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Bulk Operations Modeling: The Case of 
the Seaport Automobile Terminal  
 

This paper discusses the loading processes at seaside link of seaport 

automobile terminal (SAT) as a queuing model with bulk arrivals. We 

explain in detail the performances of the reported SAT in the Port of Bar, 
and propose the related queue model regarding the considered loading 

process. This model allows use to obtain related numerical and graphical 

results for the steady-state probabilities of the defined queue model. Using 

these results, we are able to discuss the values of these probabilities in 

dependence of the basic performances to the modeling processes at the SAT 

involving in the expression for the utilisation factor (service utilisation). 
For possible further comparison analysis, we give numerical and graphical 

results related to the mentioned probabilities concerning four different 

values of the size of arriving group of automobiles in the considered queue 

model. 
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1. INTRODUCTION   

 
Bulk arrival queues have wide range of applications (see 
more in [1-3]).  These queues have widespread 
applications in the port systems ([4-7]). Many results in 
bulk operations modeling have been obtained by 
considering models, where customers arrive one by one 
and are served individually. It is frequently observed in 
river and sea ports that the customers arrive in groups. 
In this study bulk operations modeling of seaport 
automobile terminal (SAT) in the Port of Bar 
(Montenegro) is presented ([8-12]). The defined 
analytical model corresponds to the bulk queue with one 
ship ramp (server) in which the size of arrival group at 
the ramp is a constant random variable. 

An integral optimization model and estimated 
manpower planning at the Bremerhaven port 
represented a very important study that was done in [13] 
and [14] where authors derived an integral decision 
model as a complex combinatorial problem. In [15] and 
[16] authors discussed about the planning of 
transshipment of vehicles based on a multi-agent system 
(MAS). The allocation of drivers to the vehicles have 
been considered and discussed. The MAS is tested using 
randomly generated problem instances with different 
distributions of the manufacturer shares in the vehicle 
streams. The tests verify a certain robustness of the 
MAS with regard to the number of permanently 
employed drivers and the cost surcharge for hired 
drivers. 

This paper deals with the traffic modeling of the 
SAT in the port of Bar, which faced a fast growth in the 
past few years (see more in [8], [17] and [18]). The 

main aim of the paper is related to the operational 
policies at the terminal because the statistical analysis 
shows the difference in ships’ size. Moreover, during 
last three years is presented a bigger number of ships 
going at Ro-Ro berth ([9], [11], [17] and [18]). 

During 2013, at the SAT in the Port of Bar were 
serviced 99 ships. All those ships exported exactly 
97491 automobiles that mostly came by rail transport 
while a few percentages were distributed by road 
transport. This trend continued also in 2014 and 2015, 
and therefore, made a base for the construction of 
adequate analytical model for the operating activities at 
the terminal ([17] and [18]). For more information on 
investigations of queuing systems in port see [19]. 

The paper is organized as follows. In  Section 2 we 
propose the modeling methodology for considered 
loading process of the SAT in the Port of Bar. In 
particular, we deduce the system of infinite number of 
linear equations for the steady-state probabilities of the 
corresponding defined queue model. Using this system, 
in Section 3 we give some numerical and graphical 
results for the considered model. For further comparison 
analysis, these results are obtained for four different 
values of the size of arriving group of automobiles (i.e., 
for 8,6,4,2=g ). Namely, these numerical and graphical 

results are extensions of those obtained in [10], where it 
is considered only the “Port of Bar” case 6=g . Section 

4 gives concluding remarks. 
  

2. MATHEMATICAL MODEL 

 
As noticed above, this paper discusses the loading 
process at seaside link of the SAT as a queuing model 
with bulk arrivals. The stochastic characteristics and 
assumptions of loading operations are as follows (see 
more in [10]):  
- time of arrival of a single automobile or in bulk 

(automobiles’ group) at the ship ramp cannot be 
precisely given; 
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- the loading time through the ship ramp is a constant 
service time; 

- the ship’s ramp is not always occupied; in some 
periods there are no automobiles (the capacity is 
under utilized) and there are the time intervals of high 
utilisation when the queue is formed; 

