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Variational Inference for Robust 
Sequential Learning of Multilayered 
Perceptron Neural Network  
 
We derive a new sequential learning algorithm for Multilayered 
Perceptron (MLP) neural network robust to outliers. Presence of outliers 
in data results in failure of the model especially if data processing is 
performed on-line or in real time. Extended Kalman filter robust to outliers 
(EKF-OR) is probabilistic generative model in which measurement noise 
covariance is modeled as stochastic process over the set of symmetric 
positive-definite matrices in which prior is given as inverse Wishart 
distribution. Derivation of expressions comes straight form first principles, 
within Bayesian framework. Analytical intractability of Bayes’ update step 
is solved using Variational Inference (VI). Experimental results obtained 
using real world stochastic data show that MLP network trained with 
proposed algorithm achieves low error and average improvement rate of 
7% when compared directly to conventional EKF learning algorithm. 
 
Keywords: heavy-tailed noise, inverse Wishart distribution, extended 
Kalman filter, Bayesian learning, structured variational approximation. 

 
 

1. INTRODUCTION  
 
Outliers have enormous importance when it comes to 
modelling engineering problems in which we have 
mathematical models of the physical system operating 
on-line. Outliers are defined as observations that 
significantly differ from the rest of the data [1], [2]. In 
engineering applications on-line processing of data is 
essential [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and failing to 
recognize, identify and process outliers may seriously 
jeopardize system’s performance and eventually cause 
failure. Outliers may occur by chance, but more often, 
they may originate from temporary sensor failures, 
some unknown system anomalies or unmodeled 
reactions from the environment or some other 
disturbances [2]. 

We develop original sequential learning algorithm 
for Multilayered Perceptron neural network (MLP). To 
have system with this ability is of great importance for 
engineering because this approach bypasses off-line 
identification and removal of outliers. Furthermore, for 
sequential systems it is of extreme importance to 
process outliers as data arrives. Our algorithm is based 
on a conventional extended Kalman filter (EKF) but 
with the ability to process outliers during learning 
process as any other data point.  

The structure of the paper is as follows. In the 
second part of the paper we provide brief survey of 
research efforts. In the third part we provide detailed 
and thorough derivation of EKF-OR. Experimental 
results are given in the fourth part, while concluding 
remarks in the last section of the paper. 

 

2. LITERATURE REVIEW AND CONTRIBUTIONS OF 
THE PAPER 
 

Robust statistics is a broad research field and in this 
research we focus on robust sequential algorithms for 
neural network training. For wider perspective, 
additional information and concepts in terms of general 
robust statistics the reader is referred to [12, 13, 14 ,15, 
16] and references therein.  

The dominant approach in robust neural network 
training is to use robust cost function called M-estimator 
[16]; research community has proposed a number of M-
estimators suited for this job: Hample [17], Welsch [18], 
and Tukey’s biweight [19] (among others). All these 
robust cost function enable down-weighting of outliers.  

Another approach is to identify and separate outliers 
before learning; then, one trains the model with data 
free of outliers [20, 21, 22, 23].  

Finally, the third approach is to use hybrid 
algorithms and hope for the best. One may find hybrids 
of fuzzy and Radial Basis Function networks trained 
with Particle Swarm Optimization (PSO) [24], Support 
Vector Machines (SVM), RBF and fuzzy inference [25], 
Support Vector Regression and RBF networks [21]. 

The main features that set apart our paper from other 
research efforts are: 
1. EKF-OR processes outliers as any other data point 
and naturally down-weights them within Bayesian 
framework.  
2. Robustness to outliers is achieved using “uncertainty 
about uncertainty” approach [1]. The sequence of 
measurement noise covariance is modelled as stochastic 
process over the set of symmetric positive-definite 
matrices in which prior is given as inverse Wishart 
distribution; 
3. Analytical intractability of update step is solved by 
applying structured variational approximation [26, 27, 
28, 29] which puts tight lower bounds on the marginal 
likelihood of the data.  



124 ▪ VOL. 43, No 2, 2015 FME Transactions
 

For additional information and deeper analysis of 
other research efforts, the reader is kindly referred to 
analysis given in [2] and references therein. 
 
