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The quality of artificial neural network models mostly depends on a proper 
setting of neural network architecture i.e. learning algorithm, transfer 
functions, range and distribution of data used for training, validation, and 
testing, etc. The goal of this paper is related to the investigation on how 
artificial neural network architectures influence the network’s 
generalization performance based on the same input/output parameters. 
The complex procedure of an artificial neural network model development 
has been demonstrated related to the disc brake performance. The 
influence of disc brake operation conditions (application pressure, initial 
speed, and temperature) has been modelled related to the disc brake cold, 
fade, and recovery performance. The artificial neural network model has 
been developed through investigation of how the synergy of different 
network’s parameters, such as learning algorithm, transfer functions, the 
number of neurons in the hidden layers, affect the neural model abilities to 
predict the disc brake performance. It was shown in this paper that 
complex non-linear interrelations between the disc brake input/output 
variables can be modelled by proper analysis and setting of artificial 
neural network parameters. 
 
Keywords: artificial neural network, disc brake, performance, neural 
modelling. 

 
 

1. INTRODUCTION 
 

One of the most powerful tools of artificial intelligence 
has emerged under the name of artificial neural 
networks, which mimic the function of the human brain 
[1]. In the last decade, artificial neural networks have 
emerged as attractive tools for modelling of nonlinear 
process, especially in situations where the development 
of phenomenological or conventional regression models 
becomes impractical or cumbersome [2]. Artificial 
neural networks could be adequately characterized as a 
computer modelling approach with particular properties 
such as the ability to adapt to a changing environment or 
learn from examples through iterations without 
requiring a prior knowledge of the relationships of 
process parameters [2]. Moreover, artificial neural 
networks have great capabilities to generalize, cluster or 
organize data, deal with uncertainties, noisy data, and 
non-linear relationships [3]. Artificial neural networks 
are composed of simple elements operating in parallel, 
called artificial neurons [4,5]. As in nature, the 
connections between artificial neurons (connection 
weights) largely determine the network function [5-7]. 
A neural network can be trained to perform a particular 
function by adjusting the values of the connections 
(weights) between elements. According to [8], a neural 
network resembles the brain in two respects: (i) 
knowledge is acquired through a learning process, and 
(ii) connection strengths between neurons, known as 
synaptic weights, are used to store the knowledge. 

Typically, neural networks are adjusted, or trained, so 
that a particular input leads to a specific target output 
(i.e. network predictions). 

The artificial neurons are grouped into layers. Input 
layer receives data from outside of the network, while 
output layer contains data representing the network 
predictions. Layers between these two kinds of layers 
are called hidden layers. When using multilayer neural 
networks for solving a problem, number of neurons in 
the hidden layers is one of the most important issues 
[9,10]. It is known that insufficient number of neurons 
in the hidden layers leads to the inability of neural 
networks to solve the problem while on the other side 
too many neurons leads to overfitting and decreasing of 
network generalization capabilities. To describe a 
neural network’s architecture adequately, it is 
necessary to specify how many layers it has, each 
layer’s transfer function, the number of neurons in each 
of them and to characterize how layers are interrelated 
[8,11-14]. 

Since the quality of artificial neural models depends 
on a proper setting of a neural network architecture and 
other influential parameters (training algorithm, for 
example), the main goal of this paper is related to the 
investigation on how network’s architecture variation 
influences its generalization performance (for a given 
data set). It would be demonstrated by modelling of the 
disc brake performance. 

Neural modelling of automotive disc brake 
performance has been done versus changes of the disc 
brake’s operating conditions. Based on the analysis of 
how each neural network parameter influences the final 
neural model prediction abilities, a proper selection of 
artificial neural network parameters was done. It 
provided that properties of the neural model of disc 
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brake operation can be tuned in order to improve its 
prediction abilities. 

