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In recent years, there is increasing interest in using artificial neural 
networks (ANNs) for modeling and optimization of machining processes. 
The advantages that ANNs offer are numerous and аrе achievable only by 
developing an ANN model of high performance. However, determining 
suitable training and architectural parameters of an ANN still remains a 
difficult task. These parameters are typically determined in trial and error 
procedure, where a large number of ANN models are developed and 
compared to one another. This paper presents the application of Taguchi 
method for the optimization of ANN model trained by Levenberg-Marquardt 
algorithm. A case study of a modeling resultant cutting force in turning 
process is used to demonstrate implementation of the approach. The ANN 
training and architectural parameters were arranged in L18 orthogonal 
array and the predictive performance of the ANN model is evaluated using 
the proposed equation. Using the analysis of variance (ANOVA) and 
analysis of means (ANOM) optimal ANN parameter levels are identified. 
Taguchi optimized ANN model has been developed and has shown high 
prediction accuracy. Analyses and experiments have shown that the optimal 
ANN training and architectural parameters can be determined in a 
systematic way, thereby avoiding the lengthy trial and error procedure. 
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1. INTRODUCTION 
 

For more than 15 years, artificial neural networks (ANNs) 
have been widely applied in manufacturing industry for 
modeling and optimization of various processes. In the 
area of machining, recent papers [1-8] confirm the validity 
and effectiveness of using ANNs as promising and most 
powerful computer modeling techniques. 

Benardos and Vosniakos [1] used ANN for the 
prediction of surface roughness in CNC face milling 
using the experimental data collected according to the 
principles of Taguchi design of experiments. The factors 
considered in the experiment were the depth of cut, the 
feed rate per tooth, the cutting speed, the engagement and 
wear of the cutting tool, the use of cutting fluid and the 
three components of the cutting force. Sharma et al. [2] 
developed ANN model for estimation of cutting forces 
and surface roughness in hard turning. Approaching 
angle, cutting speed, feed rate and depth of cut were 
selected as ANN inputs. In order to determine optimal 
ANN model number of hidden neurons (10, 20, 30, 40, 
50) in single hidden layer was varied as well as the 
number of training iterations (100, 200, 300, 400, 500) in 
one-factor-at-a-time experimentation. After training, each 
ANN model is tested with the testing data, and optimal 
ANN architecture was found using the linear 
programming method by minimizing test error with 
testing data, minimizing training time and mean square 

