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This paper presents a novel, general and intelligent approach to multi-
response process optimisation, whose purpose is to obtain a single 
optimum setting of process parameters that meets specifications of all 
considered, possibly correlated, responses. The approach is based on 
Taguchi quality loss function, multivariate statistical methods: Principal 
componenet analysis and Grey relational analysis, and artificial 
intelligence techniques: Artificial neural networks and Genehic algorithm. 

The proposed model considers process optimisation in a general case 
where analytical relations and interdependences in a process are unknown, 
thus making it applicable to various types of process optimisation problems. 

The implementation of the suggested approach is presented on a study 
that discusses the optimisation of thermosonic gold wire bonding process 
in semiconductor industry, for the assembly of microelectronic devices. 
The results confirm the effectiveness of this approach in the presence of 
three correlated responses (product quality characteristics). 
 
Keywords: Taguchi method, quality improvement, multi-response 
optimisation, quality loss function, principal component analysis, grey 
relational analysis, artificial neural network, genetic algorithm. 

 
 

1. INTRODUCTION 
 

Taguchi’s robust parameter design has been proven 
effective in solving many process optimisation problems 
in single-response systems. The Taguchi method 
combines experimental design with quality loss issue 
that is caused by deviation of product quality 
characteristic from the target value specified by the 
customer. Unlike other experimental design methods, 
Taguchi’s technique allows us to study the variation of 
process and ultimately to optimise the process 
variability as well as target, using Signal-to-Noise (SN) 
ratio, which presents the ratio between response mean 
(control factors effect) and variation (noise factors 
effect). The Taguchi method in itself optimises a single 
response or quality characteristic, providing the optimal 
set of process parameters. This particular setting, 
however, may not provide the desired results for other 
quality characteristics of a product/process. In such 
cases, a single optimum setting of process parameters 
needs to be identified, so that the specifications of all 
quality characteristics are met. The complexity of the 
problem increases when the considered quality 
characteristics are correlated. 

However, several characteristics of a product are 
usually considered for product quality by the customer. 
Hence, multi-response optimisation has become an 
increasingly important issue in a modern manufacturing 
practice, particularly in situations where more than one 
correlated responses must be assessed simultaneously. 

Several recent studies were centred on solving the 
multi-response optimisation problem. 

The most commonly used method for multi-response 
optimisation is Response Surface Methodology (RSM), 
proven to be effective in many applications. However, 
there are certain limitations regarding RSM application 
for multi-response optimisation [1,2]: the RSM does not 
enable simultaneous optimisation of both mean and 
variance of the responses; an RSM model may not find 
the overall (global) best solution and might be trapped 
easily in a local minimum, when a process is influenced 
by a large number of variables and is highly non-linear 
with multiple outputs. Pignatiello’s regressional 
approach [3] that employs a multivariate quality loss 
function was also subjected to certain concerns [4]: the 
proposed procedure does not necessarily lead to the 
global optimum; the possible correlations among the 
responses may still not be considered; a factor that is 
significant in a single-response case may not be 
significant when considered in a multi-response case. 

To date, the Taguchi method has not proved to be 
functional for optimising the multi-response problem; 
the sole path was relying on engineers’ judgement or in 
combination with RMS [5,6]. There are various methods 
for multi-response optimisation based on Taguchi static 
robust design, actually on the transformation of 
Taguchi’s quality loss function [1,4] or SN ratio [7] for 
multi-response case that employ principal component 
analysis (PCA) to uncorrelate responses. However, the 
mentioned approaches in PCA considers only 
components which variance (eigenvalue) is greater than 
or equal to one, capturing the larger portion of variance 
but not the total variance of responses. Wang and Tong 
[8] used PCA and grey relational analysis (GRA) to 
transform quality losses for several responses into a 
single measure, and Wu [9] proposed an approach based 
on the proportion of quality losses with respect to the 
known starting conditions. Liao [10] used weighted PCA 
on SN data. Tong [2] proposed method that combines 
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TOPSIS (Technique for Order Preference by Similarity 
to Ideal Solution) and PCA techniques. 

The soft-computing methods for multi-response 
process optimisation are mainly based on the application 
of artificial neural networks (ANNs) (i.e. [11]). The 
approaches based on desirability function analysis 
(DFA) and ANN ([12]) combines the advantages of both 
techniques, but it was commented that the methods 
based on DFA do not always provide the global optimal 
solution [13]. Hsu [14] combined ANN and PCA to 
uncorrelate the process model, but only components with 
eigenvalue greater or equal to one were considered. 

Beside the specific shortcomings of the above 
methods, general limitation of all mentioned approaches 
is that they consider only discrete parameter values used 
in the experiment, hence only parameter levels used in 
the experimental trials could be selected for the optimal 
parameters setting. In addition, the above methods could 
not solve multi-response problems where optimisation 
requires the implementation of knowledge of experts 
into the formulae. Detailed discussion regarding the 
above and other related approaches for multi-response 
optimisation could be found in reference [15]. 

