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Stress Constraints Applied to the 
Optimization of a Thin-Walled Z-Beam 
 
One approach to the optimization of a thin-walled open section Z-beam 
subjected to the bending and to the constrained torsion is considered. For 
given loads, material and geometrical characteristics, the problem is 
reduced to the determination of minimum mass i.e. minimum cross-
sectional area of structural thin-walled beam of the chosen shape. The 
area of the cross-section is assumed to be the objective function. The stress 
constraints are introduced. The Lagrange multiplier method is applied. 
Solutions of analitically obtained expressions for the mathematical model, 
numerical solutions, as well as the saved mass, are calculated for three 
loading cases. 
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1. INTRODUCTION 
 
Thin-walled beams find a wide application in 
construction and machinery industry. They are widely 
applied in many structures manufactured using thin-
walled elements (shells, plates, thin-walled beams) 
which are subjected to complex loads. In most 
structures it is possible to find the elements in which, 
depending on loading cases and the way they are 
introduced, the effect of constrained torsion is present 
and its consequences are particularly evident in the case 
of thin-walled profiles. Thin-walled structures consist of 
a wide and growing field of engineering applications 
which seek efficiency in strength and cost by 
minimizing material. The result is a structure in which 
the stability of the components i.e. the "thin walls" is 
often the primary aspect of the behaviour and the 
design.  

In the past, there were a large number of research 
studies on the behavior of thin-walled structures. The 
earliest development of the theory of thin-walled 
structures is associated with the beginning of the 20thc. 
The most prominent contributors to the development of 
this theory were Timoshenko and Gere 1. Vlasov 2 
contributed largely to the theory of thin-walled 
structures by developing the theory of thin-walled open 
section beams. Kollbruner and Hajdin 3 expanded the 
field of thin-walled structures by a range of works.  

In recent years emerged many works devoted to the 
optimization of thin-walled cross-sections. Solving 
various optimization problems has been discussed in a 
number of works and monographs. First of all Gajewski 
and Życzkowski 4 provided a review of optimal 
designing of thin-walled structures, including shells and 
rods. Afterwards, Magnucki and Monczak 5 presented 
variational and parametrical optimization of open cross-
section of a thin-walled beam subjected to bending. 

Tian and Lu 6 optimized cold-formed open-channel 
sections with and without the lips subjected to 
compressive load. 

Many studies have been conducted on optimization 
problems, treating the cases where geometric 
configurations of structures are specified and only the 
dimensions of structural members and the areas of their 
cross-sections are determined in order to attain the 
minimum structural weight or cost (Lewiński 7, 
Mijailović 8, 2010, Rong and Yi, 9).  

Then, a series of works appear where the 
optimization problem of various cross-sections, such as 
triangular cross-section 10, I-section 11, 12) or U-
section 13 are solved by using the Lagrange multiplier 
method. 

The idea of this paper is to expand these works and 
to develop an approach to the optimization of a thin-
walled Z cross-section beams.  
 
2. SUBJECT OF RESEARCH 
 
The starting points during the formulation of the basic 
mathematical model are the assumptions of the thin-
walled-beam theory, on one side, and the basic 
assumptions of the optimum design, on the other. 

The Z cross-section as very often used thin-walled 
profile in steel structures is considered in the present 
paper as the object of optimization. The determination 
of its optimal dimensions is a very important process 
but not always the simplest one. The aim of the paper is 
to determine the minimum mass of the whole beam, i.e. 
the minimum area A of the cross-section of the 
considered beam for the given loads and material 
properties (1) 

 minAA   (1) 

The formulation of the problem is restricted to the 
stress analysis of thin-walled beams with open sections.  

