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1. INTRODUCTION

Assessing the Sensitivity of the
Artificial Neural Network to
Experimental Noise: A Case Study

This case study deals with modeling of plasma cutting process using
artificial neural network (ANN), with the aim of simulation the impact of
noise on its performance. The input parameters used in this study were
reduced to three cutting parameters which consisted of strength of current
(), cutting speed (V), and material thickness (s). The ten-point height of
irregularities (R,), which is one of the basic characteristics of the surface
quality, was adopted as the output parameter (response). The data for this
research were gathered from literature. A feed-forward three-layer ANN
was created, with backpropagation and algorithm for supervised learning.
For the hidden layer neurons sigmoidal type of non-linearity was selected,
while a linear activation function was selected for the output layer. ANN
training was carried out using Levenberg-Marquardt algorithm with
Bayesian regularization. The trained and tested ANN on the original data
set showed a satisfactory level of prediction accuracy. In order to simulate
an experiment with noise, measured values of the surface roughness were
corrected. The correction was performed by adding randomly selected
numbers to each measured value, within the range — 0.1 to + 0.1 pm. With
the previously selected architecture and the same other parameters, re-
training of ANN was carried out. The analysis showed that the ANN model
trained on the data with noise has similar performance as the ANN model
trained on the original data, which indicates the robustness of this type of
ANN.

Keywords: sensitivity of ANN, experimenatal noise, plasma cutting.

The realizations of the experiment, regression and
dispersion analysis are strictly determined by the chosen

As far as complex (non-linear, “diffusion”) processes
and systems are concerned, whose structures and laws
of action are not well known or known enough, the
principle of the “black box™ is applied. Basic input
(controllable) values are those that can be expressed
numerically and selected and varied at will. Other input
(uncontrollable, noise) values are those whose action is
unknown or can be neglected. Output values (responses,
target functions, state characteristics) are those values
that can be measured and which are the result of the
action of input values.

The theory of experimental design is based on the
aforementioned principle, known also as the design of
experiment [1-5]. The design of experiment (DoE) has a
very broad application across all engineering, natural
and social sciences. All this also relates to artificial
neural networks [6-10].

In DoE, it is important to choose an adequate
mathematical model and experiment design. The choice
of appropriate mathematical model is often not
straightforward. Also, well chosen experimental designs
maximize the amount of information that can be
obtained for a given amount of experimental effort.
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mathematical model and design. The application of
complex mathematical models and designs implies a
more profound knowledge of the theory of experimental
design.

In applying the ANN method, neither the
mathematical model nor the experiment plan are being
set according to the previously determined rules. The
results obtained directly from the existing production
process can be used in that sense, which significantly
reduces research costs.

Another important advantage of ANNs in relation to
the classical DoE is reflected in the fact that the input
data can be varied on different number of levels. This is
not the case with DoE, where certain levels (centre
point, “star” points) cannot sometimes be realized
experimentally, neither under laboratory nor even less
under production conditions.

The basic deficiency of ANNs lies in the need to
process a relatively large number of data (samples), in
order to secure the sufficient prediction accuracy and
the desired level of generalization. However, there are
examples where that number of samples is not much
larger than the number needed for the application of
DoE [11-16].

From the regression analysis, it is known that the
accuracy of the selected mathematical model is highly
influenced by experimental errors. The aim of this study
is to examine to which extent the experimental noise
affects the ANN performance, i.e. its prediction accuracy.
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2. ARTIFICIAL NEURAL NETWORK
2.1 Overview of ANN

The appearance of ANNS is related to the attempt to form
an artificial system based on mathematical models which
will be, in its structure, function and information (signal)
processing, similar to biological nervous systems, and
thus be able to process “intelligently” information
(signals), that is, simulate biological intelligence.

The ANNSs have found application in many different
domains, such as dynamic system identification,
complex system modelling, optimization and control,
design and classification, speech interpretation, pattern
recognition, metal-cutting and metal-forming simulation,
robotics and communication and the like.