The GA-based approaches to multi-response 
problems found in literature are designed to solve one 
particular problem; hence they are not suitable for 
general application. Noorossana’s approach [13], based 
on DFA, ANN and GA includes the shortcomings of 
DFA. Roy and Mehnen [16] used DFA in Pareto front 
genetic optimisation, assuming that analytical model of 
the process is known. Khoo and Chen [17] and Drain 
[18] proposed methods that combine RSM and GA 
(shortcomings of RSM were commented above). Lau 
[19] used GA for the optimisation of moulding 
operations. Mok [20] presented an intelligent system 
based on case-based reasoning, TOPSIS, ANN and GA, 
to optimise injection moulding process. Jeong [21] 
employed GA for shadow mask manufacturing. Hou’s 
method [22] based on RSM, ANN and GA presents an 
integrated system for wire bonding process 
optimisation. Tong’s approach [23] is based on case-
based reasoning, ANN and GA, designed to optimise 
transfer moulding of electronic packages. 

The proposed generic and intelligent approach 
attempts to overcome the deficiencies of the above 
methods for multi-response optimisation, owing to the 
novel multi-criterion methodology that employs [24]: 

• Taguchi’s quality loss function that adequately 
represents relative financial significance of 
responses, and simultaneously assesses the 
response mean and variation; 

• multivariate statistical methods PCA and GRA to 
uncorrelate and synthesise responses with respect 
to the customer specifications, which ensures that 
the weights of responses in a synthetic multi-
response performance measure are based on the 
total variance of the original responses, resulting in 
improved objectivity of the experimental analysis; 

• artificial intelligence techniques to provide 
correct process modelling (ANN) and ensure 
global optimal solution (GA) in term of optimal 
process parameters setting that meets 
specifications for all responses. 

2. INTELLIGENT MULTI-REPONSE PROCESS 
OPTIMISATION FOR CORRELATED REPONSES 
 

The proposed approach to multi-response process 
optimisation for correlated responses is based on 
Taguchi static robust design, multivariate statistical 
methods and artificial intelligence techniques [24]. 

 
2.1 Taguchi method 

 
Taguchi’s robust design is a simple, systematic and 
efficient method to determine optimum settings of 
control factors, that has been widely used to analyze and 
optimise a single performance characteristic of a various 
manufacturing processes. However, the original 
Taguchi method was not designed to optimise processes 
with multiple quality characteristics. 

The suggested approach is based on Taguchi’s 
quality loss function, because it provides a right metric 
for multi-criteria decision making. Quality loss function 
directly represents a financial measure of the customer 
dissatisfaction with a product’s performance as it 
deviates from a target value. Unlike the conventional 
weighting methods, the quality loss function is a direct 
way to indicate the decision maker’s preference and is 
simple to apply. Quality loss function is based on SN 
ratio which assesses simultaneously the mean value of 
the quality characteristic and its variation. Since 
complexity of this issue grows with the growth of the 
number of responses, this feature is especially important 
in case of multiple-response optimisation [15]. 

In the proposed approach for multi-response 
optimisation for correlated responses, Taguchi’s robust 
design was not applied directly, as not every response 
may have the same measurement unit and may not be of 
the same category in the SN ratio analysis. 

Taguchi defined the SN ratios [25]: 
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The average quality loss is QL = K · MSD, where QL 
is the existing average loss per unit, K is the coefficient, 
and MSD is the sample mean square deviation when n 
units of a product are measured [25]: 
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where y is measurable statistic of response; STB, NTB, 
LTB is smaller-the-better, nominal-the-best, larger-the-
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better response, respectively; y  is the sample mean and 
s2 is the sample variance of n units. 

Quality loss (QL) of the i-th quality characteristic in 
the k-th trial is: 
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The quality loss of the i-th quality characteristic in 
the k-th trial QLik transforms into normalised value 
NQLi(k) ( ( ) [0;1]iNQL k ∈ ) by the following formula: 
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2.2 Multivariate statistical methods 

 
Principal component analysis (PCA) is considered as an 
effective means of determining a small number of 
uncorrelated linear combinations which account for 
most of the variance in the original number of 
responses. All principal components are uncorrelated 
with each other. The sum of variances of the principal 
components (eigenvalues) is equal to the sum of 
variances of the original responses. 

Since the proposed approach considers general case 
where correlations among responses exist, PCA is 
performed on NQL data resulting in a set of 
uncorrelated components. In contrast to usual practice 
[1,4,7] where only components with eigenvalue greater 
than or equal to one are considered, here, in order to 
capture the total variance of the original data, principal 
component scores include all principal components. The 
number of principal components and the number of 
components of eigenvector correspond to the number of 
responses. If component of eigenvector of the first 
principal component PC1 is denoted as I1i, (i = 1, …, p), 
the multi-response performance statistics corresponding 
to PC1 for NQL can be expressed as: 
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The larger the Yi(k) value, the better the performance 
of the product/process. 