 
2. NEURAL NETWORK MODELLING 

 
The process of a neural network model developing, 
especially in the case when very complex functional 
relationships need to be modelled, includes resolving of 
very important issues. According to that, to develop the 
neural model able to predict disc brake’s performance, 
versus different brake operation regimes, the following 
steps were necessary to be done: (i) identify input and 
output data, (ii) select data generator, (iii) data 
generation, (iv) data pre-processing, (v) neural network 
architectures and training algorithms selection, (vi) 
training of the neural networks, (vii) accuracy 
evaluation, and (viii) the neural model testing. The 
synergistic influence of above mentioned parameters 
needs to be analysed, in order to make a proper 
selection of the neural network parameters. 

Identification of neural model’s input and output, 
whose functional relationship should be modelled, 
represents the first important step in the neural model 
developing. It primarily depends on model objectives 
and choice of the data generator [7,12]. In this case, the 
input parameters are defined by the disc brake operation 
conditions (initial speed, application pressure, and brake 
interface temperature). On the other side, the braking 
torque has been taken as an output parameter (see Figure 
1). The general concept of an artificial neural network 
model is shown in Figure 1. Artificial neural network has 
to be trained with corresponding data in order to learn 
the functional relationships between input/output data 
pairs. In order to be trained, the data for neural network 
training should be generated. The type of data generator 
depends on the application and the availability [8]. 

 
Figure 1. Artificial neural network input/output parameters 

In this case, as a data generator, single-end full-scale 
inertia dynamometer has been used. The testing of the 
disc brake has been performed under strictly controlled 
conditions related to changes of the application 
pressure, initial speed, brake interface temperature, and 
inertia of revolving masses. The role of data generator is 
important from the point of view of repeatability of the 
testing conditions in order to establish the relationships 
between input and output parameters space. In order to 
provide data for artificial neural networks training and 
testing, the disc brake has been tested according to the 
adopted testing methodology (see Table 1). 

The testing methodology was selected based on the 
range and distribution of data that were going to be used 
for training and testing. Regarding Table 1, it can be 
seen that eight different tests have been used in order to 
collect all necessary data for neural network’s training. 
These tests have been divided as follows: (i) cold 
performance 1, 2, 3, and 4 (ii) fade performance 1 and 2 
(iii) recovery performance 1 and 2. At the beginning, 
the tested disc brake has been subjected to burnishing 
process (see Table 1). To develop the best neural 
network model, able to predict a complex synergy of 
influences of disc brake operation conditions, the total 
number of data presented to network may be divided 
into three sets (the training data set, validation data set, 
and test data set) [9,15]. Training data set is used to 
guide the training process (i.e. update the network 
weights). According to [12,13,15,16], the number of 
training data pairs has significant influence on 
network’s generalization capabilities. The number of 
training data pairs should be at least several times larger 
than the appropriate network’s capacity. Validation data 
set is used to monitor the quality of neural network 
model training and to indicate when to terminate the 
training process. Test data set is used to examine the 
final quality of the developed neural model and to 
evaluate its generalization and prediction capabilities. 

The main purpose of artificial neural networks 
training is to minimize the error between desired and 
actual output data values. Moreover, the abilities of 
neural network to extend its prediction capabilities 
outside the training data set is of essential importance 
for implementation of artificial neural networks method 
to predict disc brake performance. 

The artificial neural network architecture, which 
represents the model potential prediction abilities in 
synergy with others network parameters, is unknown in 
advance. That is why the number of different 

Table 1. Testing methodology 

Test No. Test Pressure [bar] Initial speed 
[km/h] Temperature [°C] No. braking 

1 Burnishing 40 90 < 100 100 
2 Cold performance (1), (2) 20 – 100 20 – 100 < 100 50 

3 Fading (1), (2) 
Correspond to the 3 m/s2 

deceleration on first 
braking 

90 Open 30 

4 Recovery performance (1), (2) 20 – 100 20 – 100 
Reached after 3 min 

cooling under 300 rpm 
after fading test 

50 

5 Cold performance (3), (4) 20 – 100 20 – 100 < 100 50 
Total number of brakings 205 
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The artificial neural network architecture, which 
represents the model potential prediction abilities in 
synergy with other network parameters, is unknown in 
advance. That is why the number of different 
architectures should be analyzed. Therefore, it is 
necessary to properly determine the neural network 
construction together with appropriate learning 
algorithm that shows the best prediction results. 
Different variations of network structures can be 
obtained through varying of the number of hidden layers 
and the number of neurons in each of them. According 
to [6], the balance between the size of training, 
validation, and test data set, should be optimally 
resolved. 

