
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2011) 39, 67-71          67
 

Received: April 2011, Accepted: May 2011 
Correspondence to: Marko Jaric 
Innovation Center of Faculty of Mechanical Engineering,
Kraljice Marije 16, 11120 Belgrade 35, Serbia 
E-mail: mjaric@mas.bg.ac.rs 

Srbislav Genić 
Associate Professor 

University of Belgrade 
Faculty of Mechanical Engineering 

 
Ivan Arandjelović 

Associate Professor 
University of Belgrade 

Faculty of Mechanical Engineering 
 

Petar Kolendić 
Research Assistant 

University of Belgrade 
Faculty of Mechanical Engineering 

 
Marko Jarić 

Research Assistant 
University of Belgrade 

Innovation Center of Faculty of Mechanical 
Engineering 

 
Nikola Budimir 

Research Assistant 
University of Belgrade 

Innovation Center of Faculty of Mechanical 
Engineering 

 
Vojislav Genić 

Head of Public Health Care and Mobility 
Siemens IT Solutions and Services, Belgrade 

A Review of Explicit Approximations of 
Colebrook’s Equation 
 
The most common explicit correlations for estimation of the friction factor 
in rough and smooth pipes are reviewed in this paper. Comparison of any 
friction factor equation with the Colebrook’s equation was expressed 
trough the mean relative error, the maximal positive error, the maximal 
negative error, correlation ratio and standard deviation. The statistical 
comparison of different equations was also carried out using the “Model 
selection criterion” and “Akaike Information Criterion”. It was found that 
the equation of Zigrang and Sylvester provides the most accurate value of 
friction factor, and that Haaland’s equation is most suitable for hand 
calculations. 
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mechanics, turbulent flow. 

 
 

1. INTRODUCTION 
 

The determination of a single-phase friction factor of 
pipe is essential to a variety of industrial applications, 
such as single-phase flow systems, two-phase flow 
systems and supercritical flow systems. Typically, the 
method of choice for computing friction factor is the 
Colebrook’s equation. 

This equation is a combination of Prandtl-von 
Karman-Nikuradse smooth-pipe equation 

 

 ( )1 2log 0.08Re f
f
= −  (1) 

and rough-pipe equation 

 ( )1 1.14 2log
f

ε= −  (2) 

where Re is the Reynolds number and ε is the relative 
pipe roughness. Equations (1) and (2) are known as 
PKN equations [1]. Using these equations and his own 
data gathered on commercial pipes, Colebrook [2] 
formed the following equation that covers the whole 
turbulent flow region 

 1 2.512log
3.7f Re f
ε⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

 (3) 

that became widely accepted design formula for turbulent 
friction in the range of Re = 4000 – 108 and ε = 0 – 0.05. 

Due to its demonstrated applicability, the 
Colebrook’s equation (3) has become the acceptable 
standard for calculation of the friction factor in turbulent 
regimes. It should be noted that Rouse [3] was the first 
to confirm Colebrook’s equation (3) by his own 
measurements. 

Equation (3) was plotted in 1944 by Moody [4] into 
what is now called the Moody chart for pipe friction 
(this chart is probably the most famous and useful figure 
in engineering fluid mechanics). The implicit form of 
(3) disables the quick estimation of friction factor in 
hand calculations. For this reason, a number of 
approximate explicit counterparts have been proposed in 
the last 60 years and a most recent and very good 
overview of these equations is given in [5-7]. 

The basic idea of these efforts is to introduce more 
parameters in equation, in order to obtain as good 
results as possible, or more precisely as close prediction 
as possible of a Colebrook’s equation. These explicate 
equations were compared with Colebrook’s equation as 
shown in Section 3. 

 
2. EXPLICIT EQUATIONS FOR CALCULATION OF 

THE FRICTION FACTOR IN TURBULENT FLOW 
 

The most widely used explicit approximations for the 
Colebrook’s equation postulated since 1947 are 
synthesized in Table 1, in the order of publication. 
Additionally, this table contains the range of validity for 
each approximation cited as defined in the original 
paper. 

