
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2013) 41, 153-162 153

Received: September 2012, Accepted:December 2012
Correspondence to: Petar Mandić, M.Sc.
Faculty of Mechanical Engineering,
Kraljice Marije 16, 11120 Belgrade 35, Serbia
E-mail: petarmandic84@gmail.com

Petar Mandić
PhD Student

University of Belgrade
Faculty of Mechanical Engineering

Mihailo Lazarević
Full Professor

University of Belgrade
Faculty of Mechanical Engineering

An Application Example of Webots in
Solving Control Tasks of Robotic
System

This paper presents some of the capabilities ofWebots-a robotics
simulation software. Using Webots as the development environment one
can obtain model, program as well as simulate robots. First, key features
and components of Webots are described and then it is presented how to
construct a model of robotic system in it. Then, a control system is
designed based on mathematical model of robot system in order to solve
the problem of positioning of the end-effector. Results obtained in Webots
enviroments are compared with those from Matlab/Simulink, so one can
confirm the control system design procedure and accuracy of physics
simulation. An example of more complex task that the robot manipulator
needs to execute is given in the remainder of this paper. It is a so called
Tower of Hanoi problem, where is particularly solved the inverse
kinematics problem in detail. A part of C programming code which has
been used for controlling the robot in Webots is explained at the end.

Keywords: simulation software-Webots, robot control, simulation.

1. INTRODUCTION

Robots today are making a considerable impact on

many aspects of modern life, from manufacturing to
healthcare. Mobile robots, underwater and flying robots,
robot networks, surgical robots, and others are playing
increasing roles in society. Unlike the industrial robotics
domain where the workspace of machines and humans
can be segmented, applications of intelligent machines
that work in contact with humans are increasing, which
involve e.g. haptic interfaces and teleoperators,
cooperative material-handling, power extenders and
such high-volume markets as rehabilitation, physical
training, entertainment. In that way, robotic systems are
more and more ubiquitous in the field of direct
interaction with humans, in a so called friendly home
environment. For example, providing contact sensing on
the whole body of a robot is a key feature to increase the
safety level of physical human-robot interaction.

Moreover, robots are also used in bioengineering
research, for example, robots and computers control the
skin-making process, which takes place in a sterile,
climate-controlled setting. One of these robotic systems
capable of operating in human friendly environments is
NeuroArm robot. It is an integral part of the Laboratory
of Mechanics at Faculty of Mechanical Engineering in
Belgrade (Figure 1). This robotic arm possesses seven
degrees of freedom, which is described with six
parameters for rotating and one parameter for
translating (Figure 2). Within NeuroArm Manipulator
System there are a rich set of options that enable
scientists and engineers to configure your robot that will
meet the needs [1,2]. There are 4 basic methods of

control given robotic system: Windows GUI Tool, Open
source serial protocol & C library, Universal real time
behaviour interface, and Webots simulation package. In
the remainder of this article, attention will be given to
the Webots simulation package. Namely, with Webots
users can design 3D models of robots and test their
behaviour in realistic simulation environment.

Figure 1. NeuroArm robot system

Simulations play an important role in robotics
research. In comparison with real robot investigations,
simulations are easier to set up, less expensive, faster,
and more convenient to use, and allow the user to
perform experiments without the risk of damaging the
robot. Building up a new robot model and setting up
experiments only takes a few hours and control
programs can be tested extensively on a host computer.
Simulators are especially preferred when using time
consuming algorithms for robot controllers.

Figure 2. Model of NeuroArm with 7 degrees of freedom

154 ▪ VOL. 41, No 2, 2013 FME Transactions

Webots is a three dimensional mobile robot
simulator. The Webots simulation software provides the
user with a rapid prototyping environment for
modelling, programming and simulating mobile robots
[3,4]. With Webots the user can design complex robotic
setups, with one or several, similar or different robots,
in a shared environment. The properties of each object,
such as shape, colour, texture, mass, friction etc., are
chosen by the user. Robots can have different
locomotion schemes: wheeled robots, legged robots or
flying robots. They may be equipped with a number of
sensor and actuator devices, such as distance sensors,
servos, touch sensors, cameras, emitters, receivers etc.