The cross-section of the considered beam (Fig. 1) 
with principal centroidal axes Xi (i = 1, 2) has the center 
and not the axis of symmetry. It is assumed that its 
flanges have equal widths b1 = b3, and thicknesses t1 = t3, 
and that its web has the width b2 and thickness t2. 
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Figure 1. Cross-section 

It is also assumed that the loads are applied in two 
longitudinal planes, parallel to the centroidal axes x and 
y (Fig. 1) at the distances ξi bi (i = 1, 2). If applied in 
such a way, the loads will cause the bending moments 
acting in the above mentioned two planes parallel to the 
longitudinal axis of the beam, and as their consequence 
the effects of the constrained torsion will appear in the 
form of the bimoment causing the stresses that depend 
on the boundary conditions 3. 

Formulation of the structural design optimization 
problem plays an important role in the numerical 
solution process. A particular choice of the objective 
function and constraints affect the final solution, and 
efficiency and robustness of the solution process. 

In mathematics and computer science, an 
optimization problem is the problem of finding the best 
solution from all feasible solutions. The process of 
selecting the best solution from various possible 
solutions must be based on a prescribed criterion known 
as the objective function. The idea of an objective 
function, can be considered in general terms as a 
mathematical representation of how the variables that 
effect suitable alternatives can be evaluated and 
compared.  

 In the considered problem the cross-sectional area 
(2) will be treated as an objective function and it is 
obvious from the Fig. 1 that 

 
3

1
iitbA  (2) 

or, because b1 = b3, 

 221121 2),( tbtbbbAA  ,  

where ti and bi are thicknesses and widths of the flanges 
and the web 3. 

The constraints treated in the paper are the stress 
constraints. The expressions (3) for equivalent bending 
moments 14 taking into account the influence of the 
bending moments around centroidal axes x and y, 
denoted as Mx and My  respectively, will be used  
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where Ix, Iy are the moments of inertia of the cross-
sectional area about the centroidal axes x and y, and Ixy 
is the product of inertia. 

The normal stresses are caused by the bending 

moments xM  and yM  and by the bimoment B in the 

case of constrained torsion, and they will be denoted as 

x  and y  and   respectively 3. 

In the case when the bending moments are acting 
in the planes parallel to the longitudinal axis (Fig. 1) at 
the distances ξibi (i=1, 2) the bimoment (4) as their 
consequence will appear and it can be expressed as the 
function of the bending moments and the eccentrities of 
their planes ξibi (i=1, 2) in the following way 3, 14 

 yx MbMbB 2211   . (4) 

For the allowable stress 0 the constraint function 
can be written as  

   0maxmaxmax    yx . (5) 

The maximal normal stresses, are defined in the 
form 3, 14 
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where Wx and Wy are the section moduli for the 
longitidunal axes, and W is the sectorial section 
modulus for the considered cross-section.  

After the introduction of (6) into (5), the constraint 
function becomes 
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The constraint function (7) is reduced to: 
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The expression (8) represents the constraint 

function corresponding to the given stress constraints. 
 
3. SOLVING THE OPTIMIZATION PROBLEM 
 
3.1. Analytic solution 
 
One of the most common problems is that of finding 
maxima or minima (in general, "extrema") of a function. 
The Lagrange multiplier method 8, 11, 12, 13, 15 is a 
method for finding the extremum of the function of 
several variables when the solution must satisfy a set of 
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constraints, and for the analogous problem in the 
calculus of variations. Lagrange multiplier, labeled as , 
measures the change of the objective function with 
respect to the constraint.  

Applying the Lagrange multiplier method to the 
vector which depends on two parameters bi (i=1, 2) the 
system of equations 

   1,2,i    ,0 

 A
bi

 (9) 

will be obtained. 
After the introduction of the expression (4) for the 

bimoment into the equation (8), the equation (9) can be 
reduced to the equation of the sixth order (10) whose 
solutions give the optimal values of the ratio (11) 
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where : 
- 12 bbz   is the optimal ratio of the lengths of the web 

and of the flange of the considered cross-section, and 
the coefficients ck in (10) are defined by: 
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It is obvious that the coefficients ck depend on the ratio 
of the bending moments and on the eccentrities ξ1 and ξ2 
of their planes. 

The results that follow were obtained by the 
analytical approach. 
 