Grey relational analysis (GRA) provides an effective 
means of dealing with one event that involves multiple 
decisions and deals with poor, incomplete and uncertain 
data. GRA can be employed to explain the complicated 
interrelationship among the data when the trends of their 
development are either homogeneous or heterogeneous. 

Here, GRA is performed on transformed principal 
scores, resulting in a single multi-response performance 
measure that adequately takes into account all, possibly 
correlated, response values with respect to the customer 
specifications. The weights used in the presented 
method for determining synthetic multi-response 
performance measure are based on the total variance of 
the original responses (from PCA), which results in 
improved objectivity of the experimental analysis. 

GRA is performed on the absolute value of principal 
component scores Yi(k). Linear data preprocessing 
method is employed to transform the principal 
component scores |Yi(k)| into a set of standardised multi-
response performance statistics Zi(k): 
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i
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Y k ) is the maximum 

(minimum) value of |Yi(k)| for the i-th response. 
The grey relational coefficient ξi(k) is: 
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where Z0(i) are ideal sequences with value of 1, and ς  
is called the distinguishing coefficient ( [0;1]ς ∈ ). 

The grey relational grade γk is calculated by a 
weighted mean, where the weights are determined by 
percentage of variance of the response NQLs in PCA: 
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In the proposed approach, the grey relational grade 
γk is adopted as synthetic performance measure for 
multi-response process. Knowing the synthetic measure 
values and factor (process parameter) values for all 
experimental trials (k = 1, …, m), it is possible to 
calculate the effects of factors on the synthetic 
performance measure for all factor levels used in the 
experiment. The optimal factor (parameter) conditions 
can be obtained by selecting the maximum of factor 
effects on multi-response performance measure γk. 
Hereafter, the above presented procedure is referred as 
the factor effects approach [15,24]. 

The shortcoming of the presented factor effects 
approach is that it considers only those discrete values 
(levels) of factors that are used in experimental trials; 
hence the optimal factors solution obtained by the factor 
effects is limited to factor levels used in experiment. 

 
2.3 Artificial intelligence techniques 

 
Artificial neural network (ANN) is powerful technique 
to generate complex multi-response process models 
without referring to a particular mathematical model, 
proven effective in various applications (i.e. [11,13,14]). 
By applying ANN to learn and model the relations 
between process parameters and responses, process is 
considered a “black-box”. This feature essentially 
contributes to generality of the proposed approach, 
because the model does not depend on the type of 
relations between responses and process parameters or 
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their correlations, thus making it applicable to different 
processes. This is particularly important in case when 
process interrelations are completely or partly unknown. 

In this approach, multilayer feed forward ANNs 
were developed to model the relationship between 
process parameters and the synthetic multi-response 
performance measure (γk), presenting an input (objective 
function) for genetic algorithm (GA). 

The number of neurons in the input layer of ANNs 
corresponds to the number of process parameters; the 
output layer has only one neuron (γk). The neurones in the 
hidden layer are computational units that perform non-
linear mapping between inputs and outputs. The training, 
testing and verification data for ANNs were obtained from 
experimental results. Input data set contains process 
parameter values for all experimental trials; output set 
accommodates synthetic multi-response performance 
measure γk (k = 1, …, m). The process of adjusting the 
connection weights by repeatedly exposing the network to 
known input-output data is called training. The error back-
propagation (BP) learning method, improved by 
Levenberg-Marquardt algorithm, was adopted in this 
approach. The transfer functions for all hidden neurones 
are tangent sigmoid functions, and for the output neurones 
are linear functions. It was proven that such choice of 
transfer functions makes ANN capable to perform 
successful approximation of various complex functions 
(i.e. [23]). BP learning employs a gradient descent 
algorithm to minimise the mean square error (MSE) 
between the target data (original input-output data set) and 
the predictions of ANN. During the training process, 
learning rate controls the amount by which weights are 
changed and momentum avoids a major disruption of the 
direction of learning in presence of outliers in the training 
set. A smaller learning rate and larger momentum reduce 
likelihood that the network will find weights that are a 
local, but not global minimum [14]. Thus, the adopted 
values for network training parameters, in this model, are: 
learning rate η = 0.01 and momentum factor α = 0.9 [24]. 
Determining the number of hidden neurones is critical in 
the design of ANN. Since the process modelling is the 
most sensitive part of the proposed model, various ANNs 
with different topology (number of hidden neurons) were 
developed in Matlab, until MSE of 10-3 is achieved. The 
best ANN was chosen according to the minimum MSE 
(mean square error between the original (target) data and 
actual network output (predictions)) criterion. In addition, 
the coefficient of the correlation between original data and 
actual network output (R value) is considered, with the 
acceptance level of 0.9 [24]. 

In the presented approach for multi-response 
problems, GA was chosen for optimisation due to the 
following reasons: GA is proven as a potent multiple-
directional heuristic search method for optimising 
highly nonlinear, nonconvex and complex functions; it 
is less likely to get trapped at a local optimum than 
traditional gradient-based search methods [16,26]. 