Simulating complex robotic devices requires precise
physics simulation. Webots relies on ODE (Open
Dynamic Engine) to perform accurate physics
simulation. Webots robotics simulation software is used
in more than 930 universities and research centres
worldwide for both research and educational purposes
and among them is Laboratory of Mechanics at Faculty
of Mechanical Engineering,University of Belgrade.

A Webots simulation is composed of the following
items:

1. a Webots world file (.wbt) that defines one or
several robots and their environment.

2. one or several controller programs for the above
robots.

3. optionally, Webots may contain Supervisor, a
privileged type of Robot that can execute operations that
can normally only be carried out by a human operator
and not by a real robot, for example moving the robot to
a random position, making a video capture of the
simulation, etc.

A world file is a 3D description of the properties of
robots and of their environment. It contains a
description of every object: position, orientation,
geometry, physical properties etc. Worlds are organized
as hierarchical structures where objects can contain
other objects. For example, a robots can contain two
wheels, a distance sensor and a servo which itself
contains a camera, etc.

A controller is a computer program that controls a
robot specified in a world file. Controllers can be
written in any of the programming languages supported
by Webots: C, C++, Java, Python or Matlab. When a
simulation starts, Webots launches the specified
controllers, and it associates the controller processes
with the simulated robots. A majority of Webots
controllers are written in C programming language. The
C API (Application Programming Interface) is
composed of a set of about 200 C functions that can be
used in C or C++ controller code.

Matlab programming language is also of great
importance for us, because it allows easy matrix
manipulation, plotting of functions and data,
implementation of algorithms etc.

Webots GUI (Graphical User Interface) is composed
of four principal windows (see figure 3): the 3D
window that displays and allows to interact with the 3D
simulation, the Scene Tree which is a hierarchical
representation of the current world, the Text Editor that
allows to edit source code, and finally, the Console that
displays both compilation and controller outputs.

More information about Webots, how to design a 3D
robot and its environment, write a robot controller etc.,
can be found in [5].

Figure 3. Webots Graphical User Interface

FME Transactions VOL. 41, No 2, 2013 ▪ 155

2. WEBOTS MODEL OF ROBOTIC SYSTEM

In this section we will describe how to create a 3D
model of robot manipulator in Webots.As mentioned
earlier, Webots world file contains all the information
related to your simulation, i.e. where are the objects,
how do they look like, how do they interact with each
other etc. A world is defined by a tree of nodes. Each
node has some customizable properties called fields.
The Webots Node Chart outlines all the nodes available
to build Webots worlds. For more information on the
available nodes and world file format, see [6]. All
objects in Webots have a hierarchical structure. Figure 4
shows the hierarchy relations between all nodes of the
NeuroArm robot manipulator.

Figure 4. Model node hierarchy

For example, if we want to add a second link
(Segment2) to the robot, we need to create a Servo node
in the children field of the first link. The Webots Servo
node models a servo motor, which is adequate for the
simulation of robot’s joints. It adds a joint (one degree
of freedom) in a mechanical simulation. Hence, our 3D
model of robot manipulator will have as much Servo
nodes as it has degrees of freedom. Servo may be either
rotational or linear, and it also simulates a position
sensor. Also, Webots allows the addition of spring and
damping behaviour to the Servo.

Servo node contains customizable fields which
allow us to change characteristics of a servo device (see
Figure 5). Here will be mentioned some of those fields.

Translation and rotation fields define the translation
and rotation from the parent coordinate system to the
children’s coordinate system. In our example
(Segment2) these fields define the relative position of
the second link with respect to the first link. In children
field we define:
 geometry and appearance of the second link
 next component of the robot structure (Segment3).
Field name contains the appropriate name of the second
link.

The boundingObject specifies the geometrical
primitives used for collision detection. If this field is
NULL (deactivated), then no collision detection is
performed and second link can pass through any other
object, e.g. floor, obstacles and other robots.