Modern ANNs have a parallel-distributed architecture.
They consist of a larger number of neurons (as basic
processing units) distributed in several layers. Each ANN
must have at least three layers: input layer, hidden layer,
and output layer. The greatest number of ANNs has one
hidden layer though there may be more of them [17-19].

Neurons of one layer are connected by specific
synapses to the neurons of their neighbouring layers.
Apart from specific types of ANNSs, there are no
interconnections between the neurons belonging to the
same layer. Viewed schematically, the ANN represents
an oriented graph in which the nodes are processor units,
while the arrows on the lines point to the direction/sense
of the signal (information) flow [7] (Fig. 1).

Direction of Activation Propagation

=1 .7

Output Layer

Input Layer ]
Hidden Layer

Direction of Error Propagation

Figure 1. Topology of a typical feed-forward three-layer BP ANN

The interconnections between particular neurons by
the layers are characterized by weights, which change
during the ANN training.

The number of hidden layers and the number of
neurons in each of them are not defined in advance;
instead, these numbers can change during the ANN
training until the optimum architecture is defined, namely,
the one that produces the best performances of ANN. The
researchers usually rely on the derived examples and their
own experience (“trial and error approach”). This is one of
the major obstacles in using ANNs.

The ANN modelling commonly follows these steps:
definition of the input and output parameters; collection
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and analysis of the data base; random dividing of the data
set on training and testing data subsets; normalization of
the input/output data (optional); designing of an ANN;
training of the ANN (choice of architecture, training
algorithm, transfer functions, performance criterion, and
other ANN parameters); testing the trained ANN.

After adopting the ANN with the best performance, the
created ANN may be used for simulation and prediction.

Every ANN is designed for modelling a concrete
problem. For an ANN to react appropriately when unknown
input data are added to it, it must be trained. ANN training
is done on the examples that make up a set of input-output
data obtained by the experiment or some other way.

The ANN training represents a process of adjusting
weights of interconnections and bias adjoined to every
synapsis between neurons on the basis of comparing the
output values with the desired (target) ones for the same
input ones. Training is a continuous process, which is
repeated until the ANN is stabilized or overall error is
reduced below a previously defined threshold. Training
belongs to the most important parts of ANN designing
and procedure.

The trained ANN should be tested in order to assess
its ability to predict and make generalization on the
basis of the acquired “knowledge” on the selected set of
input-output data. Testing of the ANN is carried out by
applying a data subset, which is not included in the
training data subset.

The trained and tested ANN can be used for
modelling and prediction, when it is presented with new
(original) input data.

Of all the available types of ANN, multi-layer
perceptron (MLP) with back propagation (BP) training
procedure, is the most commonly used. The BP ANN is
designed to operate as a multilayer fully-connected
feed-forward network, with a particular (BP) training
algorithm for supervised learning.

For feed-forward BP ANN there are many different
standard training algorithms (Batch Gradient Descent,
One-step-secant, Resilent Backpropagation, Conjugate
Gradient, Levenberg-Marquardt (L-M), etc.). The L-M
algorithm belongs to the algorithms that converge very
fast (especially for smaller and medium large ANNS5),
with less danger from entrapment in local minimum,
before reaching global minimum at error surface, while
at the same time it can provide for high accuracy of
prediction. A more detailed approach to ANNs can be
found in the referential literature [6-10].