error for training data. The optimal ANN model having 4 
[20]1 4 architecture achieved overall 76.4 % accuracy. 
Ezugwu et al. [3] developed ANN models for modeling 
the correlation between cutting and process parameters in 
high-speed machining of Inconel 718 alloy. In order to 
determine the optimal ANN architecture, single and 
double hidden layer networks with 10 and 15 hidden 
neurons were considered. The networks were trained with 
Levenberg-Marquardt (LM) algorithm with Bayesian 
regularization and early stopping procedure. In one-
factor-at-a-time experimentation, eight ANN models 
were developed and trained. ANN model with 4 [10-10]2 
1 architecture trained with LM algorithm and Bayesian 
regularization was chosen as the optimum model. The 
ANN model yielded correlation coefficient between the 
model prediction and experimental values ranging from 
0.6595 for cutting force to 0.9976 for nose wear 
prediction. Hans Ray et al. [4] showed some advantages 
of training ANNs using LM algorithm over the standard 
backpropagation (BP) algorithm in modeling of metal 
forming and metal cutting processes. They used double 
hidden layers ANNs with equal number of neurons in 
both hidden layers. The results obtained are found to 
correlate well with the finite element simulation data in 
cases of metal forming, and experimental data in case of 
metal cutting. Zain et al. [5] applied ANNs for 
developing the prediction model for surface roughness in 
the end milling. Three cutting parameters (cutting speed, 
feed rate and rake angle) were considered as ANN inputs. 
The determination of the number of layers and neurons in 
the hidden layers is done by the trial-and-error method 
considering some guidelines from literature. Eight ANN 
models were developed and trained. However, as in [3,4] 
the ANN model with two hidden layers had equal number 
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of neurons in both hidden layers. With a total sample size 
of 24, separated into 16 samples for training and 8 
samples for testing, it was shown that 3[1]1 1 ANN model 
is the best model which is capable of accurate predictions. 
Karayel [6] presented ANN approach for the prediction 
and control of surface roughness in a computer 
numerically controlled (CNC) lathe. Based on full 
factorial experimentation (43), considering depth of cut, 
cutting speed, and feed rate as cutting parameters, ANN 
models were developed and trained using the scaled 
conjugate gradient algorithm (SCGA) with adaptive 
learning rate. The number of hidden neurons in single 
hidden layer ANN models was determined by trial and 
error method. Tsao and Hocheng [7] applied multiple 
regression analysis (MRA) and radial basis function 
network (RBFN) for the prediction and evaluation of 
thrust force and surface roughness in drilling of 
composite material. Based on a L27 (313) Taguchi’s 
orthogonal array (OA) three production parameters (feed 
rate, spindle speed and drill diameter) and their 
interactions were investigated. The data was then used for 
model development using MRA and ANN approach. The 
RBFN training and architectural parameters were 
determined by trial and error method. However, it was 
demonstrated that RBFN is much more accurate than 
MRA. Çaydaş and Hasçalik [8] developed ANN and 
MRA model for prediction of surface roughness in 
abrasive waterjet machining (AWJ) process. In the 
development of predictive models, machining parameters 
of traverse speed, waterjet pressure, standoff distance, 
abrasive grit size and abrasive flow rate were considered 
as model variables. Optimal 13 [22]1 1ANN architecture 
was determined by trial and error method. The mean error 
of ANN predictions was 3.0072 %. 

The wide usage of ANNs is due to their ability to 
learn (through training process) complex nonlinear and 
multi input/output relationships between process 
parameters using the process data. The ANNs have 
many other advantageous characteristics, which include: 
generalization, adaptation, universal function 
approximation, parallel data processing, robustness, etc. 
Multilayer perceptron (MLP) trained with BP algorithm 
is the most used ANN in modeling and optimization of 
machining processes. Although BP algorithm has 
proved to be efficient, its convergence tends to be very 
slow, and there is a possibility to get trapped in some 
undesired local minimum. The LM algorithm is by far 
the fastest algorithm for moderate-sized (up to several 
hundred free parameters) MLPs [9], and offers some 
additional advantages in ANN training. 

The quality of the developed ANN is highly 
dependable not only on ANN training algorithm and its 
parameters but also on many ANN architectural 
parameters. Above all, there is limited theoretical and 
practical background to assist in systematical selection 
of ANN parameters through entire ANN development 
and training process. Because of that, ANN parameters 
are usually set by previous experience in trial and error 
procedure which is very time consuming. In such a way 
the optimal settings of ANN parameters for achieving 
best ANN quality are not guaranteed. 

The robust design methodology, proposed by 
Taguchi, is one of the appropriate methods for 
achieving this goal. 

There is a wide range of applications of Taguchi 
method (TM) for the optimization of various processes in 
engineering. For instance, Dura and Isac [10] illustrated 
the application of TM for the quality improvement of the 
electrochemical cadmium plating in the drum in order to 
protect the representative parts of the hydraulic mining 
equipment. Thakur and Nandedkar [11] applied TM do 
determine the effect of process parameters (pressure, 
weld time and current) on tensile shear strength of 
resistance weld joint of austenitic stainless steel AISI 
304. Optimum welding parameters determined by TM 
improved welding strength. Using the TM, Syrcos [12] 
analyzed and determined optimal settings of five casting 
parameters (piston velocity in first and second stage, 
metal temperature, filling time and hydraulic pressure) of 
the die casting method of AlSi9Cu13 aluminum alloy. 

