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This case study deals with modeling of plasma cutting process using 
artificial neural network (ANN), with the aim of simulation the impact of 
noise on its performance. The input parameters used in this study were 
reduced to three cutting parameters which consisted of strength of current 
(I), cutting speed (V), and material thickness (s). The ten-point height of 
irregularities (Rz), which is one of the basic characteristics of the surface 
quality, was adopted as the output parameter (response). The data for this 
research were gathered from literature. A feed-forward three-layer ANN 
was created, with backpropagation and algorithm for supervised learning. 
For the hidden layer neurons sigmoidal type of non-linearity was selected, 
while a linear activation function was selected for the output layer. ANN 
training was carried out using Levenberg-Marquardt algorithm with 
Bayesian regularization. The trained and tested ANN on the original data 
set showed a satisfactory level of prediction accuracy. In order to simulate 
an experiment with noise, measured values of the surface roughness were 
corrected. The correction was performed by adding randomly selected 
numbers to each measured value, within the range – 0.1 to + 0.1 µm. With 
the previously selected architecture and the same other parameters, re-
training of ANN was carried out. The analysis showed that the ANN model 
trained on the data with noise has similar performance as the ANN model 
trained on the original data, which indicates the robustness of this type of 
ANN. 
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1. INTRODUCTION 
 

As far as complex (non-linear, “diffusion”) processes 
and systems are concerned, whose structures and laws 
of action are not well known or known enough, the 
principle of the “black box” is applied. Basic input 
(controllable) values are those that can be expressed 
numerically and selected and varied at will. Other input 
(uncontrollable, noise) values are those whose action is 
unknown or can be neglected. Output values (responses, 
target functions, state characteristics) are those values 
that can be measured and which are the result of the 
action of input values. 

The theory of experimental design is based on the 
aforementioned principle, known also as the design of 
experiment [1-5]. The design of experiment (DoE) has a 
very broad application across all engineering, natural 
and social sciences. All this also relates to artificial 
neural networks [6-10]. 

In DoE, it is important to choose an adequate 
mathematical model and experiment design. The choice 
of appropriate mathematical model is often not 
straightforward. Also, well chosen experimental designs 
maximize the amount of information that can be 
obtained for a given amount of experimental effort. 

The realizations of the experiment, regression and 
dispersion analysis are strictly determined by the chosen 
mathematical model and design. The application of 
complex mathematical models and designs implies a 
more profound knowledge of the theory of experimental 
design. 

In applying the ANN method, neither the 
mathematical model nor the experiment plan are being 
set according to the previously determined rules. The 
results obtained directly from the existing production 
process can be used in that sense, which significantly 
reduces research costs. 

Another important advantage of ANNs in relation to 
the classical DoE is reflected in the fact that the input 
data can be varied on different number of levels. This is 
not the case with DoE, where certain levels (centre 
point, “star” points) cannot sometimes be realized 
experimentally, neither under laboratory nor even less 
under production conditions. 

The basic deficiency of ANNs lies in the need to 
process a relatively large number of data (samples), in 
order to secure the sufficient prediction accuracy and 
the desired level of generalization. However, there are 
examples where that number of samples is not much 
larger than the number needed for the application of 
DoE [11-16]. 

From the regression analysis, it is known that the 
accuracy of the selected mathematical model is highly 
influenced by experimental errors. The aim of this study 
is to examine to which extent the experimental noise 
affects the ANN performance, i.e. its prediction accuracy. 
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2. ARTIFICIAL NEURAL NETWORK 
 

2.1 Overview of ANN 
 

The appearance of ANNs is related to the attempt to form 
an artificial system based on mathematical models which 
will be, in its structure, function and information (signal) 
processing, similar to biological nervous systems, and 
thus be able to process “intelligently” information 
(signals), that is, simulate biological intelligence. 

The ANNs have found application in many different 
domains, such as dynamic system identification, 
complex system modelling, optimization and control, 
design and classification, speech interpretation, pattern 
recognition, metal-cutting and metal-forming simulation, 
robotics and communication and the like. 