2.2 Implementation of ANN

The objective of the plasma cutting process is to
concentrate a large amount of energy on a small surface
of a workpiece which leads to intensive heating of the
material surface. The source of energy is high
temperature and high speed ionised gas. The gas is
ionised using a direct current passing between the
cathode (inside the nozzle) and anode (workpiece). The
plasma jet cuts the material by releasing the energy
spent for the plasma gas ionisation upon hitting the
workpiece surface. The removal of the melted material
from the cutting zone is done by the action of plasma jet
kinetic energy. The characteristics of plasma jet can be
significantly altered by changing the type of gas, gas
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flow, cutting current, and nozzle size, etc. 43. 45 6 900 2.48
Even though it is the case of a complex process, 44, 45 6 1000 31
which is characterised by a large number of influential 45, 45 6 1100 315
factors, the previous analysis has shown that this number 46, 15 6 200 11
can be reduced to three main influential factors: cutting
current (1), cutting speed (V), and material thickness (S). 47. 45 6 750 3.05
Influential factors were varied on a great number of 48. 4 6 700 2.9
levels. The ten-point height of irregularities (R,), which 49. 45 6 650 2.6
is one of the basic characteristics of the surface quality, 50. 45 6 600 2.52
was selected as the target function (output value). The 51. 45 6 1300 3.1
experimental data are presented in Table 1 [20]. 52. 80 3 900 3.29
Table 1. Data for training and testing of the ANN 53. 80 8 950 3.42
Cutting Material Cutting Surface >4 80 8 1000 33
No. | current, | | thickness,s | speed,V |roughness, R, 33. 80 8 1050 3.25
[A] [mm] [m/min] [um] 56. 80 8 1100 32
1. 80 4 1300 2.13 57. 30 8 1150 32
2. 80 4 1400 2.15 58. 80 8 1200 33
3. 80 4 1000 2.25 59. 80 8 1250 342
4. 80 4 900 2.3 60. 80 8 1300 3.6
5. 80 4 1200 2.4 61. 80 8 1350 4.05
6. 80 4 1700 2.42 62. 80 8 1400 4.22
7. 80 4 2100 32 63. 80 8 1500 4.32
8. 80 4 2200 3.15 64. 80 8 1700 4.3
9. 80 4 2300 34 65. 80 8 2000 4.5
10. 80 4 2400 3.5 66. 130 12 820 1.79
11. 80 4 2500 3.55 67. 130 12 870 1.85
12. 80 4 2600 3.58 68. 130 12 920 1.86
13. 80 4 2800 3.7 69. 130 12 970 1.9
14. 45 4 1050 3.2 70. 130 12 1020 2.06
15. 45 4 1100 34 71. 130 12 1070 2.22
16. 45 4 1150 3.6 72. 130 12 770 2.1
17. 45 4 1200 3.67 73. 130 12 720 2.15
18. 45 4 1250 4.1 74. 130 12 670 2.12
19. 45 4 950 34 75. 130 12 620 2.2
20. 45 4 900 3.5 76. 130 12 570 2.25
21. 45 4 850 33 77. 130 12 1200 2.1
22. 45 4 800 3.1 78. 130 12 1400 2.18
23. 45 4 1100 3.5 79. 130 12 1600 2.2
24, 45 4 1300 3.82 80. 130 12 1800 2.27
25. 45 4 1400 3.8 81. 130 15 580 2.16
26. 45 4 1500 4 82. 130 15 630 2.2
27. 80 6 1225 2.15 83. 130 15 680 2.22
28. 80 6 1275 2.21 84. 130 15 730 2.3
29. 80 6 1300 2.25 85. 130 15 780 2.42
30. 80 6 1375 2.25 86. 130 15 830 3.05
31. 80 6 1425 2.28 87. 130 15 530 2.2
32. 80 6 1475 2.3 88. 130 15 480 2.42
33. 80 6 1175 2.22 89. 130 15 430 2.62
34, 80 6 1125 2.35 90. 130 15 380 3.23
35. 80 6 1075 2.35 91. 130 15 330 3.78
36. 80 6 1025 2.38 92. 130 15 900 3.15
37. 80 6 900 2.45 93. 130 15 1100 3.1
38. 80 6 1700 2.5 94. 130 15 1300 3.05
39. 80 6 1900 2.6 9s. 130 15 1600 2.5
40. 80 6 2100 2.65 96. 130 15 1700 2.25
4l 80 : 2300 2.8 The series of 29 input-out data for ANN testing is marked with
42. 45 6 850 2.55 bold numbers.
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For the needs of training and testing the created
ANN the whole experimental data set (Ny,=96) is
randomly divided into a data subset for training
(N;=67) and a data subset for testing the ANN
(N, =29). Approximately, two-thirds of the whole data
set have been employed for training and one-third of the
whole data set has been used for testing the trained
ANN.

