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Circles and Ellipses Fitting to Measured 
Data 

 
Algebraic and geometric fitting methods for circle and ellipse to measured 
data were studied and implemented in a low-cost but functional laboratory 
measuring system for standardized circular tests for numerically con-
trolled machine tools. The measuring device was made using the existing 
measuring components for registration of small displacement. The system 
was verified by testing one horizontal machining center prototype. Using 
the developed programs, some useful results were obtained in error 
sources analysis of some characteristic trace patterns of motion. The used 
ellipse fitting methods were mutually compared and with some of the other 
existing ones. For circular tests of numerically controlled machine tools 
both of the developed algebraic and geometric fitting of circles and ellip-
ses methods have the same efficiency. In this paper, the ellipse fitting was 
analyzed in details because the circle fitting is standardized for machine 
tools testing.  
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1. INTRODUCTION 
 
Fitting a circle or an ellipse to a set of noisy data points 
is an old problem that has motivated a large amount of 
often-duplicated literature in various fields [8]. In 
general, the fitting of geometric features to given 2D/3D 
points is desired in various fields of science and 
engineering: astronomy, physics, biology, quality 
control, image processing, metrology [1] etc. The 
measurement of motion errors of CNC machine tools in 
standard circular tests for numerically controlled 
machine tools are herein examined [6], [11]. Measuring 
motion errors of CNC machine tools in this way is more 
accurate and faster than the conventional one that 
requires the circular plate cutting on the machine to 
measure. Standard [11] does not regulate measuring 
resources, but only experimental data acquisition and 
processing methods. A long time ago, two types of 
measuring instruments for testing coordinate measuring 
machines and machine tools were developed [2]. The 
first version, the Fixed Magnetic Ball Bar (FMBB) was 
used to test the accuracy of a manually actuated, low 
friction coordinate measuring machine as well as 
computer controlled point-to-point measuring machines. 
The second version, the Telescoping Magnetic Ball Bar 
(TMBB) was used to test the accuracy of numerically 
controlled lathes, milling machines, robots and servo 
driven contouring measuring machines. It was the 
beginning of development of circular tests for 
numerically controlled machine tools. Then, motion 
errors of various NC machine tools were actually 
measured [6]. 

 

The system that uses standard disc was developed 
later [7]. The standard disc is measured in different 
positions in the working area of the machine. These 
developed techniques for mapping the volumetric 
positioning error of machine tools were time and labor 
intensive. To address these shortcomings, a linear 
displacement measuring device was introduced to 
rapidly and easily determine tool positions via 
trilateration [14]. It was the laser ball bar (LBB), a new 
instrument for machine tool metrology. The LBB 
consists of a laser interferometer aligned within a 
telescoping ball bar. Another system, based on the laser, 
was a noncontact laser technique for circular contouring 
accuracy measurement, especially for high-speed 
machine tools, to deliver contouring accuracy in the 
order of a few micrometers, while moving at relatively 
high-feed rates [12]. This technique is based on a single-
aperture laser Doppler displacement meter with a flat 
mirror as the target. Using this instrument, the actual 
radius, feed rate, velocity, and acceleration profiles can 
also be determined. Today there exist a couple of 
industrial systems used in circular tests for CNC 
machine tools. There are also many resources for low 
cost but functional measuring system prototype 
development for the machine tools testing in laboratory 
conditions. In that way a Double Rotational Joints 
Telescoping Bar (DRJTB) for the machine tools testing 
in a single coordinate plane only is manufactured. 
However, mathematical software, particularly curve 
fitting routines, is a critical component of one DRJTB 
system. For standardized circular test, a circle fitting to 
measured data is quite enough [11]. The standard 
specifies methods of testing and evaluating the bi-
directional circular deviation, the mean bi-directional 
radial deviation, the circular deviation and the radial 
deviation of circular paths produced by the contouring 
performance of a numerically controlled machine tool. 
It leads to finding the centre of least squares circle of 
the two actual paths, one in clockwise (CW), and the 
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other in anticlockwise (counter-clockwise CCW) 
contouring. All possible error origins of CNC machine 
tools were classified into several groups based on the 
motion error traces obtained by a number of circular 
tests [6], [11]. Ellipses fitted to measured data in 
circular tests are also used in that analysis. However, the 
method for fitting an ellipse to measured data is not 
explicitly defined. Only the inclination of the main axis 
of the identified ellipse is often used. Characteristic 
trace patterns of motion errors origins are usually 
formed. Care must be taken at that time since some 
error origins have similar trace patterns. Possible origins 
of motion errors could be position dependent errors and 
feed motion dependent errors. Geometric error of guide 
ways and error of positioning system are two typical 
position dependent errors [6] etc. So, the measuring 
system for standardized circular tests for numerically 
controlled machine tools incorporates four core 
modules: a measuring device, a data acquisition system, 
a software for circle (and ellipse) fitting to measured 
data with the presentation of the results, and analysis of 
achieved results by using different characteristic trace 
patterns of motion and other errors origins. The present 
paper focuses on the development of one low- cost 
measuring device and on the ellipse (and circle) fitting 
to measured data only. The paper is organized as 
follows: Section 2 describes fitting algorithms and 
developed programs for circle and ellipse fitting to 
measured data from circular tests of machine tools. 
Section 3 describes the developed measuring device and 
some of the experiments made for verification of the 
developed programs for circle and ellipse fitting in 
circular tests for CNC machine tools and completely 
developed system. 
 