Modern ANNs have a parallel-distributed architecture. 
They consist of a larger number of neurons (as basic 
processing units) distributed in several layers. Each ANN 
must have at least three layers: input layer, hidden layer, 
and output layer. The greatest number of ANNs has one 
hidden layer though there may be more of them [17-19]. 

Neurons of one layer are connected by specific 
synapses to the neurons of their neighbouring layers. 
Apart from specific types of ANNs, there are no 
interconnections between the neurons belonging to the 
same layer. Viewed schematically, the ANN represents 
an oriented graph in which the nodes are processor units, 
while the arrows on the lines point to the direction/sense 
of the signal (information) flow [7] (Fig. 1). 

 
Figure 1. Topology of a typical feed-forward three-layer BP ANN 

The interconnections between particular neurons by 
the layers are characterized by weights, which change 
during the ANN training. 

The number of hidden layers and the number of 
neurons in each of them are not defined in advance; 
instead, these numbers can change during the ANN 
training until the optimum architecture is defined, namely, 
the one that produces the best performances of ANN. The 
researchers usually rely on the derived examples and their 
own experience (“trial and error approach”). This is one of 
the major obstacles in using ANNs. 

The ANN modelling commonly follows these steps: 
definition of the input and output parameters; collection 

and analysis of the data base; random dividing of the data 
set on training and testing data subsets; normalization of 
the input/output data (optional); designing of an ANN; 
training of the ANN (choice of architecture, training 
algorithm, transfer functions, performance criterion, and 
other ANN parameters); testing the trained ANN. 

After adopting the ANN with the best performance, the 
created ANN may be used for simulation and prediction. 

Every ANN is designed for modelling a concrete 
problem. For an ANN to react appropriately when unknown 
input data are added to it, it must be trained. ANN training 
is done on the examples that make up a set of input-output 
data obtained by the experiment or some other way. 

The ANN training represents a process of adjusting 
weights of interconnections and bias adjoined to every 
synapsis between neurons on the basis of comparing the 
output values with the desired (target) ones for the same 
input ones. Training is a continuous process, which is 
repeated until the ANN is stabilized or overall error is 
reduced below a previously defined threshold. Training 
belongs to the most important parts of ANN designing 
and procedure. 

The trained ANN should be tested in order to assess 
its ability to predict and make generalization on the 
basis of the acquired “knowledge” on the selected set of 
input-output data. Testing of the ANN is carried out by 
applying a data subset, which is not included in the 
training data subset. 

The trained and tested ANN can be used for 
modelling and prediction, when it is presented with new 
(original) input data. 

Of all the available types of ANN, multi-layer 
perceptron (MLP) with back propagation (BP) training 
procedure, is the most commonly used. The BP ANN is 
designed to operate as a multilayer fully-connected 
feed-forward network, with a particular (BP) training 
algorithm for supervised learning. 

For feed-forward BP ANN there are many different 
standard training algorithms (Batch Gradient Descent, 
One-step-secant, Resilent Backpropagation, Conjugate 
Gradient, Levenberg-Marquardt (L-M), etc.). The L-M 
algorithm belongs to the algorithms that converge very 
fast (especially for smaller and medium large ANNs), 
with less danger from entrapment in local minimum, 
before reaching global minimum at error surface, while 
at the same time it can provide for high accuracy of 
prediction. A more detailed approach to ANNs can be 
found in the referential literature [6-10]. 

