shown in Table 1. On 
the other hand, their periods are substantially different. 
In case 1, an extremely large period of 120 seconds has 
been applied in only a half period oscillation, practically 
simulating an almost uniform speed increase and gave 
rather small 33.1X∆ = m. (With certain alternations in 
general case assignments, it could give even higher 
distance reductions, practically as in case 2., but such 
analyses presently exceed the scope of this paper.) The 
second case has much shorter period of 17 sT = , and 
gives higher value of 56.7 mX∆ = . Following this 
trend, the case 3 with very short period of 7T = s gives 
even larger 78.9 mX∆ = . A conclusion is that the 
shorter periods of oscillations, as a second influential 
factor, lead to the additional increase of the average 
drag force.  

As seen in Table 2, the shortening of the period 
consequently induces larger variations of the load 
factor. Also, those variations are not symmetrical, i.e. 
the increase of n  at the local path minimums is larger 
than its decrease at the local maximums (this can clearly 
be seen for the cases 2, 3 and 4, while for the case 1 
variations are too small to be shown within the 
significant number of digits). Increased n  is the 
consequence of increased lift force and consequently 
increased drag as well, and vice versa. More cycles of 
such asymmetrical load factor variations during the final 
approach would generate an overall drag increase as a 
final consequence.  

Combining these two influential factors should be 
done carefully for operational applications. For 
example, large speed amplitudes with very short periods 
can quickly become very unpleasant for the pilot and 
disable him to perform the assigned approach properly. 
Also, one of the shortcomings of here presented cosine 
approach examples is that the standard 15 m obstacle 
overshooting distances are moved some 200 meters 
towards the starting point, compared with the default 
path. It should be emphasized that the given examples 
have been selected primarily to clearly impose the most 
important issues of the analyzed physical problem, and 
not to determine an optimum solution or the largest 
possible approach distance reduction for a given 
sailplane. As already mentioned, applying these 
techniques, even larger X∆  values can certainly be 
achieved; also, using the cosine laws for speed 
variations with speed initially decreasing, the obstacle 
overshooting distance could be enlarged, etc. Another 
goal that has been set is that performing such paths must 
be simple and safe. In that sense, the approach distance 
reductions of the order of a football field length or 
higher are definitely not negligible for a sailplane pilot, 
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who is not able to use spoilers in final approach and is 
forced to land on a short countryside field, where 
practically every meter of the shortened flight can make 
a crucial difference between the successful landing and 
a disaster.  
 
4. CONCLUSION 
 
Algorithm developed for the calculation of the landing 
approach flight paths has shown high stability and 
convergence rate, and has enabled very efficient 
determination of many possible solutions for the posted 
category of problems. The four typical solutions have 
been selected for the presentation in this paper, with an 
aim to emphasize the influence of certain factors on the 
possibility of the approach distance reduction in cases 
when spoilers become inoperable.  
 It has been shown that conversion from linear to 
curved oscillating paths, by itself, does not contribute to 
any significant reduction of the horizontal distance 
flown, because the effective curvatures of the paths are 
small. On the other hand, the consequence of flying 
along such paths is the drag increase, generated by two 
sources. The first is departing from the optimum glide 
ratio speed to a reasonable extent, when the glide ratio 
decreases, and more drag is generated for the given 
amount of lift. The second is decreasing the period of 
oscillations and thus increasing the total number of 
oscillations during the final approach. The asymmetric 
change of the load factor at local path minimums and 
maximums is generated and additional drag is gathered.  
 Safety and simplicity are very important 
requirements in performing the paths based on the here 
presented principles. Possible approach distance 
reductions that can be achieved through them, although 
generally smaller than by the sideslipping or distance 
minimizing techniques, can be extremely useful under 
operational conditions, when spoilers or other 
aerodynamic decelerating devices are not available 
because of some technical problem. 
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УТИЦАЈ ПРОСТИХ ХАРМОНИЈСКИХ 
ПРОМЕНА БРЗИНЕ НА ОБЛИК И ДУЖИНУ 
ПРИЛАЗНЕ ПУТАЊЕ ЈЕДРИЛИЦЕ ВУК-Т 

 
Зоран Стефановић, Иван Костић 

 
Уколико из било ког техничког разлога ваздушне 
кочнице престану да функционишу током лета, 
најкритичнија фаза у процедури слетања једрилице 
је финални прилаз. Поред лета са бочним клизањем, 
када се дисипација енергије врши кроз повећање 
бочне силе отпора, друго могуће решење овог 
проблема је понуђено у литератури, где је показано 
да се дужина прилаза може минимизирати 
применом сложених осцилаторних путања лета. 
Међутим, лет по таквим путањама захтева изузетно 
летачко умеће. Насупрот томе, у овом раду 
извршена је анализа једноставнијих прилазних 
путања, базираних на хармонијским променама 
брзине, које је много лакше оперативно 
репродуковати у лету. У раду је приказан 
прорачунски алгоритам који омогућава брзу 
конвергенцију решења и анализирана су нумеричка 
решења за неколико типичних случајева. Као 
пример коришћени су подаци за једрилицу Вук-Т. 
Добијени резултати показују нешто мања скраћења 
путања, али једноставност примене у пракси и већа 
безбедност предложених техника летења чини их 
корисним решењима у случају поменутих проблема. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 