2. METHODS FOR CIRCLE AND ELLIPSE FITTING 

AND DEVELOPED PROGRAMS 
 

Essentially, two classes of methods have been applied. 
One class has been referred to as algebraic fitting, where 
the implicit form of the conic section is used and the 
residual is minimized [4], [10], [13]. This gives rise to 
linear least squares problems subject to constraints and 
these can be usually solved efficiently as eigen value or 
singular value problems. The other is geometric fitting, 
where the errors in the data are minimized. Here, the 
implicit form of the conic may be used and the problem 
posed as a constrained least squares problem in the pa-
rameters. The minimum error methods are all variants 
of the more general technique known as orthogonal dis-
tance regression. 

Data from the circular tests of CNC machine tools 
and measuring device are characterized by: 
• Many measured positions, usually a couple of thou-

sand. 
• Actual path is usually a closed path in at least one 

contouring direction, CW, or CCW. 
• Actual paths are the type of the circle and/or ellipse 

by nature of the experiment – originated from cir-
cular interpolation made on CNC machine tool dur-
ing the circular tests.  

• Measured data are not so noisy when measuring 
system and tested machine tool are stable. 

• The reference dimensions of the measuring device 
are usually known. 

Because of that, the problem of circle and ellipse fit-
ting to measuring data obtained during circular tests of 
CNC machine tools becomes simplified.  

 
2.1 Circle fitting and developed programs 

 
A model for circle fitting to experimental data is shown 
in Figure 1. Base coordinate frame is O( , , )X Y Z . The 
circle is centered to its center C C CC( , , 0)x y z =  whose 

position vector is T
C,O C C C[ , , 0]r x y z= = . Coordinate 

frame O'( ', ', ')X Y Z  is connected to the circle. The 
position vector of one point P on the circle is defined in 
frame O as T

P,O [ , , 0]= =r x y z and in frame O' as 
T

P,O' [ ', ', ' 0]= =r x y z . Position vector of one measured 
point E is known in frame O only and given 
as T

E,O [ , , 0]i i ir x y z= = ,  1,  ... ,  i N= , where N is the 
number of measured points on the actual contouring 
paths in one circular test. Coordinate frames O and O' 
are always mutually parallel due to circle's nature. 
Radius of the circle is R. Vector n is a unit vector of the 
main normal to the circle at the point P. The distance of 
the point E to the circle is id .  

 
Figure 1. A model of geometric circle fitting 

As there are two main categories of fitting problem 
for geometric features, algebraic and geometric fitting, 
these are differentiated by their respective definition of 
the error distances involved [1]. By algebraic fitting, the 
circle is described by implicit equation C P,O( , )of p r , 

where T[ , 0, , , , ]op a b c a d e f= = = is the circle 
parameters vector, i.e: 

 2 2
C1 P,O( , ) 0= + + + + =of p r ax ay dx ey f  (1) 

The equation of the circle is also 

 2 2 2
C2 P,O C C( , ) ( ) ( ) 0f p r x x y y R= − + − − =  (2) 

where it is now a circle parameters vec-
tor T

C C[ , , ]p x y R= . Algebraic distance of measured point 
E, shown in Figure 1 could be expressed using (1) as 
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 2 2
C1 E,O( , )= = + + + +i o i i i ie f p r ax ay dx ey f  (3) 

or, using (2) and circle parameters vector p  as 

 2 2 2
C2 E,O( , ) ( ) ( )= = − + − −i i c i ce f p r x x y y R  (4) 