- the loading operation at the SAT via ship ramp 
includes the following: automobiles are moved from 
storage yard to the ship ramp; waiting in front of ship 
ramp if the ramp is occupied; loading at the ship 
ramp, parking on the assigned slots inside ship; 
returning of drivers by accompanying cars to storage 
yards to take another group of automobiles. This 
cycle is called the turnaround time for the loading 

process of automobiles onto ships, ct . 
The seaside operations at the SAT, i.e. the loading 

process of ships may be considered as a bulk queuing 
model. In this case, customers are groups of 
automobiles, and the service channels are ships’ ramps 
operating for the loading/unloading of automobiles. In 
the seaside link of SAT it is assumed as follows [10]: 
- the applied queuing model is a stationary with infinite 

waiting area at ship ramp; 
- the sources of arriving pattern are not integral parts of 

loading process of ships via ramps; 
- the service channel is the ship ramp with similar or 

identical and independent handling capacities; 
- the units arrivals can be single automobile or 

automobile groups; 
- automobiles are loaded via ship ramp or waiting to be 

loaded and in this case none can be rejected 
(accordingly, the queue length is assumed to be 
infinite); 

- the size of an arriving group of automobiles is a 
random variable; 

- the queue discipline is first come first served by 
group’s bulk and random within the group’s bulk. 

More formally, the described model is known as a 

1// DM
X  queue. The automobiles allocated on storage 

areas arrive in groups of size g at the ramp according to 
a time-homogeneous Poisson process with (the mean 
arrival) rate λ in a considered unit time (in view of the 
facts that the arrivals of groups of automobiles in all 
cycles are mutually independent). The size of every 
arrival group at the ramp is a constant random variable 
X  (with the distribution 1}{ == gXP ). The ramp is in 

fact a single service that is loading of automobiles via 
the ship ramp. We assume that a related service time is 
determined, that is, the mean loading rate per ship ramp 
is µ . Since in each considered case the mean arrival 

rate λ  with respect to the considered unit time (of a 
group) is relatively small with respect to the mean 
loading rate per ship ramp, we can assume that each 
automobile will find a waiting place available upon 
arrival; so that, we can suppose that the related queue 
model possesses an infinite capacity. 

Accordingly, the arrivals of automobiles from 
storage areas in groups at the ramp and loading stages 

via ship ramp can be viewed as the sDM
gX //1// ∞≡  

queue. Unfortunately, in our knowledge does not exist 
formulae in closed form for performances of such a type 

of bulk queue with a finite population. However, since 
the size of group g is usually small at the SAT with 
respect to the size of the population (total number of 
automobiles) s (in fact, 100/1/ <sg ), our 

sDM
gX //1// ∞≡  queue may be well approximated by 

the 1// DM
gX ≡  queue with infinite population.    

Then, in accordance to the above notations, we have 
(see more in [10]):  
• The arrival rate of every group in a particular gang is 

ct  and it is actually equal to the previously defined 
turnaround time; hence, the mean arrival rate λ  of a 

considered queue model is cth /=λ . In order to 
ensure sustainable operations, g drivers are grouped 
into h gangs. In every cycle are involved h gangs, 
where in each of these gangs are engaged g drivers. 
(Here it is used the fact that the arrivals of groups of 
cars are independent, and the well known fact that if 

1X  and 2X  are two independent Poisson variables 

with mean 1λ  and 2λ , respectively, then 

21 XXX +=  is also a Poisson variable with mean 

1λ + 2λ ). 

• The related service time is a constant s5/1 =µ , that 

is, the service rate (of passages of cars over the ramp) 
is 12=µ  per one minute. 

• The utilisation factor (the server utilisation) ρ  is 

hgthgg c αµµλρ === )/(/  with )/(1 µα ct=  for a 

particular embarkation process) 
• Total number of operational gangs that are particularly 

engaged in each cycle, h , is  4. Number of cars that are 
transported in each operational gang, g, is 6. 