Physics field is used to model the physical properties
the second link. This field specifies the mass, the center
of gravity and the mass distribution, thus allowing the
physics engine to create a body and compute realistic
forces. If the physics field is NULL then Webots
simulates this object in kinematics mode.

The type field is a string which specifies the servo
type, and may be either rotational or linear.

The maxVelocity field specifies both the upper limit
and the default value for the servo velocity.

The maxForce field specifies both the upper limit
and the default value for the servo motor force. The

motor force is the torque/force that is available to the
motor to perform the requested motions. A small
maxForce value may result in a servo being unable to
move to the target position because of its weight or
other external forces.

The control P field specifies the initial value of the P
parameter, which is the proportional gain of the Webots
servo controller. A high P results in a large response to a
small error, and therefore a more sensitive system.
However, by setting P too high, the system may become
unstable. With a small P, more simulation steps are
needed to reach the target position, but the system is
more stable.

As an alternative to the embedded Webots P
controller, the user can design a custom controller. This
allows the user to directly specify the amount of
torque/force that must be applied by a servo based on,
e.g. a PID controller. Exactly in this way, we designed a
3 PD controllers for robot’s links, as we’ll see in the
next section.The position field represents the current
position of the servo. For a rotational servo, this field
represents the current rotation angle in radians, while
for a linear the magnitude of the current translation in
meters.

The minPosition and maxPosition fields define the
soft limits of the servo. When both of the fields are zero,
the soft limits are deactivated.

The minStop and maxStop fields define the hard
limits of the servo. When both of the fields are zero, the
hard limits are deactivated.

Figure 5. Scene Tree window

So, when we designed the second robot’s link, we
repeat the same procedure for the next object in the
hierarchical structure, i.e. the third link: in the children
field of the second link we create a new Servo node.

156 ▪ VOL. 41, No 2, 2013 FME Transactions

3. POSITION CONTROL OF ROBOTIC SYSTEM:
WEBOTS VERSUS SIMULINK

In this section we will first derive a mathematical model
of robotic system and then we will consider the problem
of position control, followed by design of robot
controller and selection of its parameters. Finally,
simulation of robot manipulator in Webots is made, and
its results are compared with those obtained from
Matlab/Simulink.

3.1 Dynamical equations of robotic system

From a mechanical point of view a robotic system is
considered as an open linkage consisting of 1n rigid

bodies jV interconnected by n one-degree-of–

freedom joints forming kinematical pairs of the fifth
class where the robotic system possesses n degrees of
freedom. Joints can be essentially of two types: revolute
and prismatic. The whole structure forms a kinematic
open-chain structure. The configuration of the robot
mechanical model can be defined by the vector of the
joint (internal) generalized coordinates q of the

dimension ,n q =(q1,q2,…,qn)T, with the relative

angles of rotation (in case of revolute joints) and
relative displacements (in case of prismatic joints), [7].

Figure 6. Open-chain structure of a robotic multi-body
system

The geometry of the system has been defined by the
unit vectors , 1,2,...j j ne where the unit vectors je

describe the axis of rotation (translation) of the j -th

segment with respect to the previous segment as well as
the position vectors j and jj usually expressed in

local coordinate systems j j j jC connected with the

bodies () (),j j
j jj . With '

1jj j jO O

 is denoted a

vector between two neighboring joints in robot
structure, while a position of a center of mass of i -th

link is expressed by a vector 1j j jO C

 . The

parameters , 1j jj denote the parameters for

recognizing the joints , 1j jj , 1j -prismatic, 0-

revolute. For the entire determination of this mechanical
system, it is necessary to specify the masses jm and the

tensors of inertia CjJ expressed in local coordinate

systems. In order that the kinematics of the robotic
system may be described, the points ,j jO O are noticed

somewhere at the axis of the corresponding joint

 j such that they coincide in the reference

configuration. The point jO is immobile with respect to

the (1j)-th segment and jO does so with respect to

the j th one; obviously, for a revolute joint j , the

points jO and jO will coincide all the time during

robotic motion. Here, the Rodriguez` method [8] is
proposed for modeling the kinematics and dynamics of
the robotic system in contrast to Denavit-Hartenberg’s
method. In our case, it is presented a robotic system
with 3 revolute joints, i.e. with 3n DOFs (see Figure
7) where an end-effector orientation will not be
considered here, but only its position in space. As
shown in figure below, let Oxyz be the orthonormal

fixed frame.