3. EXTENDED KALMAN FILTER ROBUST TO 

OUTLIERS 
 

Let us define sequential learning problem of MLP 
network in the following form [2, 3, 4]: 

   
   

1 1| ~ , (1)

| ~ , (2)

t t t

t t t t t

p N

p N

 w w w Q

y w H w R
 

where  ,N μ Σ  denotes multivariate Gaussian 

distribution with mean μ  and covariance Σ ;  w is 

vector of all network parameters (weights and biases), 
Q is a process covariance and Rt is observation noise 
covariance matrix. Finally, yt is measurment while Ht is 
measurement Jacobian. Both distributions are 
conditionally Gaussian, while it is important to stress 
that measurement covariance is no longer fixed, i.e. Rt 
evolves over time and it is being estimated at each filter 
iteration. This is the first distinction that sets apart our 
algorithm from its predecessor Kalman filter. 

The sequence { }tR  is modeled as stochastic process 

over the set of symmetric positive-definite matrices [1]. 
Let us define a prior distribution over Rt at each time 
step. In Bayesian statistical modeling, a conjugate 
distribution is distribution that generates the same 
functional form of posterior as prior [26, 27, 28]. In this 
research we assume prior distribution over Rt as inverse 
Wishart, i.e.  

 1~ ,W  R Ω  (3) 

where Ω  and   denote harmonic mean and degrees of 
freedom, respectively. We define inverse Wishart 
distribution as a probability distribution over convex 
cone of d d  symmetric positive-definite matrices, 
parameterized with harmonic mean Ω  and degrees of 
freedom  . Now, suppose that at each time step the 
noise covariance matrix Rt is inverse Wishart, i.e. 

 1~ ,t t t tW  R Λ   (4) 

tΛ   and t  denote harmonic mean and degrees of 

freedom. If we multiply measurement (2) with (4), and 
marginalize out Rt, we will come to the conclusion that 
observations yt are Student t-distributed [2]: 
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where Λ  is scale matrix. Student t distribution has 
some very attractive properties when it comes to 
modeling of possible presence of outliers in data. 
Firstly, Student t distribution has heavier and longer 
tails then Gaussian, it decays at less then exponential 
rate, which actually tells our learner that probability 
mass is spread over wider region. Secondly, its 

influence function is less sensitive to infinitesimal 
changes in data. For additional information the reader is 
referred to [2].  
 
3.1 Bayesian learning and Variational Inference 
 
Let us suppose that data is given with the sequence 

  1

T

T t t
Y y , and let  t w  be posterior of network 

parameters  given all data, i.e. 

     1 2| , ,..., | (6)t t T t Tp p  w w y y y w Y  

The state vector is not Gaussian due to the Student t 
distributed measurement vector. Bayesian learning is 
performed using the Bayes’ rule [2]: 
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The main problem in derivation of EKF-OR (or in 
any other non Gaussian case), arises when likelihood 

 | ,t t tp y w R  is to be multiplied with 

posterior  1 2 1| , ,...,t tp w y y y ; the non Gaussian noise 

model makes calculation of this analytically intractable. 
To overcome this problem, we apply Variational 
Inference (VI) approach in form of structured 
variational approximation [2, 26, 27, 28]. Variational 
methods have been in use in mathematics, physics and 
engineering since 17th century.  

Let us define new sequence of random variables as 

 ,t t tz w R , and let  q   be an approximate posterior 

distribution over zt given yt. Marginal log-likelihood of 
the data is given as [2]: 

      ln ||tp L q KL q p y   (8) 

where  L q  denotes lower bound on the data 

marginal log-likelihood: 
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and  ||KL q p  is Kullback-Leibler (KL) 

divergence, known as relative entropy: 
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|| ln
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We emphasize that KL is not symmetric hence it is 
not distance (metric) measure. It is used to quantify 
similarity between two distributions.  

A perfect fit implies  || 0KL q p  . However, this is 

hard to achieve (if not impossible), thus knowing that 
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 || 0KL q p  , one may conclude that 

    ln tp L qy , which is why  L q  is known as 

lower bound on data log-likelihood [2]. Now, 
minimization of  ||KL q p , which has to be performed 

to achieve good approximation of joint posterior with 

 q  , inevitable leads to maximization of  L q . 

However, the main advantage is that  L q  operates on 

complete data log-likelihood and does not involve 
operations on the true posterior. 