3.2. Particular cases 
 
From the general case, when bending moments about 
both axes appear simultaneously with the bimoment, 
some particular cases can be considered, depending on 
the ratio My /Mx. The optimal ratios z = b2 / b1  defined 
by (11) and obtained from the equation (10) are 
calculated for the ratios My /Mx=0, 0.1, 0.5, 1; and for ψ 
= 0.5, 0.75, 1 and for 0 ≤ ξ1 ≤ 1; 0 ≤ ξ2 ≤ 1. 

The optimal values of z for My /Mx= 0 and ψ = 0, 
0.75 and 1.0, are shown in Tables 1, 2 and 3, and they 
are presented as the functions of ξ1 and ξ2. 

Table 1.  Optimal z for My /Mx =0, ψ = 0.5  

ξ1   0  0.2  0.4  0.6 0.8  1 
ξ2               

0 12.11 7.87 5.42 4.50 4.02 3.73 
0.2 11.80 5.94 4.70 4.12 3.79 3.57 
0.4 6.88 4.95 4.24 3.85 3.61 3.44 
0.6 5.32 4.38 3.93 3.66 3.48 3.35 
0.8 4.57 4.02 3.71 3.51 3.37 3.27 
1 4.13 3.78 3.55 3.40 3.29 3.20 

Table 2.  Optimal z for My /Mx =0, ψ = 0.75  

ξ1   0  0.2  0.4  0.6 0.8  1 
ξ2               
0 8.05 5.25 3.61 3.00 2.68 2.49 
0.2 7.87 3.96 3.13 2.75 2.52 2.38 
0.4 4.58 3.30 2.83 2.57 2.41 2.30 
0.6 3.55 2.92 2.62 2.44 2.32 2.23 
0.8 3.05 2.68 2.48 2.34 2.25 2.18 
1 2.75 2.52 2.37 2.27 2.19 2.13 

Table 3.  Optimal z for My /Mx =0, ψ = 1  

ξ1   0  0.2  0.4  0.6 0.8  1 
ξ2               
0 6.22 3.94 2.71 2.25 2.01 1.86 
0.2 5.90 2.97 2.35 2.06 1.89 1.78 
0.4 3.44 2.48 2.12 1.93 1.81 1.72 
0.6 2.66 2.19 1.97 1.83 1.74 1.67 
0.8 2.28 2.01 1.86 1.76 1.69 1.63 
1 2.07 1.89 1.78 1.70 1.64 1.60 

 
The highest and the lowest optimal values z = b2 /b1 

for My /Mx = 0.1, 0.5, 1 are given in a shortened form in 
Table 4. 

Table 4.  Optimal z for My /Mx = 0.1, 0.5, 1 and ψ = 0.5, 0.75, 1  

My /Mx ψ z 

0.5 2.92   z   5.54 

0.75 1.99   z   4.38 0.1 

1 1.52   z   3.70 

0.5 2.56   z . 2.74 

0.75 1.78   z   2.19 0.5 

1 1.36   z   1.86 

0.5 2        z   2.41 

0.75 1.60   z   1.66 1 

1 1.28   z   1.37 

 
From Tables 1 - 4 it is obvious that the quantity z is 

decreasing with the increase of eccentricities ξ1 and ξ2, 
ratio   t2 / t1 and the load ratio. 
 
3.3. The loading cases 
 
The obtained results are used for the calculation that 
follows. Some particular cases can be considered, 
depending on the loading case. In the present section, 
the cantilever Z-beam is fixed at one end and subjected 
to the concentrated bending moments. The loading cases 
when the concentrated bending moments are applied at 
the free end for three positions of the load plane with 
respect to the shearing plane are considered: 
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a) ξ1 = 0, ξ2 = 0,  
b) ξ1 = 0.5, ξ2 = 0, 
c) ξ1 = 1, ξ2 = 0. 
The optimal values zopt are calculated as previously 

explained for each loading case: 
 Loading case 1: My /Mx = 0 (Mx = 100 Nm, My = 0), 
 Loading case 2: My /Mx = 0.1 (Mx = 100 Nm, My = 

10 Nm), 
 Loading case 3: My /Mx = 1 (Mx = 100 Nm, My = 

100 Nm). 
 
4. NUMERICAL EXAMPLE AND ANALYSIS OF 

RESULTS 
 
As the numerical example, the considered cantilever 
beam of the length l=1500 mm, fixed at one end is 
subjected to the bending moments. 