Most of these approximations are typically valid 
over only a limited range of the Re and ε values 
encountered in practice. 
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Table 1. Various approximations of the Colebrook’s equation 

Eq. 
num. Equation Range Ref. Authors 

(year) 

(4) 
1/ 36100.0055 1 20000f

Re
ε

⎡ ⎤⎛ ⎞⎢ ⎥= + +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 Re = 4000 – 5 · 108 
ε = 0 – 0.01 [8] Moody 

(1947) 

(5) 
0.25680.11f

Re
ε⎛ ⎞= +⎜ ⎟

⎝ ⎠
 Not specified [9] Altshul 

(1952) 

(6) 0.1340.225 0.44 1.620.53 0.094 88f Re εε ε ε −= + +  
Re = 4000 – 5 · 107 
ε = 0.00001 – 0.04 [10] Wood 

(1966) 

(7) 
2

0.9
72 log

3.7
f

Re
ε

−
⎡ ⎤⎛ ⎞

= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 Not specified [11] Churchill 
(1973) 

(8) 
2

0.9
21.251.14 2logf
Re

ε
−

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 Re = 5000 – 107 

ε = 0.00004 – 0.05 [12] Jain 
(1976) 

(9) 
2

0.9
5.742log

3.7
f

Re
ε

−
⎡ ⎤⎛ ⎞

= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 Re = 5000 – 108 
ε = 0.000001 – 0.05 [13] 

Swamee, 
Jain 

(1976) 

(10) 
2

1.1098

0.8981
5.0452 5.85062log log

3.7065 2.8257
f

Re Re
ε ε

−
⎫⎤⎛ ⎞⎧ ⎪⎡= − − + ⎥⎜ ⎟⎨ ⎬⎢ ⎜ ⎟⎣ ⎥⎩ ⎪⎝ ⎠⎦⎭

 Re = 4000 – 4 · 108 [14] Chen 
(1979) 

(11) 
26.51.8log 0.135f

Re
ε

−
⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 Re = 4000 – 4 · 108 
ε = 0 – 0.05 [15] Round 

(1980) 

(12) 
2

5.02 5.02 132log log log
3.7 3.7

f
Re Re Re

ε εε
−
⎫⎧ ⎤⎡ ⎞ ⎪⎛ ⎛ ⎞= − − − +⎨ ⎬⎥⎟⎜ ⎜ ⎟⎢ ⎝ ⎝ ⎠⎣ ⎠ ⎪⎩ ⎦⎭

 Re = 4000 – 108 
ε = 0.00004 – 0.05 [16] 

Zigrang, 
Sylvester 

(1982) 

(13) 
21.11 6.91.8log

3.7
f

Re
ε

−
⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= − ⎢ + ⎥⎨ ⎬⎜ ⎟

⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 Re = 4000 – 108 
ε = 0.000001 – 0.05 [17] Haaland 

(1983) 

(14) 

0.25680.11A
Re

ε⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

If 0.018A ≥  then f A=  and if 0.018A <  then 0.0028 0.85f A= +  

Re = 4000 – 108 
ε = 0 – 0.05 [18] Tsal 

(1989) 

(15) 
2

0.983
95 96.822log

3.70
f

ReRe
ε

−
⎡ ⎤⎛ ⎞

= − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 Re = 4000 – 108 
ε = 0 – 0.05 [19] Manadilli 

(1997) 

(16) 

        5.0272 4.5672log log
3.7065 3.827

f
Re Re

ε ε ⎞⎞ ⎟
⎧ ⎡⎪ ⎛⎢= − − − ⋅⎨ ⎜⎢⎣

⎟
⎠⎝ ⎟
⎠⎪⎩

 

2
0.9924 0.93455.3326log

7.79 208.82 Re
ε

−
⎫⎤⎞⎛ ⎞ ⎪⎛ ⎞ ⎛ ⎞ ⎥⎟⎜ ⎟⋅ + ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎟+ ⎥⎝ ⎠ ⎝ ⎠ ⎪⎝ ⎠⎠⎦⎭

 

Re = 3000 – 1.5 · 108 
ε = 0 – 0.05 [20] 

Romeo, 
Rоyo, 
Мonzon 
(2002) 

(17) 
2

1.1007
1.1105 1.0712

60.525 56.2911.613 ln 0.234f
Re Re

ε
−

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 Re = 3000 – 108 

ε = 0 – 0.05 [21] Fang 
(2011) 

(18) 

( )

ln
1.11.816ln

ln 1 1.1

Re
Re

Re

β =
⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

, 
2

0.43432 log 10
3.71

f β ε −
−⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 
Not specified [7] Brkić (2011)

(19) 

( )

ln
1.11.816ln

ln 1 1.1

Re
Re

Re

β =
⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

, 
22.182log

3.71
f

Re
β ε −

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

Not specified [7] Brkić (2011)
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3. STATISTICAL COMPARISON OF THE 
EQUATIONS 
 

The statistical comparison of any friction factor 
equation with the Colebrook’s equation can be done by 
the following procedure: 

• Divide the range of possible Re and ε using 
appropriate pitch into n nodes. 