The trained neural model presents an objective 
(fitness) function for GA, which, by maximising the 
objective function finds the optimal parameters setting 
among all possible solutions in continual multi-
dimensional space. In order to obtain optimal performance 
of GA, large number of GA’s parameters must be tuned. 

According to results of previous analysis [26], the choice 
of the basic GA’s operations (selection and crossover 
functions) depends on the application. In GA-based 
approaches discussed in the introduction, only one GA was 
developed for the observed problems [13,16,19,21,22] and 
the choice of selection and crossover function were not 
explained. In order to accept the specifics of each 
particular problem and to enhance the generality of the 
proposed model, in this study nine GAs are developed in 
Matlab, combining the most commonly used types of 
selection function and crossover function [24]. 

As explained in the Section 2, the parameter settings 
obtained by the factor effects approach is the optimal set 
found in the space of discrete solution (parameter levels 
used in the experiment). Since this set presents 
potentially good solution, it serves as a basis to form 
initial population in GAs. This feature of the suggested 
model is of essential importance, because it allows GAs 
to converge to the global optimum faster and enhance 
its capability to find the actual global solution in the 
given number of generations [24]. 

In order to ensure the optimal performance of GA, 
the rest of operating parameters were: chromosomes are 
presented in natural presentation; population size is 
equal or larger than five times dimensionality (number 
of process parameters); scaling function is “rank”; 
reproduction parameters are: elite count = 2, crossover 
fraction = 0.9; mutation function is “adaptive feasible”. 

The nine GAs were run for 2000 repetitions 
(generations). The best GA is chosen according to the 
best fitness value (on-line performance criteria), which 
is presented by the synthetic multi-response 
performance measure. The most desirable solution with 
the highest fitness function value (synthetic multi-
response performance measure γk) presents the final 
solution. Additional criterion is the best off-line 
performance criteria (the mean of the best fitness values 
through the whole run). Finally, the solution of the best 
GA was adopted as the final optimal parameters setting 
in continuous multi-dimensional space [24]. 

GA considers all continual parameter values 
between corresponding bounds, in contrast to traditional 
experimentation methods that consider only those 
(discrete) values that have been used in the experimental 
trials. Relaying on this and setting the GA’s parameters 
properly (as described above), the proposed approach 
ensures optimal performance of GA to converge to the 
global rather than local optimal solution of multi-
response optimisation problem [24]. 

 
3. IMPLEMENTATION 

 
3.1 Problem description 

 
The goal of the presented study was to establish the 
process parameters window for several machines, for the 
part of thermosonic gold wire bonding process which 
refers to forming the bonds between gold wire and 
aluminium die pads in microelectronic devices assembly. 

Thermosonic wire bonding is the most widely used 
assembly technique in the semiconductor industry to 
interconnect the internal circuitry (IC) of the die to the 
external world. This method uses bond force, bond power, 



FME Transactions VOL. 38, No 1, 2010 ▪ 43
 

time, temperature and ultrasonic energy to form the ball 
bonds at the die pads (above the IC) and welds at the 
output leads. Typically for the ball bond, the metallurgical 
interface is between gold wire and aluminium bond pad. 

During engineering analysis, it has been noticed that 
performing the wire bonding process with the same set 
of parameter values on different machines (of the same 
type) gives different results for product quality 
characteristics (responses). Precisely, Machine 1 is 
adopted as referential machine, the representative of a 
whole group of machines who show the same behaviour 
(give the same response values for the given parameter 
settings). The Machine 2 is the one whose behaviour 
significantly deviates from the rest of the group of 
machines. In order to overcome this deficiency, it was 
decided to establish a process parameters window for 
two basic process parameters, to ensure that products 
produced on all machines in the whole group will meet 
customer specifications for the specified product quality 
characteristics. From this reason, the experiment was 
performed on Machine 1 (M1) and Machine 2 (M2), in 
order to asses the variation of quality characteristics 
values depending on machine performances [24,27]. 

Thermosonic wire bonding cycle is presented at 
Figure 1 [27]: 1. A fine gold wire is fed down through 
the tool called capillary; the ultrasonic transducer 
convert the electrical energy and transmit this resonant 
energy at the tip of the bonding capillary to form the 
gold ball; 2. Capillary moves down to the aluminium 
bond pad; 3. Meshed ball bond is formed at die pad, 
applying bond force and power; 4. Capillary lifts up and 
forms the looping profile; 5. and 6. Then, capillary goes 
down to the form the weld at the lead. This cycle is 
repeated until the microelectronic device is fully 
assembled. This paper considers optimisation of the part 
of wire bonding process, which refers to forming the 
ball band between gold wire and aluminium die pads. 

 
Figure 1. Thermosonic gold wire bonding cycle 

 
3.2 Process parameters (control factors) 

 
After formation of gold ball at the tip of the capillary, 
capillary moves down to the die pad applying Base 
Power and Base Force to form the intermetallic bond 
between the meshed gold ball and aluminium die pads. 