The application of TM for the design of experiments 
in the selection of optimal operating conditions in 
machining can be found in references [1,13-15]. 

The application of TM for ANN training data 
collection is presented in references [1,7,8]. 

However, there are limited number of papers related 
to the application of TM to selection of ANN training 
and architectural parameters. 

Benardos and Vosniakos [1] used L32 Taguchi’s OA 
in order to select the most influential combination of 
factors that would be used as ANN inputs in order to 
develop accurate surface roughness model. 

Wang et al. [16] applied TM to identify “best” ANN 
structure for process cost modeling. Six design factors 
were considered (summation functions, noise function, 
transfer function, output function, error function and 
learning rules) and arranged in L18 (21 × 37) OA. The 
authors concluded that ANN efficiency depends on: the 
selection of the data for training and testing the ANN, the 
order in which data are presented during training process 
and number of hidden layers, number of neurons in each 
layer. Sukthomya and Tannock [17] used Taguchi’s 
approach for the parameter setting and optimization of a 
multilayer ANN trained with a BP algorithm. The authors 
showed that inclusion of control factors like proportion of 
testing data and the use of a training hint can have a 
significant effect on ANN performance. Khaw et al. [18] 
applied TM to determine the number of hidden layers, the 
number of neurons in a hidden layer, and the size of the 
training set to increase the accuracy and convergence 
speed of ANN trained with BP algorithm. It turned out 
that the most important factors were input representation 
scheme and training sample size. 

This paper describes the application of TM for the 
ANN parameter level optimization of a MLP network, 
trained with LM algorithm. In order to develop ANN 
model of high performance, the parameters related to 
ANN training as well as the architecture parameters are 
considered. A case study using real experimental data is 
presented to illustrate the technique and its outcomes. 

 
2. ARTIFICIAL NEURAL NETWORK (ANN) DESIGN 

ISSUES 
 

2.1 ANN architectural parameters 
 

Besides many advantages that ANNs offer there are 
some drawbacks and limitations related to ANN design 
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process. In order to develop an ANN which generalizes 
well and is robust, one has to take into consideration a 
number of issues, particularly related to ANN 
architecture and ANN training parameters. The ANN 
design parameters that largely affect the ANN 
performance are illustrated in Figure 1. 

 
Figure 1. Cause-and-effects diagram for the ANN model 
performance 

The detailed explanation and discussion about ANN 
and its parameters is beyond the scope of the paper. 
Good introduction about ANNs and applications can be 
found in [19-23]. 

Choosing the ANN architecture followed by 
selection of training algorithm and related parameters is 
rather a matter of the designer past experience since 
there are no practical rules which could be generally 
applied. This is usually a very time consuming trial and 
error procedure where a number of ANNs are designed 
and compared to one another. Above all, the design of 
optimal ANN is not guaranteed. It is unrealistic to 
analyze all combination of ANN parameters and 
parameter’s levels effects on the ANN performance. To 
deal economically with the many possible combinations 
one can apply the TM. This paper describes the effective 
application of TM for the design of neural networks with 
high prediction accuracy considering the most important 
ANN training and architectural parameters. 

 
2.2 ANN training parameters – Levenberg-Marquardt 

algorithm 
 

Levenberg-Marquardt (LM) algorithm is an iterative 
technique that locates a local minimum of a multivariate 
function that is expressed as the sum of squares of 
several non-linear, real-valued functions [24]. The 
algorithm changes current weights of the network 
iteratively such that objective function, F (w), is 
minimized as: 

 ( )2
1 1

( )
P M

ij ij
i j

F w d o
= =

= −∑∑ , (1) 

where: w = [w1 w2 ... wN]T is a vector of all weights and 
N is the number of weights, P is the number of patterns 
(observations), M is the number of output neurons, dij 
and oij are the desired value (“target value”) and the 
actual value (“predicted value”) of the i-th output 
neuron and the j-th pattern. Equation (1) can be also 
written as: 

