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One approach to the optimization of a thin-walled open section Z-beam
subjected to the bending and to the constrained torsion is considered. For

given loads, material and geometrical characteristics, the problem is
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reduced to the determination of minimum mass i.e. minimum Ccross-
sectional area of structural thin-walled beam of the chosen shape. The
area of the cross-section is assumed to be the objective function. The stress

constraints are introduced. The Lagrange multiplier method is applied.
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Solutions of analitically obtained expressions for the mathematical model,
numerical solutions, as well as the saved mass, are calculated for three
loading cases.
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1. INTRODUCTION

Thin-walled beams find a wide application in
construction and machinery industry. They are widely
applied in many structures manufactured using thin-
walled elements (shells, plates, thin-walled beams)
which are subjected to complex loads. In most
structures it is possible to find the elements in which,
depending on loading cases and the way they are
introduced, the effect of constrained torsion is present
and its consequences are particularly evident in the case
of thin-walled profiles. Thin-walled structures consist of
a wide and growing field of engineering applications
which seek efficiency in strength and cost by
minimizing material. The result is a structure in which
the stability of the components i.e. the "thin walls" is
often the primary aspect of the behaviour and the
design.

In the past, there were a large number of research
studies on the behavior of thin-walled structures. The
earliest development of the theory of thin-walled
structures is associated with the beginning of the 20"c.
The most prominent contributors to the development of
this theory were Timoshenko and Gere [1]. Vlasov [2]
contributed largely to the theory of thin-walled
structures by developing the theory of thin-walled open
section beams. Kollbruner and Hajdin [3] expanded the
field of thin-walled structures by a range of works.

In recent years emerged many works devoted to the
optimization of thin-walled cross-sections. Solving
various optimization problems has been discussed in a
number of works and monographs. First of all Gajewski
and Zyczkowski [4] provided a review of optimal
designing of thin-walled structures, including shells and
rods. Afterwards, Magnucki and Monczak [5] presented
variational and parametrical optimization of open cross-
section of a thin-walled beam subjected to bending.
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Tian and Lu [6] optimized cold-formed open-channel
sections with and without the lips subjected to
compressive load.

Many studies have been conducted on optimization
problems, treating the cases where geometric
configurations of structures are specified and only the
dimensions of structural members and the areas of their
cross-sections are determined in order to attain the
minimum structural weight or cost (Lewinski [7],
Mijailovi¢ [8], 2010, Rong and Yi, [9]).

Then, a series of works appear where the
optimization problem of various cross-sections, such as
triangular cross-section [10], I-section [11], [12]) or U-
section [13] are solved by using the Lagrange multiplier
method.

The idea of this paper is to expand these works and
to develop an approach to the optimization of a thin-
walled Z cross-section beams.

2. SUBJECT OF RESEARCH

The starting points during the formulation of the basic
mathematical model are the assumptions of the thin-
walled-beam theory, on one side, and the basic
assumptions of the optimum design, on the other.

The Z cross-section as very often used thin-walled
profile in steel structures is considered in the present
paper as the object of optimization. The determination
of its optimal dimensions is a very important process
but not always the simplest one. The aim of the paper is
to determine the minimum mass of the whole beam, i.e.
the minimum area A4 of the cross-section of the
considered beam for the given loads and material
properties (1)

A= Apin (1)

The formulation of the problem is restricted to the
stress analysis of thin-walled beams with open sections.
The cross-section of the considered beam (Fig. 1)
with principal centroidal axes X; (i = 1, 2) has the center
and not the axis of symmetry. It is assumed that its
flanges have equal widths b; = b3, and thicknesses ¢, = t,
and that its web has the width b, and thickness ¢,.
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Figure 1. Cross-section

It is also assumed that the loads are applied in two
longitudinal planes, parallel to the centroidal axes x and
vy (Fig. 1) at the distances & b; (i = 1, 2). If applied in
such a way, the loads will cause the bending moments
acting in the above mentioned two planes parallel to the
longitudinal axis of the beam, and as their consequence
the effects of the constrained torsion will appear in the
form of the bimoment causing the stresses that depend
on the boundary conditions [3].