• Calculate the friction factor fpred,i by the 
individual approximate equation. 

• Calculate friction factor value fC,i calculated with 
the Colebrook’s equation (fC,i was calculated 
numerically within the range of error ± 10–8). 

• Calculate the following parameters: 
o the mean relative error 

 C, pred,

C,1

1 n i i

ii

f f
meanRE

n f=

−
= ∑  (20) 

o the maximal positive error 

 C, pred,

C,
max i i

i

f f
maxRE

f
+ ⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (21) 

o the maximal negative error 

 pred, C,

C,
max i i

i

f f
maxRE

f
− ⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (22) 

o Θ, correlation ratio 

 
( )

( )

2
C, pred,

1
2

C, C,av
1

1

n

i i
i

n

i
i

f f

f f
Θ =

=

−

= −

−

∑

∑
 (23) 

 

o ∆av, standard deviation 

 

2
C, pred,

C,1
av

n i i

ii

f f
f

n
∆ =

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠=

∑
 (24) 

where fC,av is the average value of fC for complete set of 
nods 

 
C,

1
C,av

n

i
i

f
f

n
==
∑

. (25) 

In this paper, we will use the range of Re = 4000 – 
108 and ε = 0 – 0.05 and a net will be formed using 
linear scale with 106 nods. 

Three ways were used to produce the number of 
nods, presented in Table 2. 
Table 2. Three ways for forming the net with 106 nods 

 Range Nods Linear step 
Re = 4000 – 108 1000 99996 

I 
ε = 0 – 0.05 1000 50 · 10–6 

Re = 4000 – 108 10000 9999.6 
II 

ε = 0 – 0.05 100 500 · 10–6 
Re = 4000 – 108 100 999960 

III 
ε = 0 – 0.05 10000 5 · 10–6 

 
It should be noted that similar analysis covering the 

observed range (Re = 4000 – 108 and ε = 0 – 0.05) with 
a much lesser number of points (about 500 points in 
[20], 1000 points in [21], 10000 points in [5] and [22], 
740 points in the recent one [7]). 

The statistical comparison of different equations was 
also carried out using the “Model selection criterion” 
(MSC) and “Akaike Information Criterion” (AIC). 

Table 3. Statistical parameters for observed equations 

Eq. num. meanRe [%] maxRe+ [%] maxRe– [%] Θ [%] ∆av [%] MSC AIC · 10–6 NP NC 

(4) 7.517 15.90 – 12.532 84.22 8.853 – 29.92 3.493 4 5 
(5) 16.42 46.83 – 2.622 30.26 18.34 – 30.72 4.864 3 4 
(6) 3.647 100 – 6.241 99.02 10.37 – 1.040 7 11 
(7) 0.0818 0 – 0.00121 100 0.685 – – 1.882 5 8 
(8) 0.181 0.790 – 3.185 100 0.335 – 25.95 – 3.212 5 8 
(9) 0.0406 0.708 – 3.358 100 0.315 – – 3.305 5 8 

(10) 0.0676 0.316 – 0.324 100 0.0686 – 25.16 – 6.514 8 14 
(11) 90.21 94.45 0 0 90.33 – 32.33 7.857 4 7 
(12) 0.000612 0.114 – 0.0496 100 0.00615 – – 14.087 7 16 
(13) 0.207 1.420 – 1.314 100 0.222 – – 4.393 5 8 
(14) 16.16 27.30 – 2.622 30.26 17.99 – 30.71 4.864 4 5 
(15) 0.0324 0.00404 – 2.729 100 0.245 – – 3.755 6 10 
(16) 0.0680 0.0815 – 0.146 100 0.069 – 25.00 – 6.511 11 20 
(17) 0.0550 0.441 – 0.491 100 0.077 – 22.96 – 6.769 8 11 
(18) 0.118 3.374 – 1.655 100 0.220 – 25.37 – 4.590 9 16 
(19) 0.123 0.124 – 2.856 100 0.280 – 25.33 – 3.530 9 16 
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The MSC and AIC attempt to represent the 
“information content” of a given set of parameter 
estimates by relating the coefficient of determination to 
the NP (or equivalently, the number of degrees of 
freedom) that were required to obtain the fit. When 
comparing two models (equation) with different 
numbers of parameters, this criterion places a burden on 
the model with more parameters not only to have a 
better coefficient of determination, but quantifies how 
much better it must be for the model to be deemed more 
appropriate. 