The total number of input/output pairs, collected by 
disc brake testing according to adopted testing 
methodology was 205 (see Table 1). It means that 205 
input/output pairs were available for the neural 
networks training, validation, and testing. Since the 
strategy of data dividing in two sets has been chosen, 
155 input/output data pairs have been used for neural 
networks’ training and 50 pairs for their testing (see 
Table 2). 
Table 2. Input/output data splitting 

Data splitting Test 
No. Test 

Training Testing 
1 Burnishing 25 − 
2 Cold performance (1) 25 − 
3 Fading (1) 15 − 
4 Recovery performance (1) 25 − 
5 Cold performance (2) 25 − 
6 Cold performance (3) 25 − 
7 Fading (2) 5 10 
8 Recovery performance (2) 10 15 
9 Cold performance (4) − 25 

Total 155 50 
 
Neural networks can be trained more quickly if the 

input and output data have been firstly subjected to pre-
processing [8,9,17]. By scaling of training data pairs 
within a certain range, all weighted relations in the 
neural network may remain in the small, predictable, 
range. Furthermore, the performance of neural networks 
could be improved. The data can be scaled in different 
manners. In this case, the linear scaling has been 
performed according to the (1). 

 minmin max min
max min
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x x x x
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− − − −−
= + −

−
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According to (2), initial speed, application pressure, 
and brake interface temperature have been scaled in the 
range of 0 to 0.5). 
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where corresponding indexes are related to: Icurr – 
current input value, Imax – maximum input value, and 
Imin –minimum input value. 

On the other hand, target parameter (i.e. braking 
torque) was also linearized using (1). It should be noted 
that by varying the difference in brackets (see (1)), the 
range of data distribution can be increased or decreased. 
In that way, the network prediction performance can be 
tuned by adjusting of the scaled data range. Braking 
torque linearization was done by (3). 
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where corresponding indexes are related to: Tcurr – 
current target value, Tmax – maximum target value, and 
Tmin – minimum target value. 

In this paper, according to the above proposed strategy 
for varying of different network architectures and based 
on the program package MatLab 7.5.0.342 (R2007b) the 
following network structures have been investigated: 

• One-layered structures: 3 [1]1 1, 3 [2]1 1, 3 [3]1 1, 
3 [5]1 1, 3 [8]1 1 and 3 [10]1 1; 

• Two-layered structures: 3 [1-1]2 1, 3 [2-2]2 1, 3 
[3-2]2 1, 3 [5-2]2 1, 3 [8-4]2 1 and 3 [10-4]2 1; 

• Three-layered structures: 3 [2-2-2]3 1, 3 [3-2-2]3 
1, 3 [4-3-2]3 1, 3 [5-3-2]3 1, 3 [8-3-2]3 1 and 3 [8-
4-2]3 1. 

Each one of these 18 different network architectures 
have been trained with six different training algorithms: 
Levenberg-Marquardt (LM), Bayesian Regulation 
(BR), Resilient Backpropagation (RP), Scaled 
Conjugate Gradient (SCG), Gradient Decent (GDX) 
and Quasi-Newton (BFG), respectively. In accordance 
with (4), the sigmoid activation function has been used 
between the input and hidden layers and between the 
hidden layers. 

 1( )
1 xf x

e−
=

+
. (4) 

In addition, a linear activation function has been 
used between hidden and output layer (see (5)). 