Formulation of the structural design optimization
problem plays an important role in the numerical
solution process. A particular choice of the objective
function and constraints affect the final solution, and
efficiency and robustness of the solution process.

In mathematics and computer science, an
optimization problem is the problem of finding the best
solution from all feasible solutions. The process of
selecting the best solution from various possible
solutions must be based on a prescribed criterion known
as the objective function. The idea of an objective
function, can be considered in general terms as a
mathematical representation of how the variables that
effect suitable alternatives can be evaluated and
compared.

In the considered problem the cross-sectional area
(2) will be treated as an objective function and it is
obvious from the Fig. 1 that

A=3 bt; @)

1

or, because b; = bs,
A:A(bl,bz):2b1 tl +b2 t2 ,

where ¢ and b; are thicknesses and widths of the flanges
and the web [3].

The constraints treated in the paper are the stress
constraints. The expressions (3) for equivalent bending
moments [14] taking into account the influence of the
bending moments around centroidal axes x and y,
denoted as M, and M, respectively, will be used

Iy, 1
o) ()
'vE y r'vE X
Mx =#, My :#,(3)
P— 1-—2
I-1, I-1,

where I, I, are the moments of inertia of the cross-
sectional area about the centroidal axes x and y, and I,
is the product of inertia.
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The normal stresses are caused by the bending
moments M_x and M_y and by the bimoment B in the
case of constrained torsion, and they will be denoted as
a_x and O'_y and o, respectively [3].

In the case when the bending moments are acting
in the planes parallel to the longitudinal axis (Fig. 1) at
the distances &b; (i=1, 2) the bimoment (4) as their
consequence will appear and it can be expressed as the
function of the bending moments and the eccentrities of
their planes &b; (i=1, 2) in the following way [3, 14]

B=& b M, +&EbM, . 4

For the allowable stress oy the constraint function
can be written as

gozq)(G):O'XmaX+O'ymax+0'wmaxSO’O. (5)

The maximal normal stresses, are defined in the
form [3, 14]

— M, — M, B
Oxmax — W: > Oy nax Wy > O wmax :W_a), (6)

where W, and W, are the section moduli for the
longitidunal axes, and W, is the sectorial section
modulus for the considered cross-section.

After the introduction of (6) into (5), the constraint
function becomes

M, M, B
p="=1+-—2L1 - <g,. @
W, Wy @

The constraint function (7) is reduced to:

1

@=@(b,by)=30M, b +
t1b1b2(3+222j
4 b
9+t—21;—2
+3M, z- b o ; ®)
llb1b2[3+2t22]
h b
1+tlb—2
6B h b =00 <0
2 by
Lbiby| 1+2-=—%
1bi 2[ o b

The expression (8) represents the constraint
function corresponding to the given stress constraints.

3. SOLVING THE OPTIMIZATION PROBLEM
3.1. Analytic solution

One of the most common problems is that of finding
maxima or minima (in general, "extrema") of a function.
The Lagrange multiplier method [8, 11, 12, 13, 15] is a
method for finding the extremum of the function of
several variables when the solution must satisfy a set of
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constraints, and for the analogous problem in the
calculus of variations. Lagrange multiplier, labeled as A,
measures the change of the objective function with
respect to the constraint.

Applying the Lagrange multiplier method to the
vector which depends on two parameters b; (i=1, 2) the
system of equations

%(Amp):o, i=12, ©)

1

will be obtained.

After the introduction of the expression (4) for the
bimoment into the equation (8), the equation (9) can be
reduced to the equation of the sixth order (10) whose
solutions give the optimal values of the ratio (11)

J k
Dzt =0, (10)

where :
-z =b, /by is the optimal ratio of the lengths of the web

and of the flange of the considered cross-section, and
the coefficients ¢, in (10) are defined by:

co=60+144(¢,+ &),

My
¢ = 2p(145+ 276&, +264&, ) +36(3¢, + 44, )M— ,
P

M

¢, = 21,,{4;1/(55 +38&, +27&,)-3[4-23(3¢, +4¢, )]M—y},

X

X

&= w2{4w(50—75§1 -84¢,)-[123-76035 + 452)]%

4= _,,,3{&//(3 1€ +24&,)+[ 208+ 75(3¢, +4¢&,) ]%}

X

4 My
cs =2y 16yp&, +31(2+3& +4¢, )7 ,

X

ce =8y (2+3¢ +4§2)%. (12)

X

It is obvious that the coefficients ¢, depend on the ratio
of the bending moments and on the eccentrities &, and &
of their planes.