In this paper, the algebraic circle fitting is concerned 
with the sum of squares SCA of εi given in (4): 

 2 2 2 2
CA C C

1
[( ) ( ) ]

i N

i i
i

S x x y y R
=

=
= − + − −∑  (5) 

It is necessary to find circle parameters vector p  
such that CAS  is minimal. So the achieved three equa-
tions are as follows: 

 CA CA CA
1 2 30; 0; 0

∂ ∂ ∂
= = = = = =

∂ ∂ ∂c c

S S S
f f f

x y R
 (6) 

For that manner, the program FCA was developed 
for algebraic circle fitting, using the IMSL® routine 
neqnj for solving nonlinear equations by applying modi-
fied Powel hybrid algorithm with a user supplied Jaco-
bian. The program FCA also presents the results accord-
ing to the standard ISO 230-4 [11]. In the program, 
there are two routines implemented: fcnc for calculating 
functions given in (6) and fjacc for calculating Jacobian 
matrix [J] as follows:  

 

1 1 1

C C

2 2 2

C C

3 3 3

C C

[ ]

f f f
x y R
f f fJ
x y R
f f f
x y R

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  
∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂  

 (7) 

For geometric circle fitting the distance equation 

 2 2
C3 E,O( , ) ( ) ( )= = − + − −i i c i cd f p r x x y y R  (8) 

was used. Sum of squares SGS SCG of geometric dis-
tances id  given in (8) is 

 2
CG

1

i N

i
i

S d
=

=
= ∑  (9) 

It is necessary to find circle parameters vector p  such 
that CGS  is minimal. For that purpose, the program FCG 
was developed for geometric fitting the circle by using 
simplex method and Nelder-Mead's algorithm [9] . 

 
2.2 Ellipse fitting and programs developed for it 

 
A model for ellipse fitting to experimental data is shown 
in Figure 2. The same notation for coordinate frames 
and related vectors as for circle fitting is used. 

Parameters vector of the ellipse is now 
T

C C[ , , , , ]x yp p p x yγ= . Coordinate frame 

O"( ", ", ")X Y Z is an intermediate one which has the 
same orientation as frame O', but whose origin is coin-
cident with the origin of frame O. The equation of an 
ellipse in frame O' is 

 

Figure 2. An ellipse centered at C, with axis lengths px and 
py and angle γ  

 2 2 2 2 2 2
E1 P,O'( , ) ' ' 0= + − =y x x yf p r p x p y p p  (10) 

In general, experimental point E is not on the ellipse, 
as shown in Figure 3. These points are known in frame 
O only. It is necessary to determine vectors 

T
E,O' [ ', ', ' 0]= =i i ir x y z  and T

P,O' [ ', ', ' 0]= =r x y z  to 
enable the using of function given in (10). For example, 

E,O' E,O[ ]=r M r , where [M] is the matrix of that trans-
formation. 

 
Figure 3. A model of geometric ellipse fitting 

We know the description of a vector 
T

E,O [ , , 0]= =i i ir x y z  with respect to frame O and we 
would like to know its description with respect to frame 
O', T

E,O' [ ', ', ' 0]= =i i ir x y z . We can first calculate 

E,O'' O',O E,O'[ ]=r R r , where O',O O ,O[ ] [ ]R R ′′=  is the or-
thogonal rotation matrix about Z axis: 

 O',O
cos sin

[ ]
sin cos

γ γ
γ γ

− 
=  
 

R . (11) 

Now O" is translated into O' along vector 
T

O',O [ , , 0]= =c c cr x y z . The matrix of total transforma-
tion [M] and the transformation itself are: 

 O',O O',O
E,O E,O'[ ] ,  [ ]

0 0 1
R r

M r M r 
= = 
 

 (12) 
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By inverse transformation in (12), the needed trans-
formation for calculating T

E,O' [ ', ', ' 0]= =i i ir x y z  is 
achieved: 

 T
E,O' O',O E,O O',O[ ] ( )= −r R r r  (13) 

or 

 C C

C C

' ( ) cos ( )sin
' ( )sin ( )cos

i i i

i i i

x x x y y
y x x y y

γ γ
γ γ

= − + −
= − − + −

 (14) 