 
2.2 Implementation of ANN 

 
The objective of the plasma cutting process is to 
concentrate a large amount of energy on a small surface 
of a workpiece which leads to intensive heating of the 
material surface. The source of energy is high 
temperature and high speed ionised gas. The gas is 
ionised using a direct current passing between the 
cathode (inside the nozzle) and anode (workpiece). The 
plasma jet cuts the material by releasing the energy 
spent for the plasma gas ionisation upon hitting the 
workpiece surface. The removal of the melted material 
from the cutting zone is done by the action of plasma jet 
kinetic energy. The characteristics of plasma jet can be 
significantly altered by changing the type of gas, gas 
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flow, cutting current, and nozzle size, etc. 
Even though it is the case of a complex process, 

which is characterised by a large number of influential 
factors, the previous analysis has shown that this number 
can be reduced to three main influential factors: cutting 
current (I), cutting speed (V), and material thickness (s). 
Influential factors were varied on a great number of 
levels. The ten-point height of irregularities (Rz), which 
is one of the basic characteristics of the surface quality, 
was selected as the target function (output value). The 
experimental data are presented in Table 1 [20]. 
Table 1. Data for training and testing of the ANN 

No. 
Cutting 

current, I 
[A] 

Material 
thickness, s 

[mm] 

Cutting 
speed, V 
[m/min] 

Surface 
roughness, Rz 

[µm] 
1. 80 4 1300 2.13 
2. 80 4 1400 2.15 
3. 80 4 1000 2.25 
4. 80 4 900 2.3 
5. 80 4 1200 2.4 
6. 80 4 1700 2.42 
7. 80 4 2100 3.2 
8. 80 4 2200 3.15 
9. 80 4 2300 3.4 
10. 80 4 2400 3.5 
11. 80 4 2500 3.55 
12. 80 4 2600 3.58 
13. 80 4 2800 3.7 
14. 45 4 1050 3.2 
15. 45 4 1100 3.4 
16. 45 4 1150 3.6 
17. 45 4 1200 3.67 
18. 45 4 1250 4.1 
19. 45 4 950 3.4 
20. 45 4 900 3.5 
21. 45 4 850 3.3 
22. 45 4 800 3.1 
23. 45 4 1100 3.5 
24. 45 4 1300 3.82 
25. 45 4 1400 3.8 
26. 45 4 1500 4 
27. 80 6 1225 2.15 
28. 80 6 1275 2.21 
29. 80 6 1300 2.25 
30. 80 6 1375 2.25 
31. 80 6 1425 2.28 
32. 80 6 1475 2.3 
33. 80 6 1175 2.22 
34. 80 6 1125 2.35 
35. 80 6 1075 2.35 
36. 80 6 1025 2.38 
37. 80 6 900 2.45 
38. 80 6 1700 2.5 
39. 80 6 1900 2.6 
40. 80 6 2100 2.65 
41. 80 6 2300 2.8 
42. 45 6 850 2.55 

43. 45 6 900 2.48 
44. 45 6 1000 3.1 
45. 45 6 1100 3.15 
46. 45 6 800 3.1 
47. 45 6 750 3.05 
48. 45 6 700 2.9 
49. 45 6 650 2.6 
50. 45 6 600 2.52 
51. 45 6 1300 3.1 
52. 80 8 900 3.29 
53. 80 8 950 3.42 
54. 80 8 1000 3.3 
55. 80 8 1050 3.25 
56. 80 8 1100 3.2 
57. 80 8 1150 3.2 
58. 80 8 1200 3.3 
59. 80 8 1250 3.42 
60. 80 8 1300 3.6 
61. 80 8 1350 4.05 
62. 80 8 1400 4.22 
63. 80 8 1500 4.32 
64. 80 8 1700 4.3 
65. 80 8 2000 4.5 
66. 130 12 820 1.79 
67. 130 12 870 1.85 
68. 130 12 920 1.86 
69. 130 12 970 1.9 
70. 130 12 1020 2.06 
71. 130 12 1070 2.22 
72. 130 12 770 2.1 
73. 130 12 720 2.15 
74. 130 12 670 2.12 
75. 130 12 620 2.2 
76. 130 12 570 2.25 
77. 130 12 1200 2.1 
78. 130 12 1400 2.18 
79. 130 12 1600 2.2 
80. 130 12 1800 2.27 
81. 130 15 580 2.16 
82. 130 15 630 2.2 
83. 130 15 680 2.22 
84. 130 15 730 2.3 
85. 130 15 780 2.42 
86. 130 15 830 3.05 
87. 130 15 530 2.2 
88. 130 15 480 2.42 
89. 130 15 430 2.62 
90. 130 15 380 3.23 
91. 130 15 330 3.78 
92. 130 15 900 3.15 
93. 130 15 1100 3.1 
94. 130 15 1300 3.05 
95. 130 15 1600 2.5 
96. 130 15 1700 2.25 