Hence, process parameters Base Power and Base Force 
were considered as control factors in the experiment. 
They belong to continuous type of variables. The other 
process parameters were not considered in the 
experiment, since their changes would affect the quality 
of the welds at the output leads. Table 1 lists the control 
factors and levels used in the experiment [27]. 
Table 1. Process parameters with different operating levels 

Levels Process 
parameter Unit Symbol 

“1” “2” “3” 
Base Power mW BP1g 55 65 75 
Base Force N BF1g 85 100 115 
 

3.3 Product quality characteristics (responses) 
 

The quality of the considered part of thermosonic gold 
wire bonding process is characterised by the strength of 
the intermetallic connections between meshed gold 
bond and aluminium metallization at the die pads 
surfaces. The test performed to show the strength of the 
connection between gold bonds and aluminium pads is 
known as ball shear test. Since one microelectronic 
device contains several ball bonds, ball shear is 
performed on all ball bonds in one device. Average ball 
shear test value found in the device was considered as 
the first response. The shape and dimensions of the 
meshed ball bond affect the strength of gold-aluminium 
intermetallic connection, hence the second and third 
response were ball bond diameter and ball bond height, 
respectively. They were calculated as average values of 
five measurements in one device. Quality 
characteristics, considered as response variables in the 
following experiment, are: ball shear test average value 
(BS) [N], ball bond diameter (D) [µm], and ball bond 
height (H) [µm] (Fig. 2). It is explicit that quality 
characteristics BS, D and H are directly correlated [27]. 

 
Figure 2. Meshed ball bond 

Ball shear values are measured using special ball 
shear tester equipment. The shear tool moves 
horizontally parallel to the bond pad surface, shear the 
ball bond when the strength of the intermetallic 
connection is measured. Ball diameter and ball height 
are measured using metallographic microscope. 

The gold wire diameter used for wire bonding is 75 
µm in diameter; specifications limits (Lower 
Specification Limit – LSL, Upper Specification Limit – 
USL) and target values specified by customer are given 
in Table 2. Since the objective is to achieve the nominal 
value for all considered quality characteristics, all three 
characteristics are of the NTB type [27]. 
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Table 2. Specification limits and target values for quality 
characteristics 

Specifications Ball shear 
test (BS) 

Ball bond 
diameter (D) 

Ball bond 
height (H) 

LSL – USL 230 – 310 153 – 233 34 – 66 
Target 270 193 50 

 
3.4 Design of experiment 

 
Since there were two control factors varied on three 
levels and no noise factors in the experiment, the 
experimental designed was based on orthogonal array L9 
containing nine trials, and five repetitions were added. 
The experiment was performed on two machines, as 
explained before. The part of the experiment plan and 
experimental observations are shown in Table 3 [24]. 

 
3.5 Processing and analysis of experimental data 

 
Step 1. SN ratios were computed according to (1), MSD 
values by using (2), and QLs by using (3). 

Step 2. Transformation of QL values into normalised 
values ( ( ) [0;1]iNQL k ∈ ) was performed by using (4), 
with respect to the maximal QL value in k experimental 
trials and the ideal case where QL = 0. The computed 
SNs and NQLs for the observed responses are listed in 
Table 4 [24]. 

Step 3. PCA was performed on NQL values. The 
principal component scores Yi(k) are shown in Table 4. 
Table 5 list the eigenvalues and proportions of NQL of 
each response, for the principal components [24]. All 
principal components were considered in this approach, 
in contrast to common approach where only PC1 would 
be taken into account (eigenvalue greater than one), 
enclosing only 66.7 % of the total variance of responses 
 

for M1, and 91.5 % for M2. According to the 
eigenvectors from Table 5, principal component scores 
were computed by using following formulas, for M1: 

 1( ) 0.651 0.523 0.550 BS D Hk k kY k NQL NQL NQL= + +   

 2( ) 0.033 0.743 0.668 BS D Hk k kY k NQL NQL NQL= − + −   

 3( ) 0.758 0.417 0.501 BS D Hk k kY k NQL NQL NQL= − − , (9) 

and for M2: 

  1( ) 0.548 0.587 0.561 BS D Hk k kY k NQL NQL NQL= + +   

 2( ) 0.442 0.351 0.826 BS D Hk k kY k NQL NQL NQL= − − +   

 3( ) 0.682 0.730 0.054 BS D Hk k kY k NQL NQL NQL= − + + .(10) 

Step 4. The principal component scores Yi(k) were 
first taken from the absolute value and then transformed 
into a set of comparable sequences Zi(k) by using (6). 
Next, the grey relational coefficient ξi(k) was calculated 
by (7). Finally, the grey relational grade γk was 
computed by using (8), where the weights (proportions) 
ωi are listed in the Table 5. The results of GRA are 
listed in Table 4 [24]. 

Step 5. From the value of γk in Table 4 and the factor 
levels in Table 1, the factor effects can be tabulated 
(Table 6). In multi-response problems, the optimal 
setting of each factor is the one that yields the highest 
multi-response synthetic performance measure. 