 ( ) TF w EE= , (2) 

where: E = [e11... em1, e12 ... em2, ... e1P ... eMP]T, emp = dmp 
– omp, m = 1 ... M, p = 1 ... P, E is the cumulative error 
vector. The increments of weights are done according to: 

 ( ) 1T Tw J J I J Eµ
−

∆ = + , (3) 

where: J is Jacobian matrix of derivatives of each error 
to each weight, µ is learning parameter (small scalar 
which controls the learning process), and I is identity 
matrix. In this way, the weight updates is based on the 
following equation: 

 
1

1
T T

t t t t t tw w J J I J Eµ
−

+ ⎡ ⎤= + +⎣ ⎦ . (4) 

The learning parameter µ changes during the 
training. Starting with an initial value of µ, the µ is 
decreased after each successful step (F (w) decreases) 
by decrements of ∆µ–. Elsewhere, if F (w) increases, it 
is increased by ∆µ+. When µ is small, the method is 
called second order Newton’s, while when set to a large 
number, it is called gradient descent with small step 
size. Training continues until the error goal is met, µ 
reaches a maximum value, or the maximum number of 
epochs is completed. In practice, LM algorithm is faster 
and finds better optima for a variety of problems than do 
the other usual methods. This high performance 
algorithm can converge from ten to one hundred times 
faster than the conventional algorithms [9]. 

 
3. TAGUCHI METHOD 

 
The Taguchi technique is a methodology for finding the 
optimum setting of the control factors to make the 
product or process insensitive to the noise factors 
[25,26]. Taguchi based optimization technique has 
produced a unique and powerful optimization discipline 
that differs from traditional practices. Taguchi’s 
techniques have been used widely in engineering design 
[27], and can be applied to many aspects such as 
optimization, experimental design, sensitivity analysis, 
parameter estimation, model prediction, etc. The distinct 
idea of Taguchi’s robust design that differs from the 
conventional experimental design is that of designing 
for the simultaneous modeling of both mean and 
variability [25]. However, Taguchi methodology is 
based on the concept of fractional factorial design [28]. 
By using OAs and fractional factorial instead of full 
factorial, Taguchi’s approach allows for an easy set-up 
of experiments with a very large number of factors 
varied on few levels [29]. The two major goals of 
parameter design are to minimize the process or product 
variation and to design robust and flexible processes or 
products that are adaptable to environmental conditions. 

Taguchi method uses a special design of OAs to 
study the entire parameter space with a small number of 
experiments. An OA is a small fraction of full factorial 
design and assures a balanced comparison of levels of 
any factor or interaction of factors. The columns of an 
OA represent the experimental parameters to be 
optimized and the rows represent the individual trials 
(combinations of levels). The array is called orthogonal 
because for every pair of parameters, all combinations 
of parameter levels occur an equal number of times. The 
mean and the variance of the response at each setting of 
parameters in OA are then combined into a single 
performance measure known as the signal-to-noise 
(S/N) ratio [25]. 
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The S/N ratio is a quality indicator by which the 
experimenters can evaluate the effect of changing a 
particular experimental parameter on the performance of 
the process or product. Depending on the criterion for 
the quality characteristic to be optimized, different S/N 
ratios can be chosen: smaller-the-better, larger-the-
better, and nominal-the-better. 

A full explanation of the method can be found in 
references [25,26]. 

 
4. APPLICATION OF TAGUCHI METHOD TO ANN 

DESIGN 
 

In order to illustrate the use of the Taguchi method for 
neural network design, a case study for the design of a 
feed-forward ANN trained with LM algorithm for 
prediction of resultant cutting force in turning [30] is used. 

The ANN consists of 4 input neurons which 
correspond to four cutting parameters (depth of cut – ap, 
cutting speed – v, feed rate – f and cutting edge angle – 
κ), and one output neuron that corresponds to the 
resultant cutting force – FR (Fig. 2). 