The results that follow were obtained by the
analytical approach.

3.2. Particular cases

From the general case, when bending moments about
both axes appear simultaneously with the bimoment,
some particular cases can be considered, depending on
the ratio M, /M,. The optimal ratios z = b,/ b, defined
by (11) and obtained from the equation (10) are
calculated for the ratios M, /M,=0, 0.1, 0.5, 1; and for y
=0.5,0.75, 1 and for 0 <&, <1;0<5< 1.

The optimal values of z for M, /M,= 0 and w = 0,
0.75 and 1.0, are shown in Tables 1, 2 and 3, and they
are presented as the functions of & and &,.
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Table 1. Optimal z for M, /M, =0, ¢ = 0.5

&> 0 0.2 0.4 0.6 0.8 1
5

0 12.11 7.87 5.42 4.50 4.02 3.73
0.2 11.80 5.94 4.70 4.12 3.79 3.57
0.4 6.88 4.95 4.24 3.85 3.61 3.44
0.6 5.32 4.38 3.93 3.66 3.48 3.35
0.8 4.57 4.02 3.71 3.51 3.37 3.27

1 4.13 3.78 3.55 3.40 3.29 3.20

Table 2. Optimal z for M, /M, =0, ¢ = 0.75

EEI 02 | 04 |06 |08 |1
&
0 8.05 | 525 |3.61 |3.00 |2.68 |249

0.2 7.87 396 |3.13 | 275 |252 | 238
0.4 4.58 |330 |2.83 |257 |241 |230
0.6 355 1292 1262 |244 | 232 |2.23
0.8 305 | 268 | 248 |234 |225 |2.18

1 275 [ 252 237 |227 |219 |2.13
Table 3. Optimal z for M, /M, =0, ¢ =1

- ] 0 02 [ 04 |06 |08 1

SV

0 6.22 394 | 271 |225 |2.01 | 1.86

0.2 590 297 |235 |2.06 |189 |1.78
0.4 344 1248 | 212 | 193 | 1.81 |1.72
0.6 266 | 219 | 197 | 183 | 1.74 | 1.67
0.8 228 (201 |1.86 |1.76 | 1.69 | 1.63
1 207 189 | 1.78 | 1.70 | 1.64 | 1.60

The highest and the lowest optimal values z = b, /b,
for M,,/M, = 0.1, 0.5, 1 are given in a shortened form in
Table 4.

Table 4. Optimal z for M, /M, = 0.1, 0.5, 1 and w = 0.5, 0.75, 1

M, /M, v z
0.5 292 <z<5.54
0.1 0.75 1.99 <2<438
1 152 <2<3.70
0.5 256 <z<2.74
0.5 0.75 1.78 <z <2.19
1 136 <z <1.86
0.5 2 <z <24
1 0.75 1.60 <z <1.66
1 128<z <1.37

From Tables 1 - 4 it is obvious that the quantity z is
decreasing with the increase of eccentricities & and &,
ratio = t,/ t; and the load ratio.

3.3. The loading cases

The obtained results are used for the calculation that
follows. Some particular cases can be considered,
depending on the loading case. In the present section,
the cantilever Z-beam is fixed at one end and subjected
to the concentrated bending moments. The loading cases
when the concentrated bending moments are applied at
the free end for three positions of the load plane with
respect to the shearing plane are considered:
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)£ =0,5,=0,
b) £ =0.5,5,=0,
)& =1,54=0.

The optimal values z,,, are calculated as previously
explained for each loading case:
e Loading case 1: M,/M, =0 (M, =100 Nm, M, = 0),
e Loading case 2: M, /M, = 0.1 (M, = 100 Nm, M, =
10 Nm),
e Loading case 3: M, /M, = 1 (M, = 100 Nm, M, =
100 Nm).