Finally, the optimal parameter conditions obtained 
from the factor effects approach, for both machines, 
were: BP1g = 75 mW; BF1g = 1 N [24,27]. 

The factor effects approach discusses only discrete 
parameter values used in the experiment. The above set 
of parameters was adopted as a basis to form the initial 
population in GA, to find the optimal solution in 
continual multi-dimensional space. 

Table 3. The part of experimental plan and experimental observations, for Machine 1 and Machine 2 

Process parameter M1: Quality characteristics M2: Quality characteristics Trial No. 
BP1g BF1g BS D H BS D H 

1 1 1 229.56 182 58.9 232.21 180 58.7 
2 2 1 260 187 54.8 262.41 188 55.8 
3 3 1 266.29 193 42.6 269.49 192 44.2 
… … … … … … … … … 
14 2 3 277.37 201 43.3 281.74 198.5 43.85 

Table 4. The SN ratios, NQLs, principal component scores and data of grey relational analysis, for Machine 1 and Machine 2 

Signal-to-Noise ratios 
(SNs) 

Normalized quality losses 
(NQLs) 

Principal component scores 
Yi(k) 

ξi(k) 
i = 1, 2, 3; k = 1, .., 14 Trial 

No. 
SNBS SND SNH NQLBS NQLD NQLH Y1(k) Y2(k) Y3(k) ξ1 ξ2 ξ3 

γk 
k = 1, .., 14

Machine 1 
1 -32.6842 -21.6825 89.9684 0.9604 0.8890 0.9516 1.6136 -0.0069 -0.1194 0.3449 0.9640 0.6800 0.526320
2 -25.1068 -19.2369 35.4304 0.1678 0.5062 0.3748 0.5801 0.1202 -0.2717 0.5942 0.6046 0.4830 0.587084
3 -23.2636 -12.5062 61.1104 0.1098 0.1075 0.6464 0.4832 -0.3556 -0.2855 0.6374 0.3409 0.4706 0.549952

… … … … … … … … … … … … … … 
14 -24.3861 -19.3828 52.5076 0.1421 0.5235 0.5554 0.6718 0.0133 -0.3888 0.5584 0.9327 0.3949 0.636230

Machine 2 
1 -32.1948 59.1675 86.6664 0.9884 0.8978 0.9964 1.6610 -0.0311 -0.1244 0.3333 0.3333 0.3333 1.000000
2 -24.6220 66.9864 92.1027 0.1728 0.2670 0.5629 0.5618 -0.1833 -0.2624 0.3378 0.8047 0.5868 0.373331
3 -22.8098 63.1258 92.0339 0.1139 0.1040 0.4943 0.4004 -0.2567 -0.2047 0.6013 0.4118 0.4023 0.585001

… … … … … … … … … … … … … … 
14 -24.6809 57.6587 92.1024 0.1752 0.2094 0.4854 0.4905 -0.1744 -0.1977 0.5941 0.4075 0.3422 0.576955
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Table 5. Results of PCA performed on NQLBS, NQLD and 
NQLH, for Machine 1 and Machine 2 

 Machine 1 Machine 2 
Principal 

Components PC1 PC2 PC3 PC1 PC2 PC3 

Eigenvalues 2.0014 0.7371 0.2615 2.7438 0.1981 0.0581
Proportions  0.667 0.246 0.087 0.915 0.066 0.019

Eigenvectors       
NQLBS 0.651 -0.033 0.758 0.584 -0.442 -0.682
NQLD 0.523 0.743 -0.417 0.587 -0.351 0.730
NQLH 0.550 -0.668 -0.501 0.561 0.826 0.054

Table 6. Summary of factor effects, for both machines 

Control factors (process parameters) 
Machine 1 Machine 2 Levels 

BP1g BF1g BP1g BF1g 
1 0.5500 0.5266 0.5502 0.5763 
2 0.5597 0.5845 0.6255 0.6336 
3 0.5941 0.5802 0.6360 0.5978 

 
3.6 Process modelling and optimisation 

 
Step 1. The set of BP ANN were trained in order to 
model the relationship between synthetic performance 
measure γk and process parameters, for M1 and M2 
separately. Each of the developed networks has two 
neurones in the input layer corresponding to two process 
parameters, and one neurone in the output layer 
corresponding to a single synthetic multi-response 
performance measure. The number of neurones in the 
hidden layer varies from 1 to 9. The results of training 
of ANNs are presented in Table 7 [24]. 

Step 2. From the data in Table 7, the network 
topology 2-9-1 showed the least error for both machines 
(MSE = 0.00018873 for M1, and MSE = 0.00014759 for 
M2) and therefore they were selected to present the 
process model (Fig. 3). The presentation of the training, 
validation and testing process of the selected 2-9-1 
networks are displayed at Figure 4 for M1 and Figure 5 
for M2 [24]. 