 
Figure 2. General architecture of the ANN prediction model 

The experimental data used for ANN models 
development are given in Table 1. To train the ANN 
models, 30 data from Table 1 were used and the rest are 
used for model testing. The selection of data for training 
and testing was made by random method. 
Table 1. Experimental data 

FR [N] 
κ [º] 

ap 
[mm] 

v 
[m/min] 

f 
[mm/rev] 

75 85 95 
1.5 143 0.499 1648* 1654 1874 

0.75 143 0.499 944 979 952 
1.5 143 0.124 620 630 668 

0.75 143 0.124 365 387* 383 
1.5 94 0.499 1844 1759 1904* 

0.75 94 0.499 1024 1073 986 
1.5 94 0.124 639 679 721 

0.75 94 0.124 375 409 418 
1 116 0.249 773 774 815 
1 116 0.249 763* 784 813 
1 116 0.249 773 788* 821* 
1 116 0.249 785 766 829 

* denotes data for ANN testing 

The main objective of the proposed Taguchi based 
optimization is to develop accurate and robust ANN 
model. In other words, the goal is to select ANN 
training and architectural parameters, so that the ANN 
model yields best performance. 

The performance of the ANN is evaluated using a 
proposed performance index (PI): 

 ( )tr tsPI R RMSE RMSE= − + , (5) 

where: R is the correlation coefficient obtained for ANN 
predictions and experimental values using whole data, 
and RMSE is root mean squared error on training and 
testing data. Since the ANN accuracy belongs to a 
larger-the-better type problem its corresponding 
objective function to be maximized is represented by the 
following equation: 

 10 2
1

1 110log
n

i in y
η

=

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ , (6) 

where: η is the S/N ratio (in dB) for the ANN accuracy, 
n is the number of measurements, and yi is i-th observed 
response value. 

The design control parameters that influence the 
neural performance are identified and divided into two 
groups: ANN architectural parameters (number of 
neurons in first and second hidden layer, transfer 
function in hidden and output layer) and parameters of 
LM algorithm (learning parameter, increment and 
decrement factor). 

Random initialization of weights is considered as 
noise factor. The weights are initialized within [–0.1, 
0.1] interval from uniform distribution, within [–1, 1] 
interval from uniform distribution and by Nguyen-
Widrow (N-W) method, respectively. 

The ANN design parameters and the corresponding 
levels are shown in Table 2. This design problem has 
eight main parameters, where one has 2 levels and other 
seven 3 levels. If all of the possible combinations of the 
eight parameters were to be considered, then 21 · 37 = 
4374 different ANN models would have to be created. 
 

Table 2. ANN training and architectural parameter and levels 

Parameter Parameter 
description Level 1 Level 2 Level 3 

A Transfer function 
in output layer tansig purelin – 

B Hidden neurons in 
first layer 2 4 8 

C Hidden neurons in 
second layer 0 2 4 

D Learning 
parameter, µ 0.001 0.01 0.1 

E increment factor, 
∆µ+ 5 10 15 

F decrement factor, 
∆µ– 0.05 0.1 0.2 

G Transfer function 
in hidden layers tansig1 logsig1 purelin1

H Initial weights [–0.1, 
0.1] [–1, 1] N-W 

1 MATLAB function for the corresponding transfer function 
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This is unrealistic, so by using Taguchi’s OA this 
number is significantly reduced. As the total degree of 
freedom (DoF) for the eight parameters is 1 + 7 · 2 = 15, 
a mixed OA L18 (21 × 37) [25] was used for 
experimentation as it has 17 DoF which is more than 
DoF of selected ANN design parameters. 