Structured variational inference enables us to search 
for the solution among family of distributions  q  . In 

this paper we search for the solution of the problem by 
looking among family of distributions that factor as (see 
[2]):  

          , 11t t t tq q qw R w R  

By doing this, we preserve inner statistical 
dependencies between state and noises but we omit 
dependencies between them. In physics, this approach is 
called the mean field theory assumption [26, 27, 28].  
 
3.2 Derivation of the EKF-OR learning algorithm  
 
Firstly, we need to specify the complete data likelihood, 
defined as the following product: 
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Now, approximate posteriors of noise and state 
vector that maximize (9) are given with the following 
expressions [2]: 
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where     ln , ,t t tq p
   w R y  stands for expectation 

of compete data log-likelihood   ln , ,t t tp w R y  

calculated with respect to the distribution  q  . Taking 

the logarithm of (12) and expectation over   tq R we 

may formulate the expression for the state vector, which 
is given as: 
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One may notice that the last term of (15) is quadratic 
with respect to the state vector tw . This update 

equation for   tq w has the same functional form as 

standard EKF recursion [2, 3, 4, 30, 31], in which one 
starts with initial estimate of the state 1w  and iteratively 

propagates it via state transition model (1) and updates 

it using newest observation ty  via measurement update 

equations (2). The difference is that in EKF-OR we use 
expected value of the measurement covariance, i.e. 

1 1
t t
    R Ω  . 

Having found the expression for distribution of the 
state vector, it remains to derive expression for 
measurement covariance. To do that, we need to specify 
a model for measurement noise. In this research we 
shall focus on the case of independent identically 
distributed (IID) noise, characterized by the following 
prior at each time stamp 

 1~ ,t W s sR Ω    (16) 

Taking expectation of complete data log-likelihood 

with respect to distribution   tq w  results in 

expression for measurement noise covariance: 
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Where the last term in (17) implies that noise 

  tq R  further factors as (see [2]): 
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This result comes as consequence of (11) and IID 
assumption. (15) shows that marginal of state vector 
given observations is Gaussian    | ~ ,t t t tNw y μ Σ . It 

remains to define distribution of  |t tR y . Knowing 

that (16) is the conjugate prior for (2), it is easy to show 
the following proportionality 

   1| ~ ,t t t t tW  R y Ω  (19) 

In other words, measurement covariance tR  is 

distributed according to inverse Wishart, given 
observations  ty . Harmonic mean tΩ  is given as: 

1
t

t

s

s





R S

Ω   (20) 

with 1t s ν  degrees of freedom. Finally, 

harmonic mean tΩ  is a convex combination of the 

nominal noise R and the expected sufficient statistics 
matrix tS , calculated as (see [2]): 

     , ,
T T

t t t t t t t t t t   S y g μ x y g μ x HΣ H  (21) 

where ˆt tμ w  is expected value of the state vector 

tw . As given by (20), in the limit when s  , 

harmonic mean tΩ  reduces to nominal noise covariance 

R. We emphasize another interpretation of (21). When 
difference between predicted output of the network 

 ˆ ,t t tg w x  and current measurement (data point) ty is 
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small, approximate noise remains the same as the 
nominal R; on the other hand, if there is big difference 
between predicted output  ˆ ,t t tg w x  and current 

measurement ty , matrix tS  will be larger than nominal 

measurement covariance R, and it will dominate in (20). 
As a consequence, harmonic mean tΩ  will be larger 

than R, which results in down-weighting of the 
measurement ty  since it is being treated as an outlier.  

As a main result, pre-processing or labelling of 
outliers is eliminated; processing of outliers is carried 
out sequentially within learning algorithm. EKF-OR 
learning algorithm is given in Algorithm 1. 