Algebraic distance ie  of measured point E can be 
calculated now in coordinate frame O' by substituting 
( ',  ')x y  in frame O' with ( ,  )i ix y′ ′  from (14): 

 2 2 2 2 2 2
E1 E,O'( , ) ' '= = + −i y i x i x ye f p r p x p y p p  (15) 

It is necessary to find ellipse parameters vector p  
such that the sum of squares EAS  of algebraic distances 
is minimal, where is  

 2
EA

1

i N

i
i

S e
=

=
= ∑  (16) 

For that reason, the program FEA was developed for 
algebraic fitting the ellipse by using simplex method 
and Nelder-Mead's algorithm [9]. 

Geometric ellipse fitting, as shown in Figure 3, is 
much more complicated. Geometric distance is di. Three 
of five ellipse parameters ( γ , Cx  and Cy ) in 
parameters vector p  disappear in the coordinate frame 
O', as shown in (10), and the ellipse is described with 
the other two parameters ( xp  and yp ). For a measured 
point E, referenced to O, it is necessary to find the clos-
est point P on ellipse, Figure 3. These two points are in 
the same quadrant in frame O'. Parametric equations of 
the ellipse in frame O' are: 

 ' cos ,    ' sinx yx p y pϕ ϕ= =  (17) 

The unit tangent vector t  to ellipse in P is: 

 

T

2 2 2 2

[ , ]

cossin
;  

ϕϕ

=

= − =
+ +

x y

yx
x y

x y x y

t t t

pp
t t

p p p p

 (18) 

Unit normal vector n  to ellipse in P is orthogonal to 
tangent vector and could be achieved by rotating of tan-
gent vector about Z' axis by -90º, as shown in Figure 3: 

 T T[ , ] [ , ]x y y xn n n t t= = −  (19) 

Now is E,O' P,O'= + ir r d n , as shown in Figure 3. 
From there is  

 
' ' ' '− − +

=i i

y x

x x y y
t t

 (20) 

That is the second equation, with (10), for finding 
point P on ellipse closest to measured point E. By sub-
stituting (17) and (18) in (19) we achieve the following, 
more suitable form of the second equation: 

 
E2 P,O'

2 2 2 2

( , )

( ) ' ' ' ' ' '

=

= − − +x y x i y i

f p r

p p x y p x y p y x
 (21) 

For geometric ellipse fitting the distance equation 

 EPid =  (22) 

is solved iteratively. For every measured point E, we 
achieve the closest point P on the ellipse. After that, we 
calculate the distance id . After repeating that procedure 
for every measured point, we calculate the sum of 
squares EGS  of geometric distances as in (9). For that 
purpose, the program FEG was developed for geometric 
ellipse fitting by using simplex method and Nelder-
Mead's algorithm [9] for minimizing EGS . It is called 
subroutine in each iteration, which for every measured 
point E finds the closest point on ellipse by using the 
IMSL® routine neqnj for solving the system of nonlinear 
equations (10) and (21). Initial estimate for the point P 
on the ellipse is a measured point E. In this case routine 
fcne is used for calculating two functions given in (10) 
and (21) for each iteration, and routine fjace for calcu-
lating Jacobian matrix.  

For the complete analysis of ellipse fitting, direct 
least squares fitting of ellipses [3], [5] is also included. 
This is an algebraic fitting of one ellipse given with its 
parameters vector T[ , , , , , ]=op a b c d e f  with ellipse-

specific constraint 2 4 0b ac− < . Original method [3] 
and its modification [5] are implemented using Matlab®. 
Both of them are used to develop the program FED us-
ing Matlab® function eig. The result is two-ellipse pa-
rameters vectors, T[ , , , , , ]oo o o o o o op a b c d e f= and 

T
M M M M M M M[ , , , , , ]op a b c d e f= . The first of them is 

obtained by using original method [3], the second one 
by using modified method [5]. However, we need an 
ellipse parameters vector p  as a more convenient. First, 
the following calculation is necessary: 

C C2 2
2 2 atan2( , - ),   ,  

24 4
be cd bd ae b a cx y

ac b ac b
γ− −

= = =
− −

 (23) 

The other two ellipse parameters in vector p  are cal-
culated in coordinate frame O". The fitted ellipse parame-
ters vector T'' [ '', '' 0, '', '', '', '']= ≡p a b c d e f  is referenced 
to frame O", i.e. 