Figure 7. Robotic system in referent configuration with
3DOFs

The end-effector point H is of great importance for
us because we want to control its position in space.
Besides, the position vector of the end-effector Hr can
be written as a multiplication of the matrices of

transformation 1,i iA , the vectors jj and j
j jq e and

it is expressed by [9]:(1)

3

1

3
() ()

1,
1 1

()
n

j
H jj j j

j
jn

j jj
i i jjj j

j i

q q

A q

r e

e

 (1)

where the appropriate Rodriguez’ matrices of
transformation are

 2() ()
1, 1 cos sind i d ii i

i i i iA I e q e q (2)

as well as ()d i
ie

denotes a skew symmetric matrix

 () ()
0

, , , 0
0

i i
Ti d i

i i i i ii i

i i

e e
e e e e e e e

e e

 (3)

To derive the equations of motion of the robotic system,
we use Lagrange’s equations of second kind:

1,2,3k kE Ed
Q

dt q q

 (4)

FME Transactions VOL. 41, No 2, 2013 ▪ 157

which can be expressed in the identical covariant form
as follows [8]:

 ,
1 1 1

1, 2,3
n n n

a q q q Q

 (5)

where the coefficients a are the covariant coordinates

of the basic metric tensor n na R
 and ,

, , 1, 2,...,n presents Christoffel symbols of the

first kind. The generalized forces Q can be presented

in the following expression (6) where

, , , ,c g w aQ Q Q Q Q
 denote the generalized spring

forces, gravitational forces, viscous forces, semi-dry
friction and generalized control forces, respectively.

 , ,...,gc w aQ Q Q Q Q Q 1,2 n
 (6)

In summary, the equations of motion of our robotic
system can be rewritten in compact matrix form:

 () (,) () aA C q q q q g q Q (7)

where

11 12 13

3 3
21 22 23

31 32 33

a a a

A a a a

a a a

q is basic metric tensor,

3(,)C q q - vector which takes care configuration of

robotic system and velocity-dependent effects

 3()g q Q = -g q - vector of generalized

gravitational forces

 3
1 2 3

Ta M M M Q - vector of generalized

control forces.

3.2 Position control system design

The task of position control of robotic system means to
determine the three components of vector of external

torques aQ that allow execution of motion ()tq so that

 lim ()
t

t

 dq q (8)

where dq denotes the vector of desired joint trajectory

variables. To solve the position control problem we will
consider a class of robotic system called computed
torque controllers [10]. As a result, a complicated
nonlinear controls design problem will be converted
into a simple design problem for a linear system
consisting of decoupled subsystems. To do this, let’s

look at (7) and choose aQ as follows:

 () (,) ()a
RA C Q q Q q q g q (9)

Substituting (9) into the (7) yields

 Rt q Q (10)

where RQ denotes output of PD controller. The

resulting control scheme appears in Figure 8 (nonlinear
term N q q, is equivalent to (,) ()C q q g q).

Figure 8. Block diagram scheme of proposed robot control

One way to select control signal RQ is as the

proportional plus derivative (PD) feedback

 R P DK t K t Q e e (11)

where dt t t e q q is output error. Now (10)

becomes

 D P P d D dt K t K t K t K t q q q q q (12)

The closed loop characteristic polynomial is

3

2

1
Di Pi

i

f s s K s K

 (13)

and the systems is asymptotically stable as long as the
,Pi DiK K are all positive for 1, 2,3.i Also, it is

undesirable for the robot to exhibit overshoot, since this
could cause impact at the surface of a box. Therefore,
gain matrices are selected for critical damping 1 . In

this case

36,36,36

12,12,12

P

D

K diag

K diag

 (14)

We created a model of robot manipulator in Matlab
Simulink based on previous equations. System’s
response for , 1, 2,3diq h t i is recorded, and

results are compared with those obtained from Webots
simulation environment and Figure 9 illustrates it.