For each experiment corresponding to each row of 
the L18 OA, two replications are used. Thus a total of 36 
experiments are conducted in order to assess the 
sensitivity of the ANN performance. The levels in the 
L18 OA and the S/N ratios (η) of each experiment are 
given in Table 3. 
Table 3. L18 OA for the ANN parameter optimization 

PI Trial 
 No A B C D E F G H

1 2 
η 

1 1 1 1 1 1 1 1 1 0.792 0.962 –1.263
2 1 1 2 2 2 2 2 2 0.932 0.925 –0.645
3 1 1 3 3 3 3 3 3 0.734 0.733 –2.692
4 1 2 1 1 2 2 3 3 0.734 0.734 –2.686
5 1 2 2 2 3 3 1 1 0.963 0.958 –0.350
6 1 2 3 3 1 1 2 2 0.977 0.93 –0.422
7 1 3 1 2 1 3 2 3 0.798 0.93 –1.346
8 1 3 2 3 2 1 3 1 0.742 0.735 –2.633
9 1 3 3 1 3 2 1 2 0.969 0.868 –0.778

10 2 1 1 3 3 2 2 1 0.955 0.96 –0.377
11 2 1 2 1 1 3 3 2 0.691 0.719 –3.041
12 2 1 3 2 2 1 1 3 0.899 0.952 –0.683
13 2 2 1 2 3 1 3 2 0.711 0.709 –2.975
14 2 2 2 3 1 2 1 3 0.88 0.905 –0.990
15 2 2 3 1 2 3 2 1 0.967 0.95 –0.369
16 2 3 1 3 2 3 1 2 0.853 0.713 –2.229
17 2 3 2 1 3 1 2 3 0.889 0.953 –0.731
18 2 3 3 2 1 2 3 1 0.711 0.709 –2.975

 

 
5. ANALYSIS OF RESULTS 

 
5.1 Analysis of means 

 
Analysis of means (ANOM) is the process of estimating 
the factor effects. First, the overall mean value of η for 
the experimental region defined by the parameters 
levels in Table 2 is given by: 

 
18

1

1
18 i

i
m η

=
= ∑ , (7) 

where the subscript i represents the i-th experiment in 
the OA. The average η of the experiments for factor A 
at level 1 can be calculated according to the level 
assignment in OA [25] as: 

  ( )1 2 3 4 5 6 7 8 91
1
9Am η η η η η η η η η= + + + + + + + + . (8) 

The other parameters at different levels can be 
calculated in a similar way. Table 4 lists the mean 
effects of each design parameter in which the optimal 
level with the highest signal-to-noise ratio is bolded. 
The optimum level for a factor is the level that gives the 
highest value of η in the experimental region [25]. 

Table 4. Analysis of means (ANOM) 

Level ANN 
parameters 1 2 3

A –1.4238 –1.5967  
B –1.4502 –1.2987 –1.7819 
C –1.8126 –1.3984 –1.3198 
D –1.4779 –1.4956 –1.5573 
E –1.6728 –1.5409 –1.3171 
F –1.4510 –1.4085 –1.6713 
G –1.0489 –0.6482 –2.8337 
H –1.3279 –1.6815 –1.5213 

 
These averages are also shown graphically in 

Figure 3 where optimal levels are marked with 
circles. 

 
Figure 3. ANN parameters influence on performance 
variation 

From the Table 4 and Figure 3, one can observe that 
the optimal ANN parameter levels are 
A1B2C3D1E3F2G2H1. In other words, ANN having 4 
hidden neurons in first and second hidden layer, using 
logsig transfer function in hidden layers and tansig 
transfer function in output layer, and trained with LM 
algorithm using µ = 0.001 as initial learning parameter, 
µ– = 0.1 as decrement factor and µ+ = 15 as increment 
factor, where training was started with weights 
initialized randomly from the interval [–0.1 and 0.1], is 
the optimal ANN model. 

 
5.2 Analysis of variance 

 
Analysis of variance (ANOVA) was performed using 
the S/N ratios as the response (Table 5). The purpose of 
ANOVA is to determine the relative magnitude of the 
effect of each factor on the objective functions, η, and to 
estimate the error variance. 