Bayesian regularization with L-M algorithm
(“trainbr”)! was chosen for ANN training in order to
obtain an ANN which generalizes well. The non-linear
hyperbolic tangent transfer function (“tansig”) for the
hidden layer and the linear transfer function
(“purelin”) for the output layer are applied. Numerous
cases were proven that such transfer functions make
ANNs capable to perform successfully the
approximation of different non-linear functions. The
training data subset is presented to the ANN by the
batch method.

Mean absolute percentage error (MAPE), achieved
by the training and testing of ANNS, represents the
criterion for optimization of the network interconnecting
weights.

According to the available sample size, the created
architecture of ANN (3 [11];1) has turned out to be the
optimal solution (after trade-off).

Figure 2 shows topology of this ANN, according to
the notation system of the software package MATLAB.

Input Hidden Layer Output Layer
N N Y

1ix1

al = tansig (IWuipt +b1) a2 =purelin (LW2:a1 +b2)

Figure 2. The created feed-forward BP ANN 3 [11]41

The responses of the trained ANN are shown in
Figure 3.
After that, the retraining of the selected ANN with

modified measuring data for surface quality (R;) was

performed. This procedure was conducted in the
following manner. To each value of parameter R, a

randomly chosen value AR, e[—O.l,-i—O.l], which

follows the law of uniform distribution, was added. By
checking, it was determined that the maximal
percentage errors, entered into the original data, were:
OR, = +4.5 %. These errors can be treated as regular
errors in the engineering measurements.

The results of the prediction of such ANN in relation
to the experimental data with noise are given in Figure
4.

The most important aspect of this study was to
determine the prediction capability of a retrained ANN
in the view of agreement of the desired (target) values

of parameter R'Z, with the original values of this

parameter without noise R,.
The comparative results of this analysis are given in
Figure 5.

' MATLAB command for the corresponding function
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Figure 3. The performance of ANN model for surface
roughness in plasma cutting process: (a) for training data
set, (b) for testing data set and (c) for whole data set; The
ANN was trained without noise (R,ca). The experimental
values (Rzexp) are values without noise
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ANN was trained with added noise (R’;ca). The

roughness in plasma cutting process: (a) for training data

Figure 5. The performance of ANN model for surface
experimental values (Rexp) are values without noise

set.

R'z|exp (gm)
(b) for testing data set and (c) for whole data set; The

ANN was trained with added noise (R’;ca). The

Figure 4. The performance of ANN model for surface
roughness in plasma cutting process: (a) for training data
experimental values (R’;.cxp) are values including noise
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3. RESULTS AND DISCUSSION

The prediction accuracy of an ANN can be displayed
in various ways. The correlation coefficient is a
statistical measure of the strength of correlation
between actual versus predicted values. For example,
the value of + 1 indicates perfect correlation. In that
case, all points should lie on the line passing through
the origin and inclined at 45°. In all cases
investigated in this study most of the points are close
to this line and correlation coefficients are very high
(Table 2).

Table 2. Correlation coefficients for all ANN models

R
Model
.. . Training +
Training Testing Testing

The ANN 0.975 0.949 0.966

(original data)
The retrained ANN

(data with noise) 0.983 0.967 0.977

The retrained ANN| ) ¢ 0.969 0.980
(original data)

Also, the histogram is the appropriate statistical tool
for the analysis of prediction accuracy. The distribution
of the percentage error in the form of histogram in
eleven equal ranges, between minimum and maximum
values, is presented in Figure 6. The histogram refers
onto re-trained ANN and whole data set, without the
noise (see Fig. 5¢).

25

Min -10.8671
Max  +14.9097
Mean  0.5695
StDev. 4.6611

Number of data

0
-20 -15 -10 -5 0 5 10 15 20
Error (%)

Figure 6. Distribution of the percentage error (5) for
modelling the surface roughness (R;) in plasma cutting
process

As it is known, for the normal distribution, two
standard deviations from the mean account 95 % of the
whole set of data. In this case, it is: @ + 26 < 10 %. In
other words, the number of errors greater than 10 % is
practically negligible.