The numerical example is first done for the Z - 
section with its initial dimensions of the flanges and of 
the webs corresponding to the standard profile Z10 
(DIN 1027) b1 = b3 = 51.75 mm, b2 = 92 mm, having 
thick flange t1 = 8 mm and t2 = 6.5 mm, with the ratio   
= t2 / t1= 0.8125 (Table 5). For the same initial 
dimensions of the lengths of flanges and webs, and the 
same ratio , an example is also done for the case of 
thin flange t1 = 5 mm, t2 = 4.1 mm (Table 6). 

The model defined in such a way is considered as 
the “Initial model” having the “Initial area” of the cross-
section. Starting from the initial relation zinitial and for 
the initial wall thicknesses t1 and t2, the optimal relation 
zoptimal is calculated defining the “Optimal area” of the 
cross-section. The results are given in Tables 5 and 6. 
Then the “Initial stresses” are calculated for the 
considered loading cases 1, 2 and 3 and for the defined 
geometry of the cross-section. 
 
4.1 Minimum mass determination – results and 

discussion  
 
The problem is considered in two ways: 

1) Optimal model no. 1. The optimal dimensions of 
the cross-sections b1optimal and b2optimal are obtained by 
equalizing the “Initial” and the ”Optimal area” 
(Аinitial=Аoptimal) and by using the calculated optimal 
relation z. In that case, the normal stress, lower than the 
initial one, is obtained (σoptimal<σinitial). It represents 
optimal model no. 1 (Tables 5 and 6).  

2) Optimal model no. 2. From the condition 
requiring that the stresses must be lower than the 
allowable one, i.e. the “Initial stress”, the optimal values 
b1optimal and b2optimal are obtained using the calculated 
optimal relation z and comparing the stress defined by 
the optimal geometrical characteristics of the “Initial 
stress”. It represents optimal model no. 2. Starting from 
the optimal cross-sectional dimensions (b1optimal and 
b2optimal), the optimal - minimum cross-sectional area 
Аmin is calculated for each loading case and the results 
including the saved mass of the material are given in 
Tables 5 and 6 (presented at the end of the text). 

From the Tables 5 and 6 it can be seen that for all 
loading cases the level of stresses is decreased in the 
Optimal model no.1 with the area of the cross-section 
having the same value as in the ”Initial model”, and the 

saved mass of material is increased with respect to the 
initial stress limits in the Optimal model no.2, where the 
area is smaller than the initial one. The calculation 
showed that the maximum saved material is obtained in 
the Loading case 1 and the minimum in the Loading 
case 3. This allows the conclusion that if the distance of 
the loading plane from the shearing plane is increased 
the optimization of the cross-section is less necessary to 
be done.  

It is also interesting to notice the differences in the 
obtained results for the cases of thick (Table 5) and thin 
(Table 6) cross-section walls. It may be concluded that 
in the case of the thin walled cross-section normal 
stresses are a little bit higher but the saved mass is even 
much higher. 

The results obtained by computation are verified by 
an example using finite element analysis (COSMOS 
program). The bracket is modeled by tetrahedron 
volumetric finite elements and the results were obtained 
for the stresses at nodes of elements in the clamped end. 
For the data shown in Table 5, loading case 3b, it is 
shown that the results obtained by computation and 
finite element coincide (Fig.2).  

 
a 

 
b 

Figure 2. Normal stresses obtained by the Cosmos 
Program 

 
5. CONCLUSION  
 
The paper presents one approach to the optimization of 
the thin-walled Z - section beams, loaded in a complex 
way, using the Lagrange multiplier method. 
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Accepting the cross-sectional area as the objective 
function and the stress constraints as the constrained 
functions, it is possible to calculate the optimal ratios of 
the webs and of the flanges of the considered thin-
walled profiles in a very simple way.  