 ( )f x x= . (5) 

 
3. RESULTS AND DISCUSSION 

 
Since 108 neural models of the disc brake operation 
have been developed, these neural models have been 
tested versus data stored in the test data set. The quality 
of prediction of such obtained neural models might be 
evaluated by observing the difference (in percentage) 
between predicted and real values. Accordingly, several 
error intervals may be established. The prediction 
performance of different artificial network architectures 
has been analyzed versus influence of used learning 
algorithm. The six error intervals that have been 
established (0 – 5 %; 5 – 10 %; 10 – 15 %; 15 – 20 %; 
20 – 25 %; 25 – 30 %). The number of the predicted 
results, which belong to each of these error intervals, 
have been calculated and expressed as a fraction of the 
test data set (in percentage). 

Based on the networks’ predictive capabilities, it is 
possible to find which network architecture shows the 
best prediction results versus influence of the learning 
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algorithm. The total number of 108 different neural 
models have been tested (18 different neural networks 
in combination with the 6 learning algorithms) to 
evaluate their capabilities for generalizing the disc 
brake performance under different operation 
conditions. 

The influence of Levenberg-Marquardt learning 
algorithm on the neural networks prediction abilities is 
shown in Figure 2. It can be seen that the all considered 
neural networks are extremely sensitive to the number of 
neurons in the hidden layer. By increasing the number of 
neurons in the hidden layer, from 1 to 5, the quality of 
prediction, in the first error interval (0 – 5 %), has been 
improved for all network architectures. With further 
increasing of the number of neurons in the first hidden 
layer, from 8 to 10, predictive abilities of all networks 
have been decreased (except for the network 3 [8-3-2]3 
1). This means that in the case of Levenberg-Marquardt 
training algorithm too many neurons in the first hidden 
layer are not desirable for input/output data mapping. 

The number of neurons in the two-layered neural 
network structures has been varied in the first hidden 
layer between 1 and 10. On the other hand, that number 
of neurons in the second hidden layer has been kept on 
2, except for the networks 3 [8-4]2 1 and 3 [10-4]2 1. As 
it can be seen in Figure 2, the three-layered network 
structure 3 [8-3-2]3 1 shown the best prediction 
capabilities. 

In the case when the artificial neural networks (one, 
two, and three-layered) have been trained by Bayesian 
Regulation algorithm (see Figure 3), the prediction 
capabilities of adopted network architectures were 
different than those shown in Figure 2. It can be seen 
that all considered network structures are non-sensitive 

to variation of the number in hidden layers. Furthermore, 
it is also evident (Fig. 3) that variation of the number of 
neurons in each hidden layer did not cause instability in 
the neural networks prediction. The quality of prediction 
in the first error interval (0 – 5 %) is still very 
satisfactory in the case of one-layered network structures 
with 3, 5, 8 and 10 neurons in the hidden layer. In the 
case of training with Levenberg-Marquardt algorithm, 
the one-layered and two-layered networks with minimal 
number of neurons in the hidden layers (3 [1]1 1 and 3 
[1-1]2 1) have shown less precise prediction results. 
Obviously, according to Figures 2 and 3, the networks 
trained by Bayesian Regulation algorithm shown better 
prediction of the disc brake performance compared to the 
networks trained by Levenberg-Marquardt algorithm. 
The two-layered and three-layered network structures 
showing high prediction performance (see Figure 3). The 
three-layered network architecture 3 [2-2-2]3 1 has 
shown the best prediction results. As it can be seen by 
Figures 2 and 3, the networks trained with Bayesian 
Regulation algorithm shown less sensitivity to the 
number of neurons in the hidden layer(s) compared to 
the previous case. In general, see Figure 3, it is evident 
that neural networks trained with Bayesian Regulation 
algorithm have a very stable prediction performance 
regardless of the network structure. 

The results of the brake performance prediction 
using Resilient Backpropagation algorithm are shown in 
Figure 4. It is obvious that the number of neurons in the 
hidden layer differently influences the one-layered and 
two-layered neural networks in the first error interval. 
Regarding the first error interval (error between 0 and 5 
%), the best results have been shown by the neural 
networks with 3 hidden layers. 
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Figure 2. Prediction abilities of artificial neural network trained by Levenberg-Marquardt algorithm 
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Bayesian Regulation Algorithm