Algorithm 1. Learning algorithm based on extended 
Kalman filter Robust to Outliers (EKF-OR) for Multilayered 
Perceptron Neural Network (IID noise case) 

  0 0 0, , , ,p q r input g  

1. For each observation  ,t tx y , t = 1,…,n do 

| 1 1 | 1 1

1.1Predict state vector and covariance

;t t t t t t     μ w P P Q
 

| 1 | 1

1.2Set initial values for iterative process

;t t t t t t   m M P
 

2. While 
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EndWhile 
3. EndFor 
output 

 
In the very first step of EKF-OR the user defines type of 
activatoin function (hyperbolic tangent or sigmoid), 
architecture of MLP neural network (number of hidden 
layers and neurons in them) and parameters needed for 
filter deployment: initial state uncertainty 0 0p PP I , 

state transition uncertainty 0q QQ I , and measurement 

uncertainty 0r RR I , where PI , QI , and RI are the 

identity matrices of appropriate dimensions. The 
learning process starts with introduction of the first data 
point  1 1,x y . The first step in Kalman filtering theory 

is the prediction of the state and covariance; this is 
performed in 1.1. In 1.2 the algorithm assigns new 
parameters needed for EKF-OR iterative procedure. In 
the second step of the EKF-OR learning algorithm, we 
introduce new measurement ty  and generate estimate 

of the state vector tw . To solve (13) and (14) (i.e. (15) 

and (17)), we have to apply iterative procedure because 
no closed form solution exist. Convergence is controled 
by monitoring innovation likelihood declaring that 

change in two consecutive iterations has to be greater 
than previously defined tolerance. In the first step we 

estimate   tq R given our best current estimate of the 

state vector; in 2.2 expected sufficient statistics matrix 

tS is calculated. Then, in 2.3, we update noise with 

newly estimated tS . The second step 2.4 implies update 

of our current best estimate of the state vector 
parameters given new estimate of the noise covariance 

tΩ . In 2.5 we calculate the Kalman gain. Lines 2.6 and 

2.7 perform update of   tq w  parameters.  

It is important to stress that measurement Jacobian H, 

which is defined as 
   

  
  

g
H

w
, is iteratively 

calculated (within the While loop of the Algorithm 1-
step #2). We point out that other nonlinear Kalman 
filters may be used. For example, unscented Kalman 
Filter (UKF) or extended information filter (EIF) may 
be applied as learning algorithm of neural network. 
These algorithms are extensively tested for RBF 
networks training and they have proven their 
performance in [4, 32, 33]. Instead of Taylor series 
linearization these algorithms may be used in our robust 
sequential learning algorithm without necessity to 
change the basic idea of the algorithm. 
 
4. EXPERIMENTAL RESULTS 

 
To fully assess perfomance of MLP network trained 
with EKF-OR sequential learning algorithm we setup 
the following experiment. MLP network is to learn 
highly nonlinear stochastic functions such as values of 
different stock indexes on the financial market. We have 
chosen values of actions for three consecutive years (1st 
January 2006 -31st December 2008) for the following 
indexes of companies in IT sector Microsoft, Apple, 
Google, Red Hat, Intel, Yahoo, IBM, and Oracle and 
stock index of 500 largest companies S&P500. Data are 
downloaded from [34]. These functions are highly 
nonlinear and stochastic, which makes them hard to 
model. However, when outliers are added to these 
functions they become even harder for modeling. The 
identical MLP network is trained with EKF and EKF-
OR and EKF-OR’s performance is compared to that of 
EKF.  

Artificial outliers are added to each training set. For 
all experiments the following procedure is adopted: 
1. Add certain number of outliers generated according 
to predefined mechanism; 
2. Train MLP neural network using EKF-OR with 
training set contaminated by outliers; 
3. Test performance of optimized MLP neural network 
using test set free of outliers. 
 The simulated noise sequence is burst noise, 
following bistable regime:  

0, nominal noise

1, burst of outlierstb


 


  (22) 

bt is sampled from Markov process with p=5% 
probability of transition. The probabilty that two 
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consecutive elements are equal is given with probability 
1-p=95%. If bt=0 the noise is samlped from inverse 
Wishart distribution with unit covariance and 10 
degrees of freedom; otherwise bt=1 it is sampled from 

Gaussian distribution  20,N  , 2 0.01  . During the 

burst, measurements are quickly becoming larger and 
more volatile than in nominal conditions. We emphasize 
that this noise sequence does not obey IID noise case 
which may jeoperdize performance of  both EKF-OR 
and generic EKF. However, although IID noise case is 
deeply embedded into roots of EKF-OR, as we will see, 
EKF-OR can easily overcome this problem due to VI 
employment. 
 MLP network is to predict the next value in the 
series given three previous values/measurements, i.e. 

