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Dynamic fragmentation is a complex phenomenon inherent in numerous 
natural and engineering systems. Determination of the fragment size (or 
mass) distribution law is one of the most important objectives in dynamic 
fragmentation modeling. In the present paper, a general approach based 
on the simple assumption of random geometric partition of a body has 
been considered. Starting from the binomial distribution of fracture sites 
(points, lines or planes), size distribution laws are derived for 1D, 2D and 
3D geometries. Geometric fragmentation models based on Mott's and 
Grady-Kipp's approaches are analyzed. The models originating from the 
Voronoi diagrams are also considered. The results of presented models are 
compared with numerical simulations and experimental data, showing 
significant compatibility as well as certain limitations. It has been 
concluded that preferred theoretical model depends on dimensionality of 
fragmentation process. 
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1. INTRODUCTION 
 

Fragmentation is a process of disintegration of a body 
caused by multiple fractures of the material. It is a 
ubiquitous phenomenon in nature and engineering 
systems, which takes place in different size and time 
scales. Expansion of galaxies, asteroid impacts, 
explosively driven fragmentation, and fragmentation 
induced by impact of nuclei are the most important 
examples of dynamic fragmentation. 

Military applications have been the main motivation 
for both experimental investigations and theoretical 
studies in the field of dynamic fragmentation. Studies of 
fragmentation of metallic rings and shells have been 
applied to the analysis and design of high-explosive 
fragmentation warheads. Complete characterization of a 
fragmentation process implies determination of 
fragment size, shape and mass distribution, fragment 
velocity distribution, as well as spatial distribution of 
generated fragments. We will here focus on the 
consideration of the fragment size distribution. 

Fragmentation modeling is extremely difficult 
problem, involving complex physics dependent on 
loading conditions, material characteristics and problem 
geometry. There are several approaches to the 
fragmentation problem – empirical [1], probabilistic [2-
4], energetic [5], approach based on fracture mechanics 
[6], numerical approach [7,8], etc. 

In the present paper, fragmentation problem has 
been treated from the general approach based on 
geometric statistics. 

2. FRAGMENT SIZE DISTRIBUTION MODELING BY 
GEOMETRIC PROBABILITY 
 

Let us consider dynamic fragmentation of a 
homogenous body brought about by impulsive loads. 
The simplest approach to the modeling of size 
distribution of generated fragments is based on the 
assumption of random distribution of “fracture sites”. 
Therefore, fragmentation process in 1D, 2D and 3D is 
considered to be equivalent to the random segmentation 
of a line, area and volume, respectively. 

 
2.1 One-dimensional fragmentation  

 
Let us first consider probabilistic fragmentation of a line 
produced by random selection of “fracture” sites, 
following the approach established by Linaeu [2] and 
Mott [1] and improved in [9] and [10]. Assuming n 
break points randomly distributed on the line of length 
L, the probability of finding exactly k (k ≤ n) “fracture” 
points on a line segment of length l (l ≤ L) is determined 
by binomial distribution 

 l l l( , ) (1 )k n kn
P n k p p

k
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

, (1) 

where pl = l/L is the probability that a point will fall into 
the segment of length l. If we restrict consideration to 
the case of a large number of generated fragments, both 
the line length L and the number of fracture points n 
tend to infinity, and probability (1) transforms into the 
Poisson distribution of the form: 
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!

k
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where λ = n/L is the number of points per unit length, 
reciprocal to the average fragment size l . Now, using 
the Poisson distribution (2), the probability dp of 
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finding fragment of a length in the interval [l, l + dl] can 
be calculated as follows. The probability that there is no 
point on the line segment of length l is 

 (0, ) e lP l λ−= , (3) 

and that there is exactly one point in the adjacent 
segment of length dl is defined by 

 (1,d ) dP l lλ= . (4) 

The probability dp can be determined as 

 d (0, ) (1,d ) e dlp P l P l lλλ −= = . (5) 

Therefore, the probability density function of 
fragment length is 

 d( ) e
d

lpf l
l

λλ −= = . (6) 

The cumulative probability distribution function 
P(>l) = P(l) (that the fragment length is greater than l) 
has the exponential form 

 ( ) ( ) e l

l

P l f l dl λ
∞

−= =∫ . (7) 

The Lineau (exponential) distribution (7) 
successfully describes the fragment size distribution in 
different fragmentation events [9]. It is also the 
framework for several advanced fragmentation models. 