It can be seen from Table 5 that changing the design 
parameters B, C and G between the three chosen levels 
contributes to 92.6 % of the total variation in the ANN 
performance. 



 

84 ▪ VOL. 39, No 2, 2011 FME Transactions
 

Table 5. Analysis of variance (ANOVA) for S/N ratios 

Source DOF SS MS F Contribution

A 1 0.1347 0.1347 1.013458071 0.6997348 

B 2 0.7329 0.3665 2.758051705 3.8085539 

C 2 0.8414 0.4207 3.166097914 4.372019 

D 2 0.0208 0.0104 0.078339974 0.1081785 

E 2 0.3879 0.1939 1.459603033 2.0155448 

F 2 0.2387 0.1194 0.898326018 1.2404855 

G 2 16.2463 8.1232 61.1343067 84.419483 

H 2 0.3763 0.1881 1.41584107 1.9551145 

Error 2 0.2657 0.1329  1.3808856 

Total 17 19.2448    
 

 
5.3 Confirmation experiment 

 
Confirmation testing is necessary and important step in 
the TM. In addition to the variance analysis, the optimal 
ANN design parameters have to be verified to see if the 
error caused by the interaction among the design 
parameters is within an acceptable tolerance. The 
expected response for the best design can be calculated 
and confirmed through the confirmation test. 

Taguchi prediction of η under optimum conditions 
can be estimated by: 

 ( ) ( )est 1 2A Bm m m m mη = + − + − +   

 ( ) ( ) ( )3 1 3C D Em m m m m m+ − + − + − +   

 ( ) ( ) ( )2 2 1F G Hm m m m m m+ − + − + − . (9) 

Hence, the predicted PI under optimum conditions 
can be estimated by: 

 
est
20est 10PI
η
−

= . (10) 

There is no need to run the confirmation test if the 
best design is already included in the OA. However, the 
best design identified in this experiment is not included 
in the OA, and therefore a confirmation test is 
conducted. Using the A1B2C3D1E3F2G2H1 combination 
of ANN design parameter levels, the optimized ANN 
model is developed. With two repetitions, ANN model 
is trained and tested. It yielded the PI of 0.954 and 
0.956, or combined in S/N ratio η* = 0.399. 

In order to judge the closeness of the ηest and η*, one 
need to determine the variance of the prediction error, 
σ2

pred. The variance of the prediction error has two 
components. The first is the error in prediction of ηest 
caused by the errors in the estimates of m, mA1, mB2, 
mC3, mD1, mE3, mF2, mG2 and mH1. The second component 
represents the repetition error of an experiment. Thus, 
the variance of the prediction error can be calculated by: 

 2 2 2
pred

0

1 1
e e

rn n
σ σ σ

⎛ ⎞ ⎛ ⎞
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⎝ ⎠⎝ ⎠
, (11) 

where equivalent sample size n0 is calculated by: 
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, (12) 

where: n is the number of rows in the OA, nr is the 
number of repetitions of verification experiment, and nA1 
is the number of times the level A1 was repeated in OA. 
nB2, nC3, nD1, nE3, nF2, nG2, and nH1 are calculated in the 
same way. In statistical analysis, the two-sigma 
confidence is defined for the prediction error. Using the 
(11) and (12), the two standard deviation confidence 
limits for the prediction error, 2 · σpred, are calculated and 
are ±0.7876 dB. Since the |ηest – η*| = 0.05 < 2 · σpred, the 
optimal ANN model can be validated. In other words, 
the interaction between the ANN design parameters is 
within acceptable limits of two-sigma confidence. 