 1 1 2ˆ , ,t t t t  y g y y y . The accuracy is measured with 

root mean square error (RMSE) defined as: 

   
1

1
ˆ ˆRMSE

testN
T

t t t t
test n

N 

   y y y y   (23)   (31) 

where Ntest denotes total number of available testing 
samples. The lower numerical value of RMSE for 
testing set free of outliers implies better generalization. 
All codes are written and run in Matlab 7.12 programing 
environment; experiments are conducted on laptop 
computer with Intel(R) Core™ i5-4200U CPU @ 
1.6GHz (2.3GHz) with 6GB of RAM, running on 64-bit 
Windows 7.0. 

Five different MLP architectures are tested: (1) 3-
10-1; (2) 3-20-1; (3) 3-5-5-1; (4) 3-10-5-1; (5) 3-10-10-
1. Each experiment is repeated 30 times; each time the 
new initial values of weights and biases are generated 
and entire learning process is performed. The results 
averaged over 30 independent trials are given in Tables 
1-5. Results in tables show average, maximum and 
minimal RMSE for test set free of outliers, as well as 
the improvement rate (IR) of EKF-OR when compared 
directly to EKF. 

As experimental results given in Tables 1-5 show, 
EKF-OR outperforms EKF in terms of accuracy, where 
accuracy is measured by RMSE calculated for test set 
free of outliers. Furthermore, the average maximum 
RMSE of EKF-OR is lower than average maximum 
RMSE of EKF; similarly, the average minimum RMSE 
value of EKF-OR is higher than average minimum 
value of RMSE for EKF. The average improvement rate 
is 7%, where for some experiments the highest IR value 
reaches 21%. In Figure 1 one may see S&P500 stock 
index. The upper part of the figure shows the nominal 
value of the stock (blue solid line) and values polluted 
by outliers (black dotted line). The sudden and wild 
bursts of heavy tailed noise (outliers) are easily noticed. 
The lower part of Figure 1 depicts test set for S&P500 
stock index. As mentioned, the test set is free of 
outliers. One may see that MLP trained with EKF-OR is 
able to reconstruct original signal/data regardless of 
outliers’ presence. Similarly, in upper left corner of 
Figure 2 one may see nominal time series (solid blue) 
and time series polluted with outliers (dotted black) for 
Apple stock index. Lower left in Figure 2 depicts 

reconstructed time series plotted versus nominal free of 
outliers. The right part of Figure 2 shows box plot for 
EKF and EKF-OR for 30 independent experimental 
runs.   

 
 Figure 1. S&P500 stock index in a given time frame.  

 
5. CONCLUSION 

 
In real world applications of neural networks 
designers/engineers have to deal with presence of 
outliers in data. For on-line and especially real time 
implementations, it is essential to have learning model 
able to tackle possible outliers in stream of data.  

To enable real world implementation of neural 
networks, in this paper we have derived a new 
sequential algorithm for robust learning of Multilayered 
Perceptron (MLP) neural network in presence of 
outliers. Extended Kalman Filter robust to outliers 
(EKF-OR) is based on simple intuition of “uncertainty 
about uncertainty” [1, 2]; in EKF-OR we allow 
measurement covariance matrix to evolve over time and 
model this process as stochastic process in which prior 
is modelled as inverse Wishart distribution. EKF-OR 
sequentially processes all data points, regardless if data 
point is outlier or not. In EKF-OR outliers are 
“naturally” down-weighted within learning setup. To 
solve the problem of analytical intractability of update 
step in Bayesian framework we applied Variational 
Inference (VI) in form of structured variational 
approximation. This enables the algorithm to operate on 
complete data log-likelihood and to iteratively improve 
estimates of state and noise. 

Experimental results on real world data (real world 
time series polluted with burst of noise) demonstrate 
effectiveness and good generalization ability of derived 
learning algorithm, and together with developed 
theoretical concept provide strong foundations for future 
research. 
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Figure 2. Apple stock index in a given period. Right part shows box plot of EKF and EKF-OR for 30 independent trials (3-20-1). 

Table 1. Experimental results for 3-10-1 MLP network architecture. Results are averaged over 30 independent trials. 