0

10

20

30

40

50

60

70

0 - 5 % 5 - 10 % 10 - 15 % 15 - 20 % 20 - 25 % 25 - 30 %

Error intervals

Fr
ac

tio
n 

of
 th

e 
te

st
 d

at
a 

se
t 

[%
]

TRAINBR 3 [1] 1 TRAINBR 3 [2] 1 TRAINBR 3 [3] 1 TRAINBR 3 [5] 1 TRAINBR 3 [8] 1 TRAINBR 3 [10] 1

TRAINBR 3 [1-1] 1 TRAINBR 3 [2-2] 1 TRAINBR 3 [3-2] 1 TRAINBR 3 [5-2] 1 TRAINBR 3 [8-4] 1 TRAINBR 3 [10-4] 1

TRAINBR 3 [2-2-2] 1 TRAINBR 3 [3-2-2] 1 TRAINBR 3 [4-3-2] 1 TRAINBR 3 [5-3-2] 1 TRAINBR 3 [8-3-2] 1 TRAINBR 3 [8-4-2] 1
 

Figure 3. Prediction abilities of artificial neural network trained by Bayesian Regulation algorithm 

Resilient Backpropagation Algorithm
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Figure 4. Prediction abilities of artificial neural network trained by Resilient Backpropagation algorithm 

One-layered network structures with one, two and 
eight neurons in the hidden layer gave results similar to 
the case of the previous two algorithms. As the number of 

neurons in the hidden layer increases from 3 to 5 and 
from 8 to 10, the quality of prediction in the first error 
interval (0 – 5 %) has been increased. In the second error 
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interval (5 – 10 %), it can be seen that the number of 
predicted results decreases by increasing the number of 
neurons from 1 to 2 as well as from 5 to 10 neurons in the 
hidden layer. The two-layered and three-layered neural 
network structures, for the same initial conditions 
(architectures and learning algorithm), shown stable 
prediction results. The number of neurons in the three-
layered neural network structures has been varied 
between 2 and 8 in the first hidden layer, over 2 and 4 in 
the second hidden layer, while that number in the third 
hidden layer kept constant in all variations (two neurons). 
The one-layered network architecture, with five neurons 
in the hidden layer (3 [5]1 1, see Figure 4, has been show 
the best prediction results in comparison with all other 
structures trained with the same learning algorithm. 

The neural networks trained by Scaled Conjugate 
Gradient algorithm show very similar results to those 
reached by Levenberg-Marquardt algorithm. This 
training algorithm (see Figure 5) causes higher 
sensitivity to the number of neurons in the hidden layer 
of one-layered and especially two-layered structures. 
Moreover, sensitivity of the neural networks versus the 
number of hidden layers is almost the same as it was the 
case with the networks trained by Bayesian Regulation 
algorithm. According to that, one-layered networks with 
1, 2, 8 and 10 neurons in the hidden layer, and two-
layered structures with 1, 2, 3, and 10 neurons in the 
first hidden layer have shown worst prediction result. 

Based on the adopted criteria (see Figures 4 and 5), it 
is evident that networks trained with Scaled Conjugate 
Gradient algorithm shown slightly less predictive 
performance. In this case, the best prediction results have 
been reached by the three-layered neural network structure 
3 [3-2-2]2 1. The distribution of the predicted results over 

to the six error intervals using Gradient Descent algorithm 
is shown in Figure 6. It is obvious that the quality of 
prediction in the first error interval is influenced by 
increasing the number of neurons for all types of networks 
(one, two, and three layered). The percentage of the 
predicted results in the second error interval (5 – 10 %) 
was decreased as the number of hidden layers increases. 

The network architectures, trained by Quasi-Newton 
algorithm (trainbfg), have achieved moderate 
possibilities in prediction of disc brake performance. 
According to Figure 7, it can be seen that the percentage 
of predicted results in the first, especially in the second 
and third error interval, was strongly dependent of the 
number of hidden layers and/or the number of neurons in 
each of them. Based on achieved results obtained by 
training the network structures with this algorithm, it was 
difficult to select the network architecture with 
satisfactory prediction performance. Regarding Figure 7, 
the best results have been achieved by the three-layered 
network structure 3 [8-3-2]3 1, while very similar results 
were reached by the other network architectures. 