( ) sin 2 ( )cos 2''  ;  '' 0
2

( ) sin 2 ( )cos 2''  ;  ''
2

'' cos sin  ;  '' sin cos

γ γ

γ γ

γ γ γ γ

+ + + −
= =

+ − − −
= =

= + = − +

a c b a ca b

a c b a cc f f

d d e e d e

 (24) 

Now is: 

 

2
2

2
2

1 '' '''' 4 '' ''
2 '' ''

1 '' '''' 4 '' ''
2 '' ''

= + −

= + −

x

y

a ep d a f
a c

c dp e c f
c a

 (25) 
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During the test, we measure deviation from nominal 
circular path: G2d  in CW (G02) and G3d  in CCW 
(G03) contouring directions, as shown in Figure 4. The 
start and the end of actual paths are at the point ESF. 
Contouring times are SG2 t  in CW (G02) and SG3 t  in 
CCW (G03) directions. At positions Si , 1, 2,3,4i =  on 
nominal path one of the machine's axis changes its mo-
tion direction. For each of the developed programs, it is 
necessary to choose adequate initial estimates and other 
parameters that will make the fitting efficient. 

 
Figure 4. Details on nominal path 

 
3. EXPERIMENTAL VERIFICATION 
 
Developed programs for circle and ellipse fitting to 
measured data are used with a developed low cost 
measuring device for render monitoring the accuracy of 
CNC machine tools, using contouring tests, even more 
cost effective. The software incorporates an extensive 
range of features, completely written in a Windows® 
environment to run on PC. 

 
3.1 Developed measuring instrument 
 
The instrument is shown in Figure 5. The assembly of 
main parts of the instrument is shown in Figure 5.a. 
During the testing, the base 1 was fixed to machining 
center table. The slider 2 was attached to main spindle. 
Measuring cell 3 is connected to amplifier 8. Proximity 
sensor activating tip 4 is used for generating a trigger 
signal during the actual path sampling process. 

Preparing of measuring instrument is shown in Fig-
ure 5.b. First are determined coordinates of rotating 
joint located on the base 1. Radius R0 of nominal path is 
chosen. Then, the main spindle 7 in position S1 is at-
tached to the slider 3, as shown in Figure 5.b.  

We thus get the second rotational joint of the meas-
uring device. Dial test indicator 5 is used to control the 
cell 3 set-up procedure and to monitor a measuring 
process. The measuring device in work is shown in Fig-
ure 5.c. It is the position before ESF for CCW direction 
contouring, as shown in Figure 4. After that position the 

triggering signal T will be activated, crossing the acti-
vating tip 4 near proximity sensor 6. Measuring cell 3 is 
based on two differential ended proximity sensors. Lin-
ear domain of the cell is ±0.16 mm. That was quite 
enough for measuring deviation dG2 and dG3 on actual 
contouring paths. 

 

a) Main parts of measuring instrument 

 

b) Adjusting radius R0 of nominal path 

 

c) Measuring instrument near the starting point ESF in CCW 
direction 
 
1 – Base; 2 – Slider; 3 – Measuring cell Tr 10, Hottinger; 
4 – Proximity sensor activating tip; 5 – Dial test indicator; 
6 – Proximity sensor, Institute M. Pupin; 7 – Main spindle; 
8 – Amplifier, KWS 3082A, Hottinger 

Figure 5. Measuring instrument set-up on the machining 
center LOLA HBG 130 
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The tested machining center was a prototype com-
pletely assembled and operational at a moment of its 
testing, but its fundament was not completed. Example 
of one measured deviation G2d  of the actual path in 
CW direction is shown in Figure 6. Also was shown the 
triggering signal T. This deviation and deviation G3d  
(not shown in Figure 6.) were used for experimental 
verification of developed programs described in Section 
2. There are marked positions 2S  and 4S  with bigger 
deviations in measured signal G2d . 

 
Figure 6. Experimental data for actual path in CW direction 

There were not registered peaks in measured signals 
in positions S1 and S3. A stronger vibration is visible in 
the measured signal during finishing the actual path in 
CW contouring direction (position named as Stop in 
Figure 6). 