 Avg. RMSE test Max RMSE test Min RMSE test 
 EKF-OR EKF EKF-OR EKF EKF-OR EKF 

IR 
% 

Microsoft 0.1130±0.0464 0.1226±0.0595 0.2377 0.2773 0.0639 0.0631 7.825 
Apple 0.1066±0.0411 0.1170±0.0535 0.2351 0.2971 0.0590 0.0572 8.8820 

Google 0.0910±0.0205 0.0952±0.0244 0.1357 0.1696 0.0574 0.0608 4.4214 
Red Hat 0.1102±0.0533 0.1146±0.0519 0.2872 0.2903 0.0602 0.0606 3.9084 

Intel 0.1087±0.0356 0.1189±0.0476 0.2155 0.2397 0.0642 0.0657 8.5683 
Yahoo 0.0898±0.0346 0.0938±0.0297 0.1991 0.2033 0.0538 0.0541 4.2414 
IBM 0.0951±0.0261 0.1047±0.0361 0.1648 0.2034 0.0591 0.0651 9.2441 

Oracle 0.1228±0.0590 0.1334±0.0669 0.3477 0.3711 0.0804 0.0832 7.9646 
S&P500 0.0953±0.0381 0.1006±0.0397 0.2244 0.2046 0.0500 0.0475 5.2508 

Table 2. Experimental results for 3-20-1 MLP network architecture. Results are averaged over 30 independent trials. 

Table 3. Experimental results for 3-5-5-1 MLP network architecture. Results are averaged over 30 independent trials. 

 Avg. RMSE test Max RMSE test Min RMSE test 
 EKF-OR EKF EKF-OR EKF EKF-OR EKF 

IR 
% 

Microsoft 0.1042±0.0276 0.1256±0.0472 0.1747 0.2742 0.0643 0.0742 17.0475 
Apple 0.1269±0.0599 0.1325±0.0704 0.2714 0.3850 0.0614 0.0603 4.2196 

Google 0.1335±0.0644 0.1553±0.0646 0.3366 0.3582 0.0648 0.0748 14.0552 
Red Hat 0.1308±0.0467 0.1437±0.0727 0.2487 0.4330 0.0800 0.0827 9.0313 

Intel 0.1496±0.0549 0.1796±0.0771 0.2776 0.3333 0.0770 0.0848 18.2190 
Yahoo 0.1183±0.0422 0.1179±0.0341 0.2225 0.1930 0.0701 0.0764 -0.3817 
IBM 0.1345±0.0599 0.1237±0.0388 0.2771 0.2567 0.0680 0.0741 -8.7127 

Oracle 0.1676±0.0812 0.1746±0.0781 0.4601 0.4161 0.0834 0.0828 4.0233 
S&P500 0.1564±0.1016 0.1553±0.0677 0.5071 0.2873 0.0656 0.0588 -0.7397 

 Avg. RMSE test Max RMSE test Min RMSE test 
 EKF-OR EKF EKF-OR EKF EKF-OR EKF 

IR 
% 

Microsoft 0.0926±0.0235 0.0964±0.0243 0.1454 0.1380 0.0624 0.0627 3.8733 
Apple 0.0921±0.0327 0.0987±0.0343 0.1869 0.2226 0.0526 0.0577 6.7474 

Google 0.1173±0.0806 0.1238±0.0799 0.4609 0.4446 0.0520 0.0540 5.1982 
Red Hat 0.1083±0.0491 0.1192±0.0654 0.2694 0.3299 0.0605 0.0611 9.1485 

Intel 0.0920±0.0222 0.1007±0.0355 0.1767 0.2147 0.0658 0.0686 8.7191 
Yahoo 0.0982±0.0410 0.1008±0.0443 0.2493 0.2211 0.0558 0.0561 2.6347 
IBM 0.1035±0.0346 0.1150±0.0468 0.1997 0.2520 0.0576 0.0574 10.0422 

Oracle 0.1060±0.0231 0.1096±0.0263 0.1594 0.1756 0.0759 0.0799 3.2856 
S&P500 0.0922±0.0355 0.0950±0.0370 0.1952 0.1989 0.0486 0.0488 2.8612 
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Table 4. Experimental results for 3-10-5-1 MLP network architecture. Results are averaged over 30 independent trials. 