In order to find out the neural model of disc brake 
operation, which provides the best prediction results in 
all tests, 108 different neural models have been 
analyzed, as it is explained above. A comprehensive 
summary about this analysis is shown in Table 3. 

According to Table 3, the overall prediction 
performance of the best neural models can be seen for 
each training algorithm. The three-layered neural 
network architecture 3 [2-2-2]3 1, trained by Bayesian 
Regulation algorithm (BR), has shown the best 
prediction capabilities (all prediction results have been 
reached with error not larger than 25 %) over braking 
regimes investigated in this paper. 
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Figure 5. Prediction abilities of artificial neural network trained by Scaled Conjugate Gradient algorithm 
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Gradient Descent Algorithm
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Figure 6. Prediction abilities of artificial neural network trained by Gradient Descent algorithm 
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Figure 7. Prediction abilities of artificial neural network trained by Quasi-Newton algorithm 

Figure 8 shows a comparison between the six neural 
network architectures versus their predictive capabilities 
of disc brake cold, fading, and recovery performance. 
The comparison between the real values of braking 
torque and values predicted by these neural network 
models, under operation condition specified in test cold 
performance 4, is shown in Figure 8a. Figure 8a shows 

that three-layered network architecture with two 
neurons in each of the hidden layers, trained by 
Bayesian Regulation algorithm (BR), well generalized 
input/output relationships compared to other neural 
network architectures. Moreover, braking torque 
prediction by network architectures trained with Scaled 
Conjugate Gradient (SCG) and Gradient Descent 
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Table 3. Comparison of neural network prediction performance versus error intervals 

Error intervals [%] Neural models 
0 – 5 % 5 – 10 % 10 – 15 % 15 – 20 % 20 – 25 % 25 – 30 % 

TRAINLM 3 [8-3-2]3 1 50.0 20.0 16.0 12.0 2.0 0.0 
TRAINBR 3 [2-2-2]3 1 50.0 26.0 8.0 6.0 10.0 0.0 

TRAINRP 3 [5]1 1 52.0 26.0 4.0 10.0 2.0 4.0 
TRAINSCG 3 [3-2-2]3 1 66.0 4.0 8.0 4.0 6.0 4.0 
TRAINGDX 3 [8-4-2]3 1 54.0 20.0 8.0 6.0 6.0 2.0 
TRAINBFG 3 [8-3-2]3 1 62.0 8.0 6.0 6.0 8.0 0.0 

 
(GDX) algorithms was also on acceptable level 
compared to real values of braking torque. It is 
interesting that for the initial speed range between 20 
and 80 km/h, neural network architecture trained by 
Quasi Newton (BFG) training algorithm well 
generalized the trend of braking torque changes only, 
but prediction error was substantially higher than the 
other network architectures. The error level of results 
predicted by neural networks trained by Resilient 
Backpropagation algorithm is similar with the results 
obtained by the network architecture trained by Quasi 
Newton (BFG) algorithm (see Figure 8a). As it can be 
seen from Figure 8a, prediction results obtained by the 
neural model obtained by training with Levenberg-
Marquardt algorithm (LM), shown the highest 
fluctuations compared to real ones for all range of initial 
speed (the error versus real braking torque is low only 
for initial speed value of 60 km/h). 

In the case when the brake interface temperature has a 
dominant influence on brake performance (fading test), 
 

for the application pressure of 30 bar and initial speed of 
90 km/h, predictions of braking torque were visibly worse 
than in the cold performance test (see Figure 8b). The all 
neural network structures were tested with results that 
belong to test fading 2 (according to Table 2). Comparing 
Figures 8b and 8a it can be concluded that temperature in 
the contact of friction pair has significant influence on the 
disc brake performance. That is why, the prediction of 
disc brake performance under this operation conditions 
was very challenged for analysed neural models. 