We can see that system’s responses obtained from
Webots and Simulink overlay each other, which
confirms that mathematical model of robotic system is
well derived. Control torque values are shown on the
right hand side of Figure 9, so we can get insight into
their magnitudes. In that way, it could be helpful if we
would to choose actuators.

4. TOWER OF HANOI PROBLEM

Further, we proceed with executing more complex tasks
in Webots environment. Firstly, it will be given a
description of a robot task which needs to execute.
Next, the task is divided into three independent
subproblems which need to be solved. Particularly, we
present and resolve the inverse kinematics problem in
detail. At the end, a part of programming code needed
for controlling the robot is given and explained.

4.1 Description of the problem

Robot needs to solve a so called Tower of Hanoi
problem, by which is meant the following: it consists of
three platforms (A, B and C) and an arbitrary number of
boxes labelled with 1, 2, 3 etc.

Boxes can be moved on any of three platforms. At
the beginning, all boxes are on platform A, in a neat

158 ▪ VOL. 41, No 2, 2013 FME Transactions

Figure 9. System’s step response

stack in ascending order, i.e. box with the smallest
number is on top, see Figure 10. The objective of the
task is to move the entire stack to platform C, obeying
the following rules:

 only one box can be moved at a time.
 each move consists of taking the upper box

from one of the platforms and moving it onto
another platform, on top of the other boxes that
may already be present on that platform.

 no box may be placed on top of a box with
smaller number.

Figure 10. Tower of Hanoi problem setup

In order for robot to execute successfully Tower of
Hanoi problem, three independent subproblems need to
be solved:

 algorithm for moving the boxes,
 inverse kinematics problem, and
 control design problem.

A 3 DOFs robotic system presented in previous section
will be used here. Additionally, we will need two more
DOFs: one for the end-effector’s orientation, and one
for gripping the boxes. Embedded Webots controller
will be used for controlling these additional joints.

4.2 Algorithm for moving the boxes

The Tower of Hanoi problem seems impossible to solve
for larger number of boxes, yet is solvable with a simple
algorithm. There are number of different algorithms that
solve the problem, here will be presented a so called
iterative solution because it is very suitable for
programming. Whether the number of boxes is odd or
even, next steps need to be followed:

a. for an even number of boxes
• make the legal move between platforms A and B
• make the legal move between platforms A and C
• make the legal move between platforms B and C

b. for an even number of boxes
• make the legal move between platforms A and C
• make the legal move between platforms A and B
• make the legal move between platforms B and C

The number of moves required to solve a Tower of

Hanoi task is 2 1N , where N is the number of boxes.

4.3 Inverse kinematics problem

The inverse kinematics problem consists of the
determination of the joint variables corresponding to a
given end-effector position and orientation. In our case,
for a desired end-effector position, i.e. position of the
box with respect to the inertial reference frame, we need
to determine four joint variables, see Figure 11. Thus, in
this subsection we present procedure for solving the
given inverse kinematics problem which can be divided
into three inverse kinematics subtasks due to its nature.

The position of a point 2O with respect to the

reference frame Oxyz is expressed by components

FME Transactions VOL. 41, No 2, 2013 ▪ 159

Figure 11. Inverse kinematics problem setup

, , R R Rx y z along the frame axes. In the same way, let

, , T T Tx y z be the components that denote the box

position with respect to the Oxyz frame. Then, we can

write:

 R H T r r r (15)

respectively,

 H T Rr r - r (16)

Above equation can be expressed by three scalar
equations:

, ,

H T R H T R

H T R

x x x y y y

z z z

 (17)

First, joint variable 1 can now be determined as

(see Figure 12):

1 12 2 2 2
sin ,cosH H

H H H H

x z

x z x z

 (18)

 1 1 1atan2 sin ,cos (19)

Now we need to determine variables 2 and 3 .