In addition to the general case, some particular 
loading cases are considered. As the result of the 
calculation the modified constrained functions are 
derived as the polynomials of the sixth order. Attention 
is particularly directed to the calculation of the saved 
mass using the proposed analytical approach. It is also 
possible to calculate the saved mass of the used material 
for different loading cases. 

The aim of the paper was the optimization of thin-
walled elements subjected to the complex loads, and it 
may be concluded that the paper gives the general 
results permitting the derivation of the expressions that 
are recommendable for technical applications. 
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НАПОНСКА ОГРАНИЧЕЊА ПРИМЕЊЕНА НА 

ОПТИМИЗАЦИЈУ ТАНКОЗИДИХ Z –
ПРОФИЛА 

 
Нина М. Анђелић, Весна О. Милошевић-Митић,  

Ана С. Петровић 
 

Разматран је један приступ оптимизацији 
танкозидих отворених попречних пресека облика Z 
– профила, изложених савијању и ограниченој 
торзији. За дата оптерећења, материјал и 
геометријске карактеристике, проблем се своди на 
одређивање минималне масе, односно минималне 
површине попречног пресека конструктивних 
танкозидих попречних пресека изабраног облика. 
Површина попречног пресека је изабрана за 
функцију циља. Уведена су напонска ограничења. 
Примењује се Метода Лагранжовог множитеља. 
Резултати аналитички добијених једначина за 
математички модел, нумеричка решења, као и 
уштеда у маси, израчунати су за три случаја 
оптерећења. Неки резултати су проверени применом 
програма COSMOS. 
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Table 5. Normal stresses and saved mass: t1 = 8 mm and t2 = 6.5 mm, z initial = 1.78 

Loading 
Case 

z optimal 
σin 

[MPa] 
σopt. no.1 

[MPa] 
σopt. no.2 

[MPa] 
Ain=Аopt  no.1 

[*10-3 m2] 
Amin= Аopt  no.2 

[*10-3 m2] 
Saved mass 

[%] 
a 5.58 13.4 7.5 13.4 1.033 27.56 
b 2.99 25.9 24.6 25.9 1.398 1.96  1 
c 2.29 38.3 37.8 38.3 

1.426 
1.418 0.56 

a 4.18 15.9 12.7 15.9 1.278 10.38 
b 2.45 30 29.1 30 1.410 1.12 2 
c 2.07 44.2 43.9 44.2 

1.426 
1.422 0.28 

a 1.53 38.2 37.9 38.2 1.424 0.14 
b 1.54 99.8 99.1 99.8 1.422 0.28 3 
c 1.55 161.4 160.3 161.4 

1.426 
1.423 0.21 

Table 6. Normal stresses and saved mass: t1 = 5 mm and t2 = 4.1 mm, z initial = 1.78  

Loading 
Case 

z optimal 
σin 

[MPa] 
σopt. no.1 

[MPa] 
σopt. no.2 

[MPa] 
Ain=Аopt  no.1 

[*10-3 m2] 
Amin= Аopt  no.2 

[*10-3 m2] 
Saved mass 

[%] 
a 5.58 2.1 11.9 2.1 0.510 42.76 
b 2.99 41.4 39.4 41.4 0.730 18.07  1 
c 2.29 61.3 60.5 61.3 

0.891 
0.745 16.39 

a 4.18 25.4 20.3 25.4 0.631 29.18 
b 2.45 48 46.6 48 0.734 17.62 2 
c 2.07 70.7 70.2 70.7 

0.891 
0.838 16.27 

a 1.53 61.1 60.6 61.1 0.703 21.09 
b 1.54 159.6 158.5 159.6 0.743 16.61 3 
c 1.55 258.2 256.5 258.2 

0.891 
0.752 15.60 

 