MSC criterion is given in the form 

 
( )

( )

C, C,av
1

C, pred,
1

2ln

n

i
i
n

i i
i

f f
NPMSC
n

f f

=

=

⎡ ⎤
−⎢ ⎥

⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

∑

∑
 (26) 

where NP is the number of parameters in proposed 
equation. 

For this criterion, the most appropriate model will be 
that with the largest MSC, because we want to maximize 
information content of the model. 

AIC is defined by the following expression 

 ( )2C, pred,
1

ln 2
n

i i
i

AIC n f f NP
=

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ . (27) 

The AIC as defined above is dependent on the 
magnitude of the data points as well as the number of 
observations. According to this criterion, the most 
appropriate model is the one with the smallest values of 
the AIC. Statistical comparison of equations (4) – (19) 
with Colebrook’s equation (3) is given in Table 3, 
where NC is the number of mathematical calculations in 
a given equation. 

The numbers from Table 3 speak for themselves. 
Equation (12) is the best one according to most 
important criterions ∆av and Θ, and maximal relative 
errors are quite low. The only shortcoming of the (12) is 
the number of calculations (mathematical operations) 
that have to be done in order to obtain the result. It is 
interesting to compare, for example, (10) and (16). They 
have almost the same standard ∆av and Θ, as well as 
other statistical parameters. Equation (10) should be 
given the advantage, in hand calculations, because it has 
much lesser NP and NC compared to (16). 

Another interesting equation is (13). Although it is 
published 28 years ago, it provides very fine statistical 
parameters and needs only NC = 8 mathematical 
operations. 

Altshul’s equation (5) and Tsal’s correction (14) of 
Altshul’s equation is cited in one of the most significant 
engineering handbooks [22]. The citation from [22] is 
interesting: “Friction factors obtained from the Altshul-
Tsal equation are within 1.6 % of those obtained by 
Colebrook’s equation.” 

Our analysis shows that both equations do not 
predict friction factor well. Maximal relative error of 
(14) is 27.30 %, standard deviation is about 18 %. 
Alshul’s, equation shows even worse parameters: 
maximal error 46.83 % is highly unacceptable. 

Although NC is small, these equations cannot be 
recommended for engineering practice. Equation (11) is 
the worst one among the cited equations. 

 
4. CONCLUSION 

 
As stated by many engineers and scientists, famous 
Colebrook’s equation is still the best equation that 
provides a link between the friction factor, Reynolds 
number and relative roughness. Its only disadvantage is 
the implicit form of equation, and many authors 
reported their explicit approximations. 

After the statistical analysis given in this paper, two 
equations can be recommended: 

• equation (12) of Zigrang and Sylvester [16] 
provides the most accurate value of friction 
factor using 16 calculations to obtain the result; 

• equation (13) of Haaland [17] provides 
reasonably good statistical parameters but needs 
only 8 calculations, which is more convenient for 
hand calculation. 

Equations (4) – (6), (11) and (14) should be avoided 
in engineering practice. 

REFERENCES 

[1] Nikuradse, J.: Strömungsgesetze in rauhen Rohren, 
VDI-Verlag, Berlin, 1933. 

[2] Colebrook, C.F.: Turbulent flow in pipes, with 
particular reference to the transition region between 
the smooth and rough pipe laws, Journal of the 
Institution of Civil Engineers, Vol. 11, No. 4, pp. 
133-156, 1939. 

[3] Rouse, H.: Evaluation of boundary roughness, in: 
Proceedings of the 2nd Hydraulics Conference, 22-
26.06.1943, Lowa City, USA, Paper 27. 

[4] Moody, L.F.: Friction factors for pipe flow, 
Transactions of the ASME, Vol. 66, No. 8, pp. 671-
684, 1944. 

[5] Yıldırım, G: Computer-based analysis of explicit 
approximations to the implicit Colebrook-White 
equation in turbulent flow friction factor 
calculation, Advances in Engineering Software, 
Vol. 40, No. 11, pp. 1183-1190, 2009. 

[6] Fang, X., Xua, Y. and Zhou, Z.: New correlations 
of single-phase friction factor for turbulent pipe 
flow and evaluation of existing single-phase 
friction factor correlations, Nuclear Engineering 
and Design, Vol. 241, No. 3, pp. 897-902, 2011. 

[7] Brkić, D.: Review of explicit approximations to the 
Colebrook relation for flow friction, Journal of 
Petroleum Science and Engineering, Vol. 77, No. 1, 
pp. 34-48, 2011. 