 
Figure 3. Topology of the selected ANN models (2-9-1) 

Step 3. The selected networks present an objective 
functions for GA, for M1 and M2 separately. Nine 
different GAs were developed for each machine; the 
initial population was seeded close to the set suggested 
by the factor effects approach; population size was 10. 
Since experimental results showed that high value of 
BF1g is favourable for achieving high synthetic 
performance measure, the upper bound for BF1g was 
extended to 85 mW in GA. The results of GAs are 
presented in Table 8 [24]. 

Step 4. For M1, GA 1 and GA 4 resulted with the 
equally best fitness value (γ = 0.88120) and off-line 
performance, giving the optimal parameters setting: 
BP1g = 85 mW; BF1g = 0.99 N. 

The equally best results in terms of fitness value (γ = 
0,71277) and off-line performance showed GA 2 and 
GA 5 for M2, giving the optimal parameters setting: 
BP1g = 85 mW; BF1g = 0.95 N [24]. 

Table 7. Results of ANNs training (MSE and R values for ANNs with different topology), for Machine 1 and Machine 2 

Topology of ANN 2-2-1 2-3-1 2-4-1 2-5-1 2-6-1 2-7-1 2-8-1 2-9-1 
MSE 0.00033987 0.00028367 0.00031174 0.00031720 0.00028620 0.00023881 0.0002399 0.00018873Machine 1 

R 0.9482 0.9553 0.9690 0.9710 0.9645 0.9701 0.9653 0.9717 
MSE 0.00040726 0.00020155 0.00030591 0.0001907 0.00026473 0.00023374 0.0002297 0.00014759Machine 2 

R 0.9568 0.9674 0.9721 0.9376 0.9639 0.9548 0.9682 0.9717 
 

 
Figure 4. Convergence (MSE vs. learning iterations) of the selected ANN (2-9-1), for Machine 1 
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Figure 5. Convergence (MSE vs. learning iterations) of the selected ANN (2-9-1), for Machine 2 

Table 8. GAs settings and results, for Machine 1 and Machine 2 

GA  GA 1 GA 2 GA 3 GA 4 GA 5 GA 6 GA 7 GA 8 GA 9 

Selection function stochastic 
uniform 

roulette 
wheel tournament stochastic 

uniform 
roulette 
wheel tournament stochastic 

uniform 
roulette 
wheel tournament

Crossover function single point two point arithmetic 
Machine 1 

Fitness function 0.88120 0.88088 0.88070 0.88120 0.88087 0.88070 0.88075 0.88076 0.88070 
Off-line performance 0.88120 0.88088 0.88070 0.88120 0.88087 0.88070 0.88075 0.88076 0.88070 

BP1g 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 Optimal set 
BF1g 98.97 99.81 100.00 98.96 99.83 100.00 99.95 99.95 100.00 

Machine 2 
Fitness function 0.70823 0.71277 0.70807 0.71009 0.71277 0.70807 0.70811 0.70810 0.70807 

Off-line performance 0.70822 0.71275 0.70807 0.71009 0.71275 0.70807 0.70811 0.70810 0.70807 
BP1g 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 Optimal set 
BF1g 99.75 94.96 100.00 96.97 94.96 100.00 99.94 99.96 100.00 

 
3.7 Discussion 

 
The analysis of implementation of the proposed 
approach was performed comparing to RSM and the 
factor effects application. In RSM application, the 
superpositioned plot was formed by superposing 
contour plots for all responses, in order to find the 
specific area on the superpositioned plot that meets 
specifications for all responses. The correlations among 
responses were not discussed in RSM application [27]. 

Table 9 provides a comparison of the synthetic 
performance measure γ and optimal parameters setting 
obtained from three methods of the analysis. It can be 
seen that the factor effects approach, that considers 
correlations among responses, showed better results (γ) 
than RSM method [27]. The application of the proposed 
intelligent approach resulted in a better solution (in term 
of synthetic performance measure) than the factor 
effects, due to search over continual space [24]. 

From Table 8 it is visible that all tested GAs show 
similar results in terms of fitness function values (γ) and 
optimal parameters setting for M1. However, for M2, the 
significant difference in BF1g values obtained from 

different GAs could be noticed. It could be seen that 
“tournament” selection gave the lowest fitness function 
values. Also, GA 8 with “arithmetic” crossover show 
significantly lower fitness function than other two GAs (GA 
2 and GA 5) that use the same selection (“roulette wheel”). 
Hence, it could be concluded that the “tournament” 
selection and the “arithmetic” crossover are not adequate 
for the observed problem. It could be also concluded that 
the “roulette wheel” selection is appropriate for this 
problem. This proves the necessity to consider different 
GA’s basic functions, for each optimisation problem [24]. 