All considered neural network architectures, except 
networks trained by LM and BFG algorithms, have 
shown similar prediction abilities. The neural models 
well predicted the general trend of changing of braking 
torque. For the range of brake interface temperature 
between 200 – 275 °C, the error between the real and 
predicted braking torque values was the biggest for all 
considered neural networks. 

Figure 8c is related to the prediction of disc brake 
recovery performance versus change of the application 
 

 
Figure 8. Comparison between the real and predicted cold, fade, and recovery performance of disc brake 
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pressure, initial speed, and brake interface temperature. 
A comparison between the real and predicted braking 
torque is shown in Figure 8c. It is evident that all 
considered neural network architectures have shown 
insufficient performance in terms of predicting the 
braking torque changes. Predictions obtained by the 
neural network trained with GDX algorithm are 
particularly imprecise. For the initial speed, values 
between 60 – 100 km/h the network architecture, trained 
by Quasi Newton (BFG) algorithm, achieved the best 
prediction results (see Figure 8c). Three-layered neural 
network architecture 3 [3-2-2]3 1 trained by SCG 
learning algorithm has achieved the best prediction 
performance for the initial speed range from 20 – 60 
km/h. Comparing Figures 8c and 8b, it can be 
concluded that high temperature load in the contact of 
friction pair, has affected the disc brake performance. 
That is why the neural models abilities had to be 
improved in order to be able to predict these complex 
changes in disc brake performance. 

 
4. CONCLUSIONS 

 
This investigation has demonstrated that artificial neural 
networks can model complex non-linear interrelations 
between brake input/output variables. It was also shown 
that there is a complex synergy of influences between 
different architectures of the neural networks and 
learning algorithms on the final neural model prediction 
abilities. The quality of prediction of disc brake 
performance has been tested versus three input 
parameters which defined disc brake operation 
conditions (initial speed, application pressure and brake 
interface temperature). The 108 neural models were 
investigated. The neural models have been developed 
with inherent abilities to predict the disc brake 
performance under different operation conditions (cold, 
fade, and recovery performance). In order to find the 
optimal neural model, the trail and error method has 
been used to evaluate network prediction performance. 
The best prediction results, related to all three kinds of 
tests, were obtained by the three-layered neural network 
architecture 3 [2-2-2]3 1 trained by Bayesian Regulation 
(BR) training algorithm. Due to high fluctuation in the 
disc brake performance, it was shown that is difficult to 
develop a unique neural model able to predict these 
complex changes in different braking regimes. Although 
done on limited number of training and test data, in this 
paper is shown that, besides the neural network 
architecture, used learning algorithm, transfer functions 
or range and distribution of input/output data, greatly 
affecting the network’s generalization capabilities. 
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РАЗВОЈ НЕУРОНСКОГ МОДЕЛА РАДА ДИСК 

КОЧНИЦЕ 
 

Велимир Ћировић, Драган Алексендрић 
 
Квалитет вештачких неуронских модела претежно 
зависи од правилног избора архитектуре вештачке 
неуронске мреже, односно алгоритма учења, 
функције преноса, опсега и расподеле података 
 

коришћених за обуку, валидацију и тестирање. 
Основни циљ овог рада се односи на истраживање 
како архитектуре вештачких неуронских мрежа 
утичу на успешност предвиђања тј. способност 
генерализације мрежа за исти сет података за обуку 
и тестирање. Комплексни поступак развоја 
вештачког неуронског модела је демонстриран на 
примеру диск кочнице. Моделиран је утицај радних 
услова диск кочнице (притисак активирања, почетна 
брзина и температура) на њене максималне 
перформансе као и перформансе опадањa и 
обнављања ефикасности. Вештачки неуронски 
модел је развијан кроз истраживање на који начин 
синергија различитих параметара мреже, попут 
алгоритма учења, функције преноса и броја неурона 
у скривеним слојевима, утиче на способности 
неуронског модела да предвиди перформансе диск 
кочнице. У овом раду је показано да комплексне 
нелинеарне зависности између посматраних улазних 
и излазних параметара могу бити моделиране 
одговарајућом анализом и подешавањем параметара 
вештачке неуронске мреже. 

 
 
 
 
 
 
 
 