 
3.2 Results obtained by developed programs 
 
Radial deviation G2d  as a function of sampling time 
tSG2 in CW direction, shown in Figure 6, and G3d dG3 as 
a function of sampling time SG3t  in CCW direction 
relative to nominal circle path, are shown in Figure 7. 
Actual paths are scaled by a noted scale factor. It can be 
seen in details in D1 and D2 that the tested machining 
center has bigger radial deviations in positions 2S  and 

4S  respectively. It does not appear in positions 1S  and 

3S . 
 Two actual paths from Figure 7 were processed by 
using the developed program FCA. The results are 
given in Table 1 and shown in Figure 8. 

Here sp is the initial estimate for the circle parame-
ters vector. The stopping criterion is ε: the result is ac-
cepted if the relative error between two successive ap-
proximations to circle parameters vector is less than ε.  

Identified least squares circle is drawn with the same 
scaling factor as the actual paths. Radius of the fitted 
circle is R and its center is C. The scale for decoding 
actual distances in Figure 8 is given in detail. As can be 
seen, the fitted circle deviates from actual paths, or, the 
actual paths are of the elliptical type. The details in po-
sitions 2S  and 4S  are noted again. 

Table 1. Some numerical results for the fitted circle ob-
tained by program FCA 

Circle parameters vector T
C C[ , , ]p x y R=  

Actual paths 
Cx [µm] Cy  [µm] R [mm] 

G2d and G3d  -11.84 9.81 299.0132 

G2d  only -11.67 9.50 299.0131 

G3d only -12.00 10.11 299.0134 

T 8[0.0, 0.0, 299.0] , 1 10sp ε −= = ⋅  

 

 
Figure 7. Nominal and both full circle actual paths for given 
scale factor 

 
Figure 8. Least squares circle for both full circle actual 
paths 

The results obtained by the program FCG are given 
in Table 2. We can see that both programs produce 
similar results. Both of them were efficient and can be 
used independently for fitting a circle in circular tests of 
CNC machine tools. 
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Table 2. Some numerical results for the fitted circle 
obtained by program FCG 

Circle parameters vector T
C C[ , , ]p x y R=  

Actual paths 
Cx [µm] Cy  [µm] R [mm] 

G2d and G3d  -11.83 9.79 299.0132 

G2d  only -11.72 9.53 299.0131 

G3d only -12.02 10.06 299.0134 
9

1S [0.0,  0.0,  299.0] ,  1 10 [0.001,  0.001,  0.001],  s ε λ−= = ⋅ =  

Here 1Ss  is the first vertex of the initial simplex, λ  
is parameters vector for generating the other three sim-
plex vertices, ε is maximal error accepted. 

For the ellipse fitting the developed program FEA 
was first used. The results are shown in Figure 9 and 
given in Table 3. Rotation angle γ  of the fitted ellipse 
is given in two calculated values, 1γ  and 2γ . Final re-
sults for the identified ellipse are shown in Figure 9 for 

1γ γ=  and with the scale for decoding the actual dis-
tances. Actual paths near position 2S  are given in detail 
D. There can be seen again a little vibration of tested 
machining center Y axis. 

 
Figure 9. Fitted ellipse for both full circle actual paths for 
given scale factor 

Similar results are obtained and given in Table 4 by 
using the developed program FEG for geometric ellipse 
fitting with the same first vertex of the initial simplex, 
as for the program FEA, given in Table 3. 
Table 3. Some numerical results for the fitted ellipse ob-
tained by program FEA 

Ellipse parameters vector 
T

C C[ , , , , ]x yp p p x yγ=  

xp  [mm] yp [mm] 1γ  [º] 
Actual paths 

2γ  [º] Cx [µm] Cy  [µm] 
299.0243 299.0022 -57.96 

G2d and G3d  32.04 -11.85 9.81 
299.0243 299.0019 -58.27 

G2d  only  
31.47 -11.66 9.50 

299.0243 299.0025 -57.36 
G3d only  

32.64 -12.00 10.11 
T 8

1S [299.0,  299.0,  0.0,  0.0,  0.0] ,  1 10s ε −= = ⋅ ,  1γ γ=  

Table 4. Some numerical results for the fitted ellipse 
obtained by program FEG 

Ellipse parameters vector 

xp  [mm] yp [mm] 1γ  [º] Actual paths 

Cx [µm] Cy  [µm] 2γ  [º] 
299.0241 299.0024 -57.62 

G2d and G3d  
32.38 -11.97 9.74 

299.0241 299.0020 -57.96 
G2d  only  

32.04 -11.97 9.34 
299.0242 299.0027 -57.35 

G3d only  32.65 -12.10 10.08 
T 8

1S [299.0,  299.0,  0.0,  0.0,  0.0]  1 10, s ε −= = ⋅ , 1γ γ=  

Table 5. Control results obtained by program FED 
a b c 
d e f 

xp  [mm] yp [mm] 1γ  [º] 