Similar statistical approach to the random geometric 
fragmentation is proposed in [4]. However, this model 
uses an important additional assumption: existence of 
the minimum fragment size lmin. The experimental 
studies [11,12], as well as energy based theoretical 
model [5] strongly justify this assumption. The 
minimum fragment size is the consequence of unloading 
waves produced at the separation points. The regions of 
material traversed by these waves are prevented from 
further failure [3,13]. The analysis of expected number 
of fragments [4] provides the relation between the 
average and minimum fragment length 

 
min

3.25l
l

= . (8) 

However, numerical approach to the 1D 
fragmentation based on cohesive model of crack 
behavior [8,14] yields the modification of this relation 

 
min

2.70l
l

= . (9) 

Using maximum entropy principle [15], it can be 
shown that cumulative fragment size distribution law 
has the exponential form 

 r min( )( ) e l lP l λ− −= , l ≥ lmin (10) 

where λr is a distribution parameter. The average 
fragment length is determined by 

 min
1

r
l l

λ
= + . (11) 

One should note that the fragment size distribution 
(10) is completely defined by the average fragment 
length, because parameter lmin is defined by (8) or (9) 
and λr can be calculated from (11). The distribution (10) 
that uses relation (8) will be referred to as Zhang 
distribution, whereas the same distribution law with 
relation (9) will be termed as modified Zhang 
distribution. 

Another possible approach to the random geometric 
fragmentation is based on Voronoi-Dirichlet diagrams 
[16]. The Voronoi-Dirichlet decomposition of a space 
(1D, 2D or 3D) with randomly generated initial points 
imply partitioning of a space in a certain number of 
subspaces such that each subspace contains exactly one 
generating point and every point in a given subspace is 
closer to its generating point than to any other. Voronoi-
Dirichlet algorithm may be used as a model for different 
physical processes, including fragmentation [17]. In 1D 
case, Voronoi segmentation (i.e. random fragmentation) 
of a line is defined by the midpoints of each pair of 
adjacent randomly distributed initial points. Using 
similar procedure as in the previous case [17,18], the 
probability density function of fragment length can be 
determined as 

 2 2( ) 4 e lf l l λλ −= , (12) 

and cumulative distribution reads 

 2( ) (1 2 )e lP l l λλ −= + . (13) 

Normalized ( 1l = ) Lineau, Zhang, modified Zhang 
and Voronoi distribution are plotted in Figure 1. 

 
Figure 1. One-dimensional fragmentation: comparison of 
the Lineau, Zhang, modified Zhang and Voronoi model of 
fragment size distribution; the average fragment length is 
the same for each distribution 

 
2.2 Two-dimensional fragmentation 

 
Two-dimensional fragmentation is of much more 
practical importance, as it involves fragmentation of 
thin plates and shells. As a paradigmatic example, 
random fragmentation of a plane will be analyzed first. 
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The simplest method for plane fragmentation is by 
random generation of horizontal and vertical lines. If we 
assume that the two sets of lines are independent, with 
the same density λ, then Lineau distribution can be 
applied to both horizontal and vertical set of lines, 
yielding the cumulative area distribution 

 2 ( )
1( ) e d d 2 K (2 )x y

xy a

P a x y a aλλ λ λ− +

>

= =∫∫ ,(14) 

where K1(•) is the modified Bessel function of the 
second kind of order 1 and a is a fragment area. 

The analysis of fragments produced by detonation of 
high-explosive shells [1] suggested the fragment area 
distribution of the form: 

 ( ) e aP a α−= . (15) 

In the well-known Mott distribution law (15), the 
parameter α is related to the average fragment area by 

2 / aα = . Justification for this distribution is the fact 
that it is analogous to the Lineau exponential law (7), 
having in mind that for 2D fragmentation fragment 
length l ~ a1/2. 

Different postulate is offered in [19] and [9]: all 
fragment area distributions have the same probability, 
provided constant sum of fragments’ area. This is 
equivalent to the Lineau 1D distribution, so the 
fragment area distribution law has the form 

 ( ) e aP a α−= , (16) 

where α is reciprocal to the average fragment area. The 
fragment distribution law (16) will be referred to as 
Grady-Kipp model. 