 Avg. RMSE test Max RMSE test Min RMSE test 
 EKF-OR EKF EKF-OR EKF EKF-OR EKF 

IR 
% 

Microsoft 0.1135±0.0323 0.1272±0.0291 0.2020 0.2177 0.0697 0.0809 10.7343 
Apple 0.1127±0.0273 0.1253±0.0475 0.1678 0.2738 0.0743 0.0622 10.0915 

Google 0.1148±0.0448 0.1171±0.0412 0.2632 0.2273 0.0612 0.0585 1.9532 
Red Hat 0.1220±0.0406 0.1192±0.0358 0.2290 0.1936 0.0674 0.0706 -2.4020 

Intel 0.1094±0.0325 0.1143±0.0356 0.2136 0.2333 0.0758 0.0675 4.2718 
Yahoo 0.1013±0.0538 0.1136±0.0398 0.2778 0.3909 0.0590 0.0596 10.8682 
IBM 0.1105±0.0383 0.1071±0.0368 0.2372 0.2516 0.0659 0.0668 -3.2058 

Oracle 0.1192±0.0340 0.1256±0.0274 0.2163 0.1764 0.0796 0.0820 5.0593 
S&P500 0.0882±0.0319 0.1119±0.0655 0.3980 0.1544 0.0578 0.0548 21.1564 

  

Table 5. Experimental results for 3-10-10-1 MLP network architecture. Results are averaged over 30 independent trials. 

 Avg. RMSE test Max RMSE test Min RMSE test 
 EKF-OR EKF EKF-OR EKF EKF-OR EKF 

IR 
% 

Microsoft 0.0936±0.0233 0.1118±0.0328 0.1710 0.1982 0.0684 0.0712 16.2928 
Apple 0.0882±0.0280 0.1052±0.0505 0.1630 0.2372 0.0554 0.0520 16.1275 
Google 0.0891±0.0290 0.0958±0.0331 0.1656 0.1676 0.0547 0.0523 7.0683 
Red Hat 0.1119±0.0384 0.1163±0.0605 0.1956 0.3223 0.0626 0.0594 3.7394 

Intel 0.1134±0.0277 0.1250±0.0402 0.2001 0.2834 0.0683 0.0705 9.2816 
Yahoo 0.0896±0.0354 0.1139±0.0602 0.2093 0.2709 0.0606 0.0544 21.3280 
IBM 0.1063±0.0306 0.1119±0.0379 0.2026 0.2503 0.0623 0.0700 5.0531 

Oracle 0.1105±0.0295 0.1129±0.0335 0.2005 0.1870 0.0775 0.0768 2.0899 
S&P500 0.0962±0.0358 0.1008±0.0270 0.2111 0.1675 0.0508 0.0614 4.5604 
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ВАРИЈАЦИОНИ ПРИСТУП РОБУСТНОМ 

ОБУЧАВАЊУ ВИШЕСЛОЈНОГ 
ПЕРЦЕПТРОНА НА БАЗИ БАЈЕСОВСКЕ 

МЕТОДОЛОГИЈЕ 
 

Најдан Вуковић, Марко Митић,  
Зоран Миљковић 

 
У раду је приказан и изведен нови секвенцијални 
алгоритам за обучавање вишеслојног перцептрона у 
присуству аутлајера. Аутлајери представљају 
значајан проблем, посебно уколико спроводимо 
секвенцијално обучавање или обучавање у реалном 
времену. Линеаризовани Калманов филтар робустан 
на аутлајере (ЛКФ-РА), jе статистички генеративни 
модел у коме је матрица коваријанси шума мерења 
моделована као стохастички процес, а априорна 
информација усвојена као инверзна Вишартова 
расподела. Извођење свих једнакости је базирано на 
првим принципима Бајесовске методологије. Да би 
се решио корак модификације примењен је 
варијациони метод, у коме решење проблема 
тражимо у фамилији расподела одговарајуће 
функционалне форме. Експериментални резултати 
примене ЛКФ-РА, добијени коришћењем стварних 
временских серија, показују да је ЛКФ-РА бољи од 
конвенционалног линеаризованог Калмановог 
филтра у смислу генерисања ниже грешке на тест 
скупу података. Просечна вредност побољшања 
одређена у експерименталном процесу је 7%.  
 

 