 
6. PREDICTION OF RESULTANT CUTTING FORCE 

 
Once the Taguchi optimized ANN model is developed, it 
can be used for the prediction of resultant cutting force. 
There are a number of statistics for measuring the accuracy 
of prediction models and each has advantages and 
limitations. However, (Pearson’s) correlation coefficient is 
the most widely used statistic. The correlation coefficient is 
a statistical measure of the strength of correlation between 
actual versus predicted values. For example, the value of + 
1 indicates perfect correlation. In that case, all points 
should lie on the line passing through the origin and 
inclined at 45°. The high performance of optimized ANN 
model is confirmed by very high correlation coefficient 
between experimental and predicted resultant cutting force 
values as shown in Figure 4. 

 
7. CONCLUSION 

 
This article has described the application of Taguchi 
method for the selection of ANN parameters. The eight 
ANN training and architectural parameters have been 
identified and were arranged in the L18 OA. Analyses 
show that the transfer function in hidden layer (G) is 
most influential on ANN prediction performance (84.42 
%), which was measured by proposed equation. This 
can be explained considering that ANN can handle non-
linear relationships between input and output variables 
using sigmoid transfer functions in a hidden layer. The 
remaining design parameters have minor effects. In 
other words, the selected design factors and their levels 
had little effect of ANN prediction accuracy. 

It is found that the best ANN model architecture had 
four hidden neurons in both hidden layers. This 
confirms the findings from [3,4]. Analysis shows that 
adding more neurons in a first hidden layer has negative 
effect of ANN performances. This finding further 
supports the conclusion by Ćirović and Aleksendrić [31] 
that too many neurons in the first hidden layer are not 
desirable when training ANNs with LM algorithm. 



FME Transactions VOL. 39, No 2, 2011 ▪ 85
 

 

 

 
Figure 4. The performance of Taguchi optimized ANN 
model for prediction of cutting force in turning: (a) for 
training data set, (b) for testing data set, and (c) for whole 
data set 

Additionally, it was shown that LM algorithm is 
capable of fast ANN training for finding good minima 
starting from different initial weights ranges. 

In the authors’ opinion, the optimal selection of ANN 
training and architectural parameters is largely problem 
dependent. However, it was shown that Taguchi method 
can be successfully applied in ANN design and training 
in order to develop ANN model of high performance 
with a relatively small and time-saving experiment. 

The methodology presented in this paper might be 
utilized in any ANN, for each ANN application. 
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ОПТИМАЛАН ИЗБОР ПАРАМЕТАРА 

АРХИТЕКТУРЕ И ТРЕНИРАЊА ВЕШТАЧКЕ 
НЕУРОНСКЕ МРЕЖЕ ПРИМЕНОМ ТАГУЧИ 

МЕТОДЕ: СТУДИЈА СЛУЧАЈА 
 

Милош Ј. Мадић, Мирослав Р. Радовановић 
 
Последњих година постоји све веће интересовање за 
примену вештачких неуронских мрежа (ВНМ) за 
моделирање и оптимизацију процеса обраде. 
Предности које нуде ВНМ су бројне и оне се 
постижу креирањем модела ВНМ високих 
перформанси. Међутим, одређивање параметара 
архитектуре и тренирања ВНМ и даље је тежак 
задатак. Обично се ови параметри одређују 
поступком тзв. „пробе и грешке“ где се велики број 
модела ВНМ креира и међусобно упоређује. У овом 
раду је приказана примена Тагучи методе за 
оптимизацију параметара ВНМ која се тренира 
Левенберг-Маркеовим алгоритмом. Примена овог 
приступа илустрована је на студија случаја за 
моделовање резултујућег отпора код стругања. 
Параметри ВНМ су распоређени у ортогонални низ 
L18, а предикционе перформансе ВНМ модела су 
рачунате према предложеној једначини. Применом 
анализе варијансе и средњих вредности оптимални 
нивои параметара ВНМ су идентификовани. Затим 
је креиран Тагучи оптимизован модел ВНМ који је 
показао високу тачност предикције. Анализе и 
експерименти показују да се избор оптималних 
параметара ВНМ може одредити на систематичан 
начин чиме се избегава дуготрајан поступак „пробе 
и грешке“. 