Let’s look at Figure 13, where robot is in position ready
to grip the box where coordinate fHy and xz fHr

determine the

Figure 12. Determination of the joint variable 1

final position of end-effectors’ point H:

2 2

0.022
2

xz fH H H

f H

r x z

A
y y

 (20)

where A represents a size of the box. Based on figure
below we can write [11,12]:

2 3 2 3

2 3 2 3

 r sin sin

cos cos

xzfH

f

D O H

y D O H

 (21)

where 2 3O O D . Squaring and summing above

equations, it yields:

22 2 2

3 3 32 cosxzfH fr y D O H DO H (22)

so that, it follows

22 2 2
3

3
3

cos
2

xzfH fr y D O H

DO H

 (23)

Figure 13. Determination of the joint variables 2 and 3

The existence of a solution obviously imposes that

3cos 1
, otherwise the given point would be outside

the arm reachable workspace. Then, we have two
solutions of the inverse kinematics problem, see Figure

14. We choose when 3 0 , i.e.

 2
3 3sin 1 cos (24)

Figure 14. Two admissible postures for 2 and 3

3φ 2φ

2O

3O

r

f
H

160 ▪ VOL. 41, No 2, 2013 FME Transactions

Hence, the angle 3 can be computed as

 3 3 3atan2 sin ,cos (25)

Having determined 3 , the angle 2 can be

calculated as follows. Substituting 3 into (21) yields

an algebraic system of two equations in the two
unknowns 2sin and 2cos , whose solution is

3 3 3 3
2 2 2

3 3 3 3
2 2 2

cos sin
sin

cos sin
cos

xzfH f

xzfH f

f xzfH

xzfH f

D O H r O H y

r y

D O H y O H r

r y

 (26)

and 2 2 2atan2 sin ,cos . Finally, the angle 4

can be computed based on:

 2 3 4 4 2 3 rad (27)

because the end-effector needs to form angle of 180
with vertical axis in a moment of grasping of given box.

4.4 Control design problem

Robot model described in previous section will be used
here. For position control of end-effector we will use
computed torque control given by (11) and gain
matrices selected as (14).

4.5 Controller programming

As mentioned earlier, controller is a programming code
used to control a given robot. This section introduces
the basic concepts of C programming with Webots [13].
A part of controller used for solving Tower of Hanoi
problem is explained and given at the end.

Every programming language will yield exactly the
same simulation results as long as the sequence of
function/method calls does not vary. Hence the concepts
explained here with C example also apply to
C++/Java/Python/Matlab.

Some of the basic functions necessary for Webots to
work normally are:

- wb_robot_init(). A call to this initialization
function is required before any other C API function
call, because it initializes the communication between
the controller and Webots.

- prior to using a device, it is necessary to get the
corresponding device tag. This is done using the
wb_robot_get_device() function. For example,
wb_robot_get_device(“servo2”) adds the device tag to
the second robot link.

- each sensor must be enabled before it can be used.
If a sensor is not enabled it returns undefined values.
Enabling e.g. a position sensor of the second robot link
is achieved using the wb_servo_enable_position
(servo2, TIME_STEP), where TIME_STEP specify the
time interval (in milliseconds) between two updates of
the sensor’s data.

- a call to wb_servo_get_position() retrieves the
latest value of the given sensor.

Usually the highest level control code is placed
inside a for or a while loop. Within that loop there is a
call to the wb_robot_step() function. This function
synchronizes the controller’s data with the simulator.
The function wb_robot_step() needs to be present in
every controller and it must be called at regular
intervals, therefore it is usually placed in the main loop.
Argument in this function specifies the duration of the
control steps expressed in milliseconds. The control step
is the duration of an iteration of the control loop. If
control step is 4, Webots shall compute 4 milliseconds
of simulation and then return. If a controller does not
call wb_robot_step() the sensors and actuators won’t be
updated and the simulator will block.