The series of 29 input-out data for ANN testing is marked with 
bold numbers. 
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For the needs of training and testing the created 
ANN the whole experimental data set (Ntot = 96) is 
randomly divided into a data subset for training 
(N1 = 67) and a data subset for testing the ANN 
(N2 = 29). Approximately, two-thirds of the whole data 
set have been employed for training and one-third of the 
whole data set has been used for testing the trained 
ANN. 

Bayesian regularization with L-M algorithm 
(“trainbr”)1 was chosen for ANN training in order to 
obtain an ANN which generalizes well. The non-linear 
hyperbolic tangent transfer function (“tansig”) for the 
hidden layer and the linear transfer function 
(“purelin”) for the output layer are applied. Numerous 
cases were proven that such transfer functions make 
ANNs capable to perform successfully the 
approximation of different non-linear functions. The 
training data subset is presented to the ANN by the 
batch method. 

Mean absolute percentage error (MAPE), achieved 
by the training and testing of ANNs, represents the 
criterion for optimization of the network interconnecting 
weights. 

According to the available sample size, the created 
architecture of ANN (3 [11]11) has turned out to be the 
optimal solution (after trade-off). 

Figure 2 shows topology of this ANN, according to 
the notation system of the software package MATLAB. 

 
Figure 2. The created feed-forward BP ANN 3 [11]11 

The responses of the trained ANN are shown in 
Figure 3. 

After that, the retraining of the selected ANN with 
modified measuring data for surface quality ( '

zR ) was 
performed. This procedure was conducted in the 
following manner. To each value of parameter Rz a 
randomly chosen value [ ]z 0.1, 0.1R∆ ∈ − + , which 
follows the law of uniform distribution, was added. By 
checking, it was determined that the maximal 
percentage errors, entered into the original data, were: 
δRz ≈ ± 4.5 %. These errors can be treated as regular 
errors in the engineering measurements. 

The results of the prediction of such ANN in relation 
to the experimental data with noise are given in Figure 
4. 

The most important aspect of this study was to 
determine the prediction capability of a retrained ANN 
in the view of agreement of the desired (target) values 
of parameter '

zR , with the original values of this 
parameter without noise Rz. 

The comparative results of this analysis are given in 
Figure 5. 

 

1 MATLAB command for the corresponding function 

 

 

 
Figure 3. The performance of ANN model for surface 
roughness in plasma cutting process: (a) for training data 
set, (b) for testing data set and (c) for whole data set; The 
ANN was trained without noise (Rz׀cal). The experimental 
values (Rz׀exp) are values without noise 

(a)

(b)

(c)
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Figure 4. The performance of ANN model for surface 
roughness in plasma cutting process: (a) for training data 
set, (b) for testing data set and (c) for whole data set; The 
ANN was trained with added noise (R’z׀cal). The 
experimental values (R’z׀exp) are values including noise 

 

 

 
Figure 5. The performance of ANN model for surface 
roughness in plasma cutting process: (a) for training data 
set, (b) for testing data set and (c) for whole data set; The 
ANN was trained with added noise (R’z׀cal). The 
experimental values (Rz׀exp) are values without noise 

(a)

(b)

(c)

(a) 

(b) 

(c) 
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3. RESULTS AND DISCUSSION 

 
The prediction accuracy of an ANN can be displayed 
in various ways. The correlation coefficient is a 
statistical measure of the strength of correlation 
between actual versus predicted values. For example, 
the value of + 1 indicates perfect correlation. In that 
case, all points should lie on the line passing through 
the origin and inclined at 45°. In all cases 
investigated in this study most of the points are close 
to this line and correlation coefficients are very high 
(Table 2). 
Table 2. Correlation coefficients for all ANN models 