Furthermore, in all ANN models the mean absolute
percentage errors are very small (Table 3). Similar
results were obtained for other cases examined in this
study.

194 = VOL. 38, No 4, 2010

Table 3. Mean absolute percentage errors for all ANN models

MAPE [%]
Model
. . Training +
Training Testing Testing

The ANN 4.061 5.835 4.597

(original data)
The retrained ANN

(data with noise) 3.356 4.640 3.744

The retrained ANN | 5 4 o7 4.480 3.515
(original data)

4. CONCLUSION

In this study, the effects of experimental noise on
prediction ability of the ANN by imposing random noise,
similar to those found experimentally, are examined.

For that purpose, a BP ANN model for the analysis
and prediction of the relationship between process
parameters and characteristic of surface quality in
plasma cutting was developed.

A very good performance of an ANN, trained on
noisy experiment, in terms of agreement with original
experimental data was achieved. That indicates the
robustness of this type of ANN.
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IMPOLIEHA OCET/bBUBOCTHU BEHITAYKHNX
HEYPOHCKUX MPEXKA HA IIIYM
EKCIIEPUMEHTA: CTYINJA CJIYYAJA

MuJiom J. Maauh, Besinoop J. Mapunkosuh

OBa crtynomja ce 0aBM MOJENOBAaEmEM IIpoIieca pe3arba
IUIa3MOM TIPUMEHOM BELITauyKe HEYypOHCKE MpEKe
(BHM), ca umwmbeM cuMmylangje yTUlaja OIyma
eKCIIepIMEHTa Ha IeHe neppopMmaHce. YIa3HH
napamerpu KopuiiheHd y OBOj CTYIAMjU cCy OHH
pelyKOBaHM Ha TPH IJIaBHA MapaMerpa pe3arba: jauuHy
CTpyje, Op3uHy pe3ama U aeOpHHY Marepujana. Kao
u3JIa3Hu mapamerap (0A3uB) OWia je yCBOjeHa Cpe/rha
BHCHHA HepaBHUHA Ipodmia y aecer tavaka (R,), jenHa
o 0a3MYHUX KapakTepHCTHKa KBaiuTeTa oOpaleHe
noBpmrHe. [lomany 3a OBO HCTpaXKMBame Cy OWIH
y3eTH U3 nureparype. KpenpaHna je tupeKkTHa TpOCIojHA
BHM, ca npomnaraiujom rpemke yHazag u aJrOpuTMOM
3a HaATJEJaHO Y4ewme. 3a HeypoHe CKPHUBEHOT Ccloja
n3abpaH je CUTMOMIAIHHM THUII HEJIMHEAPHOCTH, a 3a
W3JIa3HU CJI0j JIMHeapHa akTuBanuoHa QyHkuuja. BHM
TPEHHHT je W3BpIIeH ymoTpebom  JleBeHOepr-
MapkeoBor ainroputMa ca bajecoBom perynapusaiujom.
Tpenupana u tecrupana BHM Ha opuruHanHom cery
nojiaTaka rnokasajia je 3al0BoJbaBajyhu HMBO TauHOCTH
npeauknuje. Jla OM ce cUMynupao eKCIIEpUMEHT ca
LIYMOM, MEpHE BPEIHOCTH MOBPIINHCKE XPANaBOCTH Cy
6une xkopuroBaHe. Kopekmuja je n3BeleHa I0IaBamkeM
ciydajHo  m3abpaHux OpojeBa CBaKoj H3MEPEHO]
BpenHocTH, yHyTap rpanuua — 0,1 u + 0,1 pm. Ananuza
je mnokazana nga BHM TpeHupana Ha mnojanuma ca
mymMoM w#Ma ciaugHe mepdopmance kao u BHM
TPEHUpPaHa HAa OPUTHHAIHUM NOAAIMMA, LITO yKa3yje Ha
poOyctHocT oBor Tuna BHM.
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