A
ct

ua
l p

at
hs

 

M
et
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-11.85 9.80 32.06 
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-11.85 9.80 32.06 
The rounded values are given. -1.234e-5 ≡ -1.234 · 10-5. 

 

Finally, the ellipse fitting is tested by using the de-
veloped program FED. The results are given in Table 5 
for both actual paths only. The first solution obtained by 
the program FED is for 1γ γ=  and these results are 
given in Table 5. As can be seen, both versions of el-
lipse fitting in program FED produce the same results. 
 
3.3 Some standardized results 
 
A graphical method of presenting results is preferred in 
standardized presentation of results with the following 
test results data specified numerically [11]: 

Bi-directional circular deviation, the mean bi-
directional radial deviation, the circular deviation and 
the radial deviation of circular paths that are produced 
by the simultaneous movements of two linear axes. The 
part of one such report for one experiment, modified to 
standard ISO 230-4/2005, is as follows: 
Machine: Machining center LOLA HBG 130 
Test date: 2004/15/09/ 
Plane: X/Y 
Nominal radius: 298.997 mm 
Contouring feed: 1000 mm/min 
Direction: Bi-directional 
A/D conversion frequency: 30 Hz 
Number of measured points, CW/CCW: 3358/3358 
Start angle: 239º 
Temperature Environment/Instrument/Machine: 20 ºC 
Centre of nominal circle (X/Y): 1200/650 mm 
Positions of axes not under test: Z-200 mm, W-700 mm 
G, circular deviation (CW/CCW): 27.0/26.3 µm 
G(b), bidirectional circular deviation: 27.4 µm 
H, circular hysteresis: 9 µm (ISO 230-4/1996) 
Some of graphically presented results are given in Fig-
ures 6-9. 
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4. CONCLUSION 
 
Developed programs with a developed measuring de-
vice are low-cost but functional laboratory measuring 
system for circular tests for numerically controlled ma-
chine tools in laboratory conditions. Special care is 
dedicated to ellipse fitting to measured data because the 
ellipses are used to analyze the characteristic trace pat-
terns of motion errors origins. Algebraic and geometric 
fitting methods are used with the same efficiency. The 
developed programs for ellipse fitting are verified by 
comparing them with two existing algebraic methods 
for ellipse fitting implemented in program FED. Actual 
paths in all experiments are of elliptic type. There was a 
little instability during motion direction change of the 
tested machining center Y axis. During all the experi-
ments, there were some small vibrations of Y-axis with 
frequency near 4 Hz. Some of the obtained results were 
used for the later tested machining center prototype de-
velopment. 
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УПИСИВАЊЕ КРУГА И ЕЛИПСЕ 
У ЕКСПЕРИМЕНТАЛНЕ ПОДАТКЕ 

 
Милош Главоњић 

  
Анализирани су методи алгебарског и геометријског 
уписивања круга и елипсе у експерименталне 
податке и имплементирани у један јефтин 
функционалан лабораторијски мерни систем за 
стандардизоване тестове кружне интерполације за 
нумерички управљане машине алатке. Мерни уређај 
је направљен коришћењем расположивих мерних 
компонената за регистровање малих померања. 
Систем је верификован у испитивању прототипа 
једног хоризонталног обрадног центра. Неки од 
резултата, добијених коришћењем развијених 
програма, били су од користи за анализу узрока 
кинематичких грешака у типичним скуповима 
остварених путања. Коришћени методи фитинга 
упоређени су узајамно и са неким од других 
постојећих. За тестирање кружне интерполације 
нумерички управљане машине алатке обе групе 
метода за алгебарски и геометријски фитинг круга и 
елипсе имају исту ефикасност. У овом раду је 
посебно анализиран фитинг елипсе јер је фитинг 
круга обухваћен стандардима за испитивање 
машина алатки. 

 