[8] Moody, L.F.: An approximate formula for pipe 
friction factors, Transactions of the ASME, Vol. 69, 
pp. 1005-1006, 1947. 

[9] Алтшуль, А.Д.: Обсбшенная формула 
сопротивления трубопроводов, Гидравлические 
строительство, No. 6, 1952. 

[10] Wood, D.J.: An explicit friction factor relationship, 
Civil Engineering, Vol. 36, No. 12, pp. 60-61, 1966. 



FME Transactions VOL. 39, No 2, 2011 ▪ 71
 

[11] Churchill, S.W.: Empirical expressions for the 
shear stress in turbulent flow in commercial pipe, 
AIChE Journal, Vol. 19, No. 2, pp. 375-376, 1973. 

[12] Jain, A.K.: Accurate explicit equation for friction 
factor, Journal of the Hydraulics Division, Vol. 
102, No. 5, pp. 674-677, 1976. 

[13] Swamee, P.K. and Jain, A.K.: Explicit equations for 
pipe-flow problems, Journal of the Hydraulics 
Division, Vol. 102, No. 5, pp. 657-664, 1976. 

[14] Chen, N.H.: An explicit equation for friction factor 
in pipe, Industrial and Engineering Chemistry 
Fundamentals, Vol. 18, No. 3, pp. 296-297, 1979. 

[15] Round, G.F.: An explicit approximation for the 
friction factor – Reynolds number relation for rough 
and smooth pipes, The Canadian Journal of Chemical 
Engineering, Vol. 58, No. 1, pp. 122-123, 1980. 

[16] Zigrang, D.J. and Sylvester, N.D.: Explicit 
approximations to the solution of Colebrook’s 
friction factor equation, AIChE Journal, Vol. 28, 
No. 3, pp. 514-515, 1982. 

[17] Haaland, S.E.: Simple and explicit formulas for the 
friction factor in turbulent pipe flow, Transactions 
of the ASME, Journal of Fluids Engineering, Vol. 
105, No. 1, pp. 89-90, 1983. 

[18] Tsal, R. J.: Altshul-Tsal friction factor equation, 
Heating, Piping and Air Conditioning, No. 8, pp. 
30-45, 1989. 

[19] Manadilli, G.: Replace implicit equations with 
signomial functions, Chemical Engineering, Vol. 
104, No. 8, pp. 129-132, 1997. 

[20] Romeo, E., Royo, C. and Monzón, A.: Improved 
explicit equations for estimation of the friction 
factor in rough and smooth pipes, Chemical 
Engineering Journal, Vol. 86, No. 3, pp. 369-374, 
2002. 

[21] Goudar, C.T. and Sonnad, J.R.: Comparison of the 
iterative approximations of the Colebrook-White 
equation, Hidrocarbon Processing, Vol. 87, No. 8, 
pp. 79-83, 2008. 

[22] 2001 ASHRAE Handbook: Fundamentals, 
American Society of Heating Refrigerating and 
Air-conditioning Engineers, Atlanta, 2001. 

NOMENCLATURE 

ε relative pipe roughness 
f friction factor 
n number of nodes (points) 
NC number of mathematical calculations 
NP number of parameters 
Re Reynolds number 

Greek symbols 

β nondimensional parameter 
∆ standard deviation 
Θ correlation ratio 

Subscripts 

av average 
C Colebrook 
pred predicted 

 

 
ПРЕГЛЕД ЕКСПЛИЦИТНИХ 

АПРОКСИМАЦИЈА КОЛБРУКОВЕ 
ЈЕДНАЧИНЕ ЗА КОЕФИЦИЈЕНТ ТРЕЊА 

 
Србислав Генић, Иван Аранђеловић, Петар 
Колендић, Марко Јарић, Никола Будимир, 

Војислав Генић 
 
У раду је дат преглед најчешће коришћених 
експлицитних једначина за одређивање 
коефицијента трења у глатким и храпавим цевима. 
Одступање наведених једначина од Колбрукове 
једначине изражено је преко средње релативне 
грешке, максималне позитивне грешке, максималне 
негативне грешке, средњег одступања и 
корелационог односа. Осим наведених критеријума, 
поређењe једначина је извршено и коришћењем 
„Model selection criterion“ (MSC) и „Akaike 
Information Criterion“ (AIC). Наведеном анализом 
установљено је да су одступања једначине коју су 
предложили Зигранг и Силвестер најмања у односу 
на Колбрукову релацију, а да је Халандова 
једначина најпогоднија за инжењерску употребу. 

 
 
 
 