R 
Model 

Training Testing Training + 
Testing 

The ANN 
(original data) 0.975 0.949 0.966 

The retrained ANN 
(data with noise) 0.983 0.967 0.977 

The retrained ANN 
(original data) 0.986 0.969 0.980 

 
Also, the histogram is the appropriate statistical tool 

for the analysis of prediction accuracy. The distribution 
of the percentage error in the form of histogram in 
eleven equal ranges, between minimum and maximum 
values, is presented in Figure 6. The histogram refers 
onto re-trained ANN and whole data set, without the 
noise (see Fig. 5c). 

 
Figure 6. Distribution of the percentage error (δ) for 
modelling the surface roughness (Rz) in plasma cutting 
process 

As it is known, for the normal distribution, two 
standard deviations from the mean account 95 % of the 
whole set of data. In this case, it is: µ ± 2σ < 10 %. In 
other words, the number of errors greater than 10 % is 
practically negligible. 

Furthermore, in all ANN models the mean absolute 
percentage errors are very small (Table 3). Similar 
results were obtained for other cases examined in this 
study. 

Table 3. Mean absolute percentage errors for all ANN models 

MAPE [%] 
Model 

Training Testing Training + 
Testing 

The ANN 
(original data) 4.061 5.835 4.597 

The retrained ANN 
(data with noise) 3.356 4.640 3.744 

The retrained ANN 
(original data) 3.127 4.480 3.515 

 

 
4. CONCLUSION 

 
In this study, the effects of experimental noise on 
prediction ability of the ANN by imposing random noise, 
similar to those found experimentally, are examined. 

For that purpose, a BP ANN model for the analysis 
and prediction of the relationship between process 
parameters and characteristic of surface quality in 
plasma cutting was developed. 

A very good performance of an ANN, trained on 
noisy experiment, in terms of agreement with original 
experimental data was achieved. That indicates the 
robustness of this type of ANN. 
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ПРОЦЕНА ОСЕТЉИВОСТИ ВЕШТАЧКИХ 

НЕУРОНСКИХ МРЕЖА НА ШУМ 
ЕКСПЕРИМЕНТА: СТУДИЈА СЛУЧАЈА 

 
Милош J. Мадић, Велибор J. Маринковић 

 
Ова студија се бави моделовањем процеса резања 
плазмом применом вештачке неуронске мреже 
(ВНМ), са циљем симулације утицаја шума 
експеримента на њене перформансе. Улазни 
параметри коришћени у овој студији су били 
редуковани на три главна параметра резања: јачину 
струје, брзину резања и дебљину материјала. Као 
излазни параметар (одзив) била је усвојена средња 
висина неравнина профила у десет тачака (Rz), једна 
од базичних карактеристика квалитета обрађене 
површине. Подаци за ово истраживање су били 
узети из литературе. Креирана је директна трослојна 
ВНМ, са пропагацијом грешке уназад и алгоритмом 
за надгледано учење. За неуроне скривеног слоја 
изабран је сигмоидални тип нелинеарности, а за 
излазни слој линеарна активациона функција. ВНМ 
тренинг је извршен употребом Левенберг-
Маркеовог алгоритма са Бајесовом регуларизацијом. 
Тренирана и тестирана ВНМ на оригиналном сету 
података показала је задовољавајући ниво тачности 
предикције. Да би се симулирао експеримент са 
шумом, мерне вредности површинске храпавости су 
биле кориговане. Корекција је изведена додавањем 
случајно изабраних бројева свакој измереној 
вредности, унутар граница – 0,1 и + 0,1 µm. Анализа 
је показала да ВНМ тренирана на подацима са 
шумом има сличне перформансе као и ВНМ 
тренирана на оригиналним подацима, што указује на 
робустност овог типа ВНМ. 

 
 