Finally, the approximate generalization of the 
fragment size distribution (13) generated by Voronoi 
diagrams is suggested [18]: 

 ( , )( )
( )

n nsP s
n
µΓ
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Γ

, (17) 

where Г(•) and Г(•,•) are the complete and upper 
incomplete gamma function, s is fragment size (length, 
area or volume), µ is the reciprocal to the average 
fragment size, and n = 2, 4 and 6, corresponds to 1D, 2D 
and 3D Voronoi distribution, respectively. For 2D case 
(n = 4), the cumulative distribution (17) reads: 
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The Bessel, Mott, Grady-Kipp and Voronoi 2D 
distributions are shown in Figure 2. 

 
2.3 Three-dimensional fragmentation 

 
Three-dimensional fragmentation implies fractures 
through all three dimensions of a fragmentation body. 
This is the most complex and the most important case of 
fragmentation from the application aspect. The main 
example is fragmentation of a space with three sets of 
parallel and mutually orthogonal planes. Supposing that 
the three sets of planes are independently distributed 

with the same density λ, the Lineau approach leads to 
the cumulative distribution: 
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where G is Meijer's G function [20]. 

 
Figure 2. Two-dimensional fragmentation: comparison of 
the Bessel, Mott, Grady-Kipp and Voronoi model of 
fragment area distribution; the average fragment area is the 
same for each distribution 

The Mott's formula for 3D case, having in mind that 
fragment length l ~ v1/3, has the form 

 
3

( ) e vP v γ−= . (20) 

The parameter γ is defined by 6 / vγ = , where v  is 
the average fragment volume. 

Following the same argument as in (16), Grady-
Kipp's cumulative fragment distribution can be written 
in the form: 

 ( ) e vP v γ−= , (21) 

where γ is reciprocal to the average fragment volume. 
Applying n = 6 to (17), the Voronoi distribution for 

3D case becomes: 
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Four analyzed cumulative fragment distributions for 
3D case are compared in Figure 3. 

 
3. COMPARISON WITH EXPERIMENTS AND 

DISCUSSION 
 

Applicability of analyzed random fragmentation models 
will be illustrated through comparison with available 
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experimental results. Having in mind military 
applications of fragmentation process, all considered 
experiments are related to the fragmentation of rings 
and shells of ductile metals. 

 
Figure 3. Three-dimensional fragmentation: comparison of 
the Meijer, Mott, Grady-Kipp and Voronoi model of 
fragment volume distribution; the average fragment volume 
is the same for each distribution 

For 1D case, the Lineau (exponential), Zhang, 
modified Zhang and Voronoi distributions are fitted to 
the experimental data. The comparison of theoretical 
distributions with experimental fragmentation results 
presented in [12] and [11] are shown in Figures 4 and 5, 
respectively. 

 
Figure 4. 1D fragmentation: comparison of theoretical 
distributions with experimental data of aluminum ring 
fragmentation [12] 

Both experiments treat fragmentation of aluminum 
rings by impulsive electromagnetic loading. Experimental 
fragmentation data of copper shells induced by gas gun 
technique [4] are compared to the model results in Figure 

6. Finally, the results of 1D fragmentation of 
magnetically driven uranium-6%-niobium (U6N) rings 
[21] and corresponding theoretical distributions are 
shown in Figure 7. The Lineau distribution fails to 
describe experimental data, while the Voronoi and Zhang 
distribution provides better agreement with experiments. 
However, the modified Zhang distribution systematically 
yields the best compatibility with experimental data. This 
result emphasizes the importance of the concept of 
minimum fragment size in 1D fragmentation in 
conjunction with applied approach based on random 
selection of fracture points. 

 
Figure 5. 1D fragmentation: comparison of experimental 
results of aluminum ring fragmentation [11] with 
considered theoretical distributions 

 
Figure 6. 1D fragmentation: comparison of the theoretical 
distributions with experimental data of the copper shell 
fragmentation [4] 

Numerically generated fragmentation of a unit square 
by randomly chosen vertical and horizontal lines (20 x 
20) (inset in Figure 8) is compared with analyzed 2D 
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theoretical distributions (with the same average fragment 
area). This is one possible simulation of 2D 
fragmentation. As expected, only the Bessel distribution 
excellently describes numerical data (Fig. 8). Comparison 
of experimental fragmentation data of the near-spherical 
ductile metal shell [17] with analyzed theoretical models 
is presented in Figure 9. Results of explosively induced 
2D fragmentation of the stainless steel spherical cap [22] 
are compared with considered model results (Fig. 10). 
Both experimental data are fairly approximated by the 
Voronoi distribution. Possible explanation is that the 
Voronoi (gamma) fragment size distribution model is 
approximation of the advanced physically based 2D 
Mott's fragmentation model [17]. 