Initial population for both machines was formed 
close to the set suggested by the factor effects approach. 
For M1, all GAs converged to the optimal solution in the 
first ten generations, which is the consequence of a 
good-seeded initial population. If initial population was 
not set properly, the algorithm would need more time 
(generations) to find the actual optimal solution. For M2, 
GA 2 converged to the best solution in the 1050-th 
generation and GA 5 in the 710-th generation (from 
2000 generations in total). This could mean that, when 
the selection is “roulette wheel”, the crossover “two 
point” (GA 5) converges faster than “single point” 
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function (GA 2) [24]. The observed difference in a speed 
of convergence of GAs between M1 and M2 could be 
explained by the set of input data for GA and ANN. The 
above difference in GAs convergence between Machine 
1 and Machine 2 proved the initial indication that 
interrelations between process parameters and responses 
on Machine 2 are more complex, containing more noise 
effects, than on the other machines used for this process 
[24]. This could be also the cause of the difference in the 
best achieved synthetic multi-response performance 
measure between M1 and M2 (Table 9). 
Table 9. Comparative analysis of optimal parameter 
settings obtained by different methods, for both machines 

RSM 
The factor 

effects 
approach 

The proposed 
approach Method 

M 1 M 2 M 1 M 2 M 1 M 2 
[BP1g; 
BF1g] 

[65; 
100] 

[65; 
100] 

[75; 
100] 

[75; 
100] 

[85; 
99] 

[85; 
95] 

γ 0.6303 0.6379 0.6395 0.6463 0.8812 0.7127
 
Finally, the established process parameters window 

for the considered part of the process is: BP1 = 85 mW, 
BP1 = 0.95 – 0.99 N. This set is adopted as a final 
solution of the observed multi-response problem. 

 
4. CONCLUSION 

 
The majority of today’s industrial products are defined 
by several quality characteristics, hence the multi-
response process optimisation has become an 
increasingly important and demanding task. 

This research is based on the Taguchi static robust 
parameter design, employing PCA and GRA to consider 
correlations among responses and to obtain single multi-
response performance statistic for multi-response 
process optimisation. The process modelling is 
performed using BP ANN, presenting an input for GA. 
GA finds the optimum setting of the process parameters 
that simultaneously meet the specifications of all 
responses, where the solution is not constrained by the 
process parameter levels used in experimental trials. 

The major advantages of the presented generic and 
intelligent method for multi-response process 
optimisation for correlated responses are [24]: 

• By using Taguchi’s SN ratio and quality loss, 
relative significance of responses are adequately 
represented and the response mean and variation 
are assessed simultaneously [15,27,28]; 

• Multivariate statistical methods PCA and GRA 
are employed to uncorrelate and synthesise 
responses, ensuring that the weights of responses 
in synthetic performance measure are based on the 
total variance of the original data, which results in 
improved objectivity of the analysis [15,27,28]; 

• By using a single performance statistic, 
procedure of developing and training of ANNs is 
simplified, as well as the implementation of GA; 

• The GA’s capacity of performing global search 
among all possible solutions in continual multi-
dimensional space ensures convergence to the 
global optimal parameter settings. In the 
presented approach, the initial population in GA 

is formed in the neighrbourhood of the 
potentially good solution (the parameter settings 
obtained by the factor effects approach). This 
feature advances the convergence to the global 
solution, meaning that the probability of finding 
the actual global solution in the given number of 
generation is significantly improved; 

• The proposed method does not depend on the 
type of the process, type of relations between 
responses and process parameters, type and 
number of process parameters and responses, 
existence of correlations between responses or 
process parameters, or their interrelations, thus 
making its application convenient for broad 
spectrum of static optimisation problems. 

The analysis of several experimental results 
confirms the effectiveness of the presented method and 
emphasises universality of its application for static 
multi-response problems [24]. Analysis of the 
application of the proposed method on the here-
observed experimental study and its comparison with 
other two methods for multi-response optimisation 
showed that the proposed approach can yield to a better 
solution in terms of optimal parameters setting and 
synthetic multi-response performance measure. 
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НОВИ ПРИСТУП ОПТИМИЗАЦИЈИ ПРОЦЕСА 

ЗА ВИШЕ МЕЂУЗАВИСНИХ ИЗЛАЗА 
 
Татјана В. Шибалија, Видосав Д. Мајсторовић 

 
Pад представља нови, општи и интелигентни приступ 
оптимизацији процеса са више излаза, чија је сврха 
добијање јединственог оптималног скупа параметара 
процеса који задовољава спецификације за све излазе, 
који могу бити у корелацији. Приступ је базиран на 
Тагучијевој функцији губитка квалитета, 
статистичким методама: анализа главних компоненти 
и анализа релација са шумом, и техникама вештачке 
интелигенције: вештачке неуронске мреже и генетски 
алгоритам. Предложени модел разматра оптимизацију 
процеса у општем случају када су аналитичке 
релације и међузависности у процесу непознате, тиме 
чинећи модел применљивим за различите врсте 
проблема оптимизације процеса. Имплементација 
предложеног приступа је представљена на студији 
која разматра оптимизацију процеса термосоничног 
повезивања златном жицом у полупроводничкој 
индустрији, за повезивање микроелектронских 
уређаја. Резултати потврђују успешност овог 
приступа у присуству три међузависна излаза 
(карактеристике квалитета производа). 