To control a motion, it is generally useful to
decompose that motion in discrete steps that correspond
to the control step. At each iteration a new torque value
is computed according to a control law described above.
For example, if we want to control a motion of the
second link, a call to wb_servo_set_force(servo2,
moment_2) at each iteration is required, where second
argument (moment_2) denotes control torque. The
desired position will be reached only if the physics
simulation allows it, that means, if the specified motor
torque is sufficient and the motion is not blocked by
obstacles, external forces or the servo’s own spring
force.

At Figure 15 it is shown a part of controller’s code
used for control of robot’s motion. As we can see,
function wb_robot_step() is called first at each iteration
of a while loop. Then, a call to wb_servo_get_position()
gives us current position of robot links. Torque values
are computed based on computed torque control law.
This control algorithm does not apply to servo4
(rotation of end- effector) because it uses Webots
embedded controller to control its rotational motion.
When robot links reach desired position or time
reserved for that motion elapses, robot exits the while
loop and goes onto the next step in simulation.

5. CONCLUSION

In this paper we introduced Webots robotics simulation
software. Its key features, possibilities and advantages
over real experiments are presented. The procedure how
to construct a 3D model of robot manipulator in Webots
is given. Then its mathematical model is derived,
followed by the design of position control system.
Results obtained in Webots and Matlab Simulink
environments are compared. Finally, a simulation of
robot executing Tower of Hanoi task is given in last
section.

One of advantages of Webots is that user doesn’t
need to derive mathematical model of robot every time
like in Matlab in order to run a simulation accurately
(realistically). Namely, Webots relies on powerful ODE
(Open Dynamics Engine) to perform an accurate
physics simulation. Hence, it is only necessary to
specify physical properties of objects like mass, inertia
matrix, dimensions, friction coefficients etc., and
Webots will take care of rest. This allows Webots to

FME Transactions VOL. 41, No 2, 2013 ▪ 161

simulate complex robotic setups with simulations that
can run up to 300 times faster than the real robot.

Another important advantage of Webots is the
possibility to transfer Webots programming code onto
real robot. Webots User Guide [5] explains how to build
your own Webots cross-compilation system for real
robot.

For future research, solving more complex tasks
with different control algorithms will be considered.
Also, transfer from simulation to the NeuroArm real
robot and comparison of those results will be a subject
for future investigations.

ACKNOWLEDGMENT

Authors gratefully acknowledge the support of Ministry
of Education, Science and Technological Development
of the Republic of Serbia under the project TR 33047 as
well as partially supported by projects TR 35006,
41006.

REFERENCES

[1] Lazarević, M., Mandić, P. and Vasić, V.: Some
applications of NeuroArm interactive robot and
Webots robot simulation tool, in: Proceedings on
Accomplishments in Mechanical and Electrical
Engineering and Information Technology, 26-
29.05.2011, Banjaluka, pp. 923-928.

[2] Miljković, Z., Mitić, M., Lazarević, M. and Babić,
B.: Neural Network Reinforcement Learning for
Visual Control of Robot Manipulators, Expert
Systems with Applications.

[3] Hohl, L., Tellez, R., Michel, O. and Ijspeert, A.J.:
Aibo and Webots: Simulation, wireless remote
control and controller transfer, Robotics and
Autonomous Systems, Vol. 54, pp. 472 -485, 2006.

[4] Michel, O.: Webots™: Professional Mobile Robot
Simulation, International Journal of Advanced
Robotics Systems, Vol. 1, No. 1, pp. 39 -42, 2004.

[5] Webots User Guide, Cyberbotics Ltd, 2011.

[6] Webots Reference Manual, Cyberbotics Ltd, 2011.

[7] Zorić, N., Lazarević, M. and Simonović A.: Multi
Body Kinematics and Dynamics in Terms of
Quaternions: Lagrange Formulation in Covariant

Form – Rodriguez Approach, FME Transactions,
Vol. 38, No. 1, pp. 19 -28, 2010.