 
Figure 7. 1D fragmentation: comparison of the 
experimental results of uranium alloy (U6N) ring 
fragmentation [21] with considered theoretical distributions 

 
Figure 8. 2D fragmentation: comparison of different 
theoretical models with numerically determined area 
distribution obtained by random segmentation of a unit 
square (inset) 

 
Figure 9. 2D fragmentation: comparison of 2D theoretical 
models with experimental data from [17] 

 
Figure 10. 2D fragmentation: comparison of 2D theoretical 
models with experimental fragmentation of the spherical 
cap of steel [22] 

Finally, 3D fragmentation experiments are 
represented by examples of the fragmentation projectile 
[23] (Fig. 11) and explosively driven steel cylinder [24] 
(Fig. 12). In the first case, 3D Mott distribution obtains 
the best fit to experimental data. In the latter, the Meijer 
and 2D Mott distribution laws have reasonable 
accordance with experiment. The complexity of 3D 
fragmentation, which includes tension and adiabatic 
shearing mechanisms, leads to a variety of fragment 
sizes and shapes and prevents the analyzed one-
parametric distributions to successfully describe the real 
fragment volume distribution. Advanced treatment of 
fragment mass distribution in 3D fragmentation using 
the three-parametric bimodal exponential distribution 
(generalized Grady-Kipp distribution) is presented in 
[25]. 
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Figure 11. 3D fragmentation: the theoretical distribution 
laws compared with fragment distribution data of the 
fragmentation projectile A from [23] 

 
Figure 12. 3D fragmentation: the theoretical distribution 
laws compared with fragment distribution data of the 
explosively driven cylinder [24] 

 
4. CONCLUSIONS 

 
The problem of fragment size distribution in dynamic 
fragmentation is considered from the aspect of 
geometric probability. We have rederived the Lineau 
(exponential) fragment distribution law starting from a 
random segmentation of a line. This approach is 
generalized to the 2D and 3D case through the Bessel 
and Meijer distributions. The Mott and Grady-Kipp 
paradigms are explained and corresponding fragment 
size distributions are also presented. Also, geometric 
fragmentation model based on the Voronoi diagrams is 
introduced. 

The analyzed models are compared with limited 
experimental results related to dynamic fragmentation 
of ductile metals. In the case of 1D fragmentation, it is 

shown that the modified Zhang distribution provides the 
best compatibility with experimental data. Experimental 
results in 2D fragmentation can be successfully 
described by the Voronoi distribution. The Mott 
distributions are the best choice for approximate 
description of fragment volume distribution in 3D 
fragmentation. 

Having in mind that material characteristics, 
problem geometry and applied loads are not considered, 
and that all these parameters are lumped into one 
adjustable parameter, the results are surprisingly good. 
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РАСПОДЕЛА ВЕЛИЧИНЕ ФРАГМЕНАТА ПРИ 

ДИНАМИЧКОЈ ФРАГМЕНТАЦИЈИ: 
ПРИСТУП ЗАСНОВАН НА ГЕОМЕТРИЈСКОЈ 

ВЕРОВАТНОЋИ 
 

Предраг Елек, Слободан Јарамаз 
 
Динамичка фрагментација је комплексна појава која 
карактерише бројне природне и техничке системе. 
Одређивање закона расподеле величине (односно 
масе) генерисаних фрагмената представља један од 
најзначајнијих задатака при моделирању динамичке 
фрагментације. У раду се разматра уопштен приступ 
овом проблему заснован на једноставној 
претпоставци о случајној геометријској сегментацији 
тела. Полазећи од биномне расподеле места лома 
(тачака, правих или равни), изведене су функције 
расподеле величине фрагмената за 1Д, 2Д и 3Д 
геометрију. Анализирани су модели геометријске 
фрагментације засновани на приступима Mott-a и 
Grady-Kipp-а. Такође су разматрани закони расподеле 
засновани на примени Voronoi дијaграма. Резултати 
разматраних модела упоређени су са нумеричким 
симулацијама и експерименталним резултатима, при 
чему је показано да постоје значајна подударања, као 
и извесна ограничења модела. Закључено је да 
преферирани теоријски модел зависи од 
димензионалности фрагментационог процеса. 

 
 
 
 
 
 
 