4. NUMERICAL EXAMPLE AND ANALYSIS OF
RESULTS

As the numerical example, the considered cantilever
beam of the length /=1500 mm, fixed at one end is
subjected to the bending moments.

The numerical example is first done for the Z -
section with its initial dimensions of the flanges and of
the webs corresponding to the standard profile Z10
(DIN 1027) by = b3 = 51.75 mm, b, = 92 mm, having
thick flange # = 8 mm and #, = 6.5 mm, with the ratio y
=t / ;= 0.8125 (Table 5). For the same initial
dimensions of the lengths of flanges and webs, and the
same ratio i, an example is also done for the case of
thin flange ¢, = 5 mm, #, = 4.1 mm (Table 6).

The model defined in such a way is considered as
the “Initial model” having the “Initial area” of the cross-
section. Starting from the initial relation z;,;,;,, and for
the initial wall thicknesses ¢, and #,, the optimal relation
Zopimal 15 calculated defining the “Optimal area” of the
cross-section. The results are given in Tables 5 and 6.
Then the “Initial stresses” are calculated for the
considered loading cases 1, 2 and 3 and for the defined
geometry of the cross-section.

4.1 Minimum mass determination — results and
discussion

The problem is considered in two ways:

1) Optimal model no. 1. The optimal dimensions of
the cross-sections bjoptimai and Dagpimal are obtained by
equalizing the “Initial” and the ”Optimal area”
(Ainitia=Aopiima) and by using the calculated optimal
relation z. In that case, the normal stress, lower than the
initial one, is obtained (Goptimal<Cinitial)- It TEpresents
optimal model no. 1 (Tables 5 and 6).

2) Optimal model no. 2. From the condition
requiring that the stresses must be lower than the
allowable one, i.e. the “Initial stress”, the optimal values
bioptimal and bagpimar are obtained using the calculated
optimal relation z and comparing the stress defined by
the optimal geometrical characteristics of the “Initial
stress”. It represents optimal model no. 2. Starting from
the optimal cross-sectional dimensions (bopima and
booptimal), the optimal - minimum cross-sectional area
Amin 18 calculated for each loading case and the results
including the saved mass of the material are given in
Tables 5 and 6 (presented at the end of the text).

From the Tables 5 and 6 it can be seen that for all
loading cases the level of stresses is decreased in the
Optimal model no.l1 with the area of the cross-section
having the same value as in the “Initial model”, and the
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saved mass of material is increased with respect to the
initial stress limits in the Optimal model no.2, where the
area is smaller than the initial one. The calculation
showed that the maximum saved material is obtained in
the Loading case 1 and the minimum in the Loading
case 3. This allows the conclusion that if the distance of
the loading plane from the shearing plane is increased
the optimization of the cross-section is less necessary to
be done.

It is also interesting to notice the differences in the
obtained results for the cases of thick (Table 5) and thin
(Table 6) cross-section walls. It may be concluded that
in the case of the thin walled cross-section normal
stresses are a little bit higher but the saved mass is even
much higher.

The results obtained by computation are verified by
an example using finite element analysis (COSMOS
program). The bracket is modeled by tetrahedron
volumetric finite elements and the results were obtained
for the stresses at nodes of elements in the clamped end.
For the data shown in Table 5, loading case 3b, it is
shown that the results obtained by computation and
finite element coincide (Fig.2).

Part1-Nina2Z :: Static Eler
Units 2 De:

b

Figure 2. Normal stresses obtained by the Cosmos
Program

5. CONCLUSION
The paper presents one approach to the optimization of

the thin-walled Z - section beams, loaded in a complex
way, using the Lagrange multiplier method.
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Accepting the cross-sectional area as the objective
function and the stress constraints as the constrained
functions, it is possible to calculate the optimal ratios of
the webs and of the flanges of the considered thin-
walled profiles in a very simple way.