[8] Čović, V. and Lazarević, M.: Robot Mechanics,
Faculty of Mechanical Engineering, Belgrade,
2009, (in Serbian).

[9] Lazarević, M.: Mechanics of Human Locomotor
System, FME Transactions, Vol. 34, No. 2, pp. 105
-114, 2006.

[10] Lewis, F.L., Dawson, D.M. and Abdallah, C.T.:
Robot Manipulator Control, Marcel Dekker, New
York, 2004.

[11] Mandić, P.: Diplomski rad, Faculty of Mechanical
Engineering, Belgrade, 2011, (in Serbian).

[12] Siciliano, B., Sciavicco, L., Villani, L. and Oriolo,
G.: Robotics, Springer-Verlag, London, 2009.

[13] Kraus, L.: C programming language, Akademska
misao, Belgrade, 2008, (in Serbian).

ЈЕДАН ПРИМЕР ПРИМЕНЕ WEBOTS-A У
РЕШАВАЊУ ЗАДАТАКА УПРАВЉАЊА

РОБОТСКОГ СИСТЕМА

Петар Мандић, Михаило Лазаревић

У овом раду презентован је софтверски пакет
Webots за симулацију датог роботског система.
Прво су разматране основне особине и компоненте
Webots-а. Затим је описан начин како се конструише
3Д модел роботског система у Webots-овом
окружењу. У циљу решавања проблема
позиционирања роботске хватаљке, одређују се ПД
параметри управљачког система, а на основу
претходно добијеног математичког модела
роботског система. Резултати позиционирања
добијени у Webots окружењу су упоређени са
резултатима симулације истог добијени у
Симулинк/Матлаб окружењу, како би се показала
физичка веродостојност симулације. Пример
сложенијег задатка који роботски систем треба да
реши дат је у наставку. То је тзв. Tower of Hanoi
проблем где је посебно детаљно разматран и решен
инверзни кинематски задатак. Део програмског кода
који је коришћен за управљање симулацијом
објашњен је и дат на крају рада.

162 ▪ VOL. 41, No 2, 2013 FME Transactions

Figure 15. A part of controller’s code written in C programming language

while (1)
{

 wb_robot_step(TIME_STEP);
 t+= TIME_STEP/1000.;
 pos_1= wb_servo_get_position(servo1);
 pos_2= wb_servo_get_position(servo2);
 pos_3= wb_servo_get_position(servo3);
 double eps_1= pos_des_1 - pos_1;
 double eps_2= pos_des_2 - pos_2;
 double eps_3= pos_des_3 - pos_3;

 if(pos_des_1==0 && pos_des_2==0 && pos_des_3==0) { greska/=1000; vreme*=1000;
}
 /* Ova naredba se izvrsava ukoliko je telo van domasaja robotske hvataljke */
 if((fabs(eps_1)<greska && fabs(eps_2)<greska && fabs(eps_3)<greska) ||
t>vreme) {
 printf("t=%.3f;\n", t);
 break;
 }
 double eps1_1;
 if(t!= TIME_STEP/1000.) eps1_1= (eps_1-eps_pr_1)*1000./TIME_STEP;
 else eps1_1=0;
 if (fabs(pos_des_2)<0.1 && pos_des_3==0) moment_1= Kp1*eps_1 + Kd1*eps1_1;
 else moment_1= 10*Kp1*eps_1 + 10*Kd1*eps1_1;
 wb_servo_set_force(servo1, moment_1);
 eps_pr_1=eps_1;

 wb_servo_set_position(servo4, pos_des_4);
 moment_4= wb_servo_get_motor_force_feedback(servo4);

 double eps1_3;
 if(t!= TIME_STEP/1000.) eps1_3= (eps_3-eps_pr_3)*1000./TIME_STEP;
 else eps1_3=0;
 moment_3= Kp3*eps_3 + Kd3*eps1_3;
 moment_3 -= (M*9.81*L*sin(pos_2+pos_3) + Mh*9.81*0.268*sin(pos_2+pos_3) +