In addition to the general case, some particular
loading cases are considered. As the result of the
calculation the modified constrained functions are
derived as the polynomials of the sixth order. Attention
is particularly directed to the calculation of the saved
mass using the proposed analytical approach. It is also
possible to calculate the saved mass of the used material
for different loading cases.

The aim of the paper was the optimization of thin-
walled elements subjected to the complex loads, and it
may be concluded that the paper gives the general
results permitting the derivation of the expressions that
are recommendable for technical applications.
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HAIIOHCKA OI'PAHUYEILA ITIPUMEBLEHA HA
OIITUMM3ALINIY TAHKO3UUX Z —
IPOPUIA

Huna M. Anhesinh, Becna O. Musnomesuh-Mutuh,
Amna C. IlerpoBuh

Pasmarpan je jemam TmpHCTyn — ONTHUMH3ALHUjA
TaHKO3UINX OTBOPEHUX IOINPEYHUX Ipeceka oOnmka Z
— mnpoduna, H3IOKEHUX CaBUjalby M OrPAHUYEHO]
Top3uju. 3a gara ontepehewa, Marepujal U
TEOMETPHjCKE KapaKTEPHUCTHKE, MPOOJIeM ce CBOAM Ha
O[lpebI/IBaH)e MHUHUMAJIHE Mace€, OJHOCHO MHHHUMAIHC
IMOBPLINMHE nonpeyHor IMpeCceKa KOHCTPYKTUBHUX
TaHKO3W/IMX IIONPEYHHUX Tpeceka H3adpaHor oOHMKa.
[loBpmmHa momMpeyHOr mpeceka je wn3zabpaHa 3a
(GYHKIMjy IMJba. YBEAEHa Cy HAllOHCKa OrpaHHYerba.
[Mpumemwyje ce Metona JlarpaHxoBor MHOXHTEIbA.
Pesynratn aHanmuTHUKM MOOMjeHMX jemHAuYMHA 3a
MaTeMaTW4Kd MOZET, HyMEpHUYKa pelema, Kao |
ymTeaa y MacH, H3padyHaTH cy 3a TpU ciydaja
ontepehema. Heku pesynraTu cy npoBepeHH NIPUMEHOM
mporpama COSMOS.
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Table 5. Normal stresses and saved mass: t; =8 mm and f, = 6.5 mm, z ;a1 = 1.78

Loading Gin Gopt. no.1 Gopt. no.2 Ain:Aopt no.l Amin: Aopt no.2 Saved mass

Case Z optimal [MPa] | [MPa] [MPa] [*10° m’] [*10° m?*] [%]
a 5.58 13.4 7.5 13.4 1.033 27.56

1| b 2.99 25.9 24.6 25.9 1.426 1.398 1.96
c 2.29 38.3 37.8 38.3 1.418 0.56
a 4.18 15.9 12.7 15.9 1.278 10.38

2 b 2.45 30 29.1 30 1.426 1.410 1.12
c 2.07 44.2 43.9 44.2 1.422 0.28

a 1.53 38.2 37.9 38.2 1.424 0.14

3 b 1.54 99.8 99.1 99.8 1.426 1.422 0.28
c 1.55 161.4 160.3 161.4 1.423 0.21

Table 6. Normal stresses and saved mass: ¢, =5 mm and t, = 4.1 mm, z jnitja = 1.78
Loading z Gin Gopt, no.l Gopt. no.2 Ain:Aopt no.l Amin: Aopt no.2 Saved mass

Case optimal [MPa] | [MPa] [MPa] [*10° m?’] [*10° m?] [%]
a 5.58 2.1 11.9 2.1 0.510 42.76
1|b 2.99 41.4 394 41.4 0.891 0.730 18.07
c 2.29 61.3 60.5 61.3 0.745 16.39
a 4.18 254 20.3 254 0.631 29.18
2 b 2.45 48 46.6 48 0.891 0.734 17.62
c 2.07 70.7 70.2 70.7 0.838 16.27
a 1.53 61.1 60.6 61.1 0.703 21.09
3 b 1.54 159.6 158.5 159.6 0.891 0.743 16.61
c 1.55 258.2 256.5 258.2 0.752 15.60
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