Notice that in recent papers ([8-12]),  the authors 

analyzed the traffic modeling of operations at the SAT 
in the Port of Bar. In particular, using some analytical 

results for the batch queue system cDM
X //  

established in [3] (also see [1] and [2]), authors in [10] 
and [12] deduced some suitable formulae for certain 
basic stochastic characteristics (performances) related to 
the loading operations at terminal over ship ramp at 
seaside link of the SAT in the Port of Bar. These 
performances are derived without the use of notion of  
the state probabilities of related queue model. Here we 
focus our attention to the determination of steady-state 
probabilities nP , ,....2,1,0=n  ( nP  denotes the proba–

bility that n  customers are in the system).  
Now consider the above described stationary queue 

1// DM
gX ≡  with related parameters. Furthermore, let 

)(tY  denote the total number of arrivals during the 

period ),0( t , and let  

})({)( ntYPtn ==π , ,....2,1,0=n                (1) 

Then under a general assumption that the size of arrival 
group at the system is a random variable X  (with 

nanXP == }{ , ,....,2,1,0=n the following recurrence 

formulae are satisfied (see [1] and [3]):  
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gi ≠ , by using mathematical induction, the formulae  
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,0)( =tnπ  otherwise.                        (5) 

For our queue model the steady-state Chapman-
Kolmogorov equations for the distribution {Pj, j=0,1,2, 
...}  are given by (see Equations (1) and (2) in [1]) 
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Then substituting (2), (4) and (5) into (6) and (7), 
and using the fact that after a routine calculation, in 
view of the fact that g// ρµλ = , the equations (6) and 

(7) respectively becomes   
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where, as usual, ][a  denotes the greatest integer not 

exceeding a , and in (9) )/1( µπ n may be replaced by a 

suitable expression given by (4) or (5).   
Furthermore, it is known that in the case of any 

single-server queueing system (see e.g., [2])  

ρ−=10P .                                  (10) 

Notice that the expressions (4) - (10) yield the 
following ones: 

g
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3. NUMERICAL AND GRAPHICAL RESULTS 
 

Given here are some numerical and graphical results for 
the steady-state probabilities nP  with 4,3,2,1,0=n  for 

the queue model 1// DM
gX ≡

 described in the previous 

section whose size of the arriving group is 6=g . for 

comparison analysis related to the certain values of 
steady-state probabilities, here we also consider the 
cases when 4=g , 2=g  and 8=g .  

Firstly, consider the case when 6=g  (see [10]). 

taking 6=g  and ρ−=10P  given by (10) into (8) we 

obtain:  

)1)(1( 6/
1 −−= ρρ eP ,                         (14) 

which substituting in (9) with 1=n  gives     

               )1()1( 6/6/6/
12 −−== ρρρ ρ eeePP   (15) 

Taking (10), (14) and (15) into (9) with 2=n , and 
using (5), yields   

)1()1( 6/3/6/
23 −−== ρρρ ρ eeePP ,            (16) 

which substituting in (9) with 3=n , and using (5), 
immediately gives: 

    )1()1( 6/2/6/
34 −−== ρρρ ρ eeePP            (17) 

By using the expressions (10) and (14) - (17), we 
obtain the numerical and graphical results given in 
Table 1, and Figures 1 and 2, respectively. 

Table 1. The values of nP  ( 0,1, 2,3, 4n = ) for 6g =  as a 

function of utilisation factor ρ  

ρ  
0P  1P  2P  3P  4P  ∑

=

4

0i

iP  

0.4 0.6 0.041 0.044 0.047 0.051 0.783 
0.5 0.5 0.043 0.047 0.051 0.058 0.699 
0.6 0.4 0.042 0.047 0.051 0.057 0.597 
0.7 0.3 0.037 0.042 0.047 0.053 0.479 
0.8 0.2 0.029 0.033 0.037 0.043 0.342 
0.9 0.1 0.016 0.019 0.022 0.025 0.182 

 

 

Figure 1. Steady-state probabilities nP  ( 0,1, 2,3, 4n = ) for 

6g =  as a function on ρ  (0.4 0.9)ρ≤ ≤  
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Figure 2. Steady-state probabilities nP  ( 4,3,2,1=n ) for 

6=g  as a function on ρ )9.04.0( ≤≤ ρ  

From Table 1 and Figures 1 and 2 we see that the all 

values nP  ( 4,3,2,1=n ) are less than 0.06 for all 

considered values of ρ . Moreover, the values of 0P  

decrease from 6.0  to 1.0  when the related utilisation 

factors increase from 4.0  to 9.0 . Thus, in order to 

decrease the value of 0P  and other values nP  with 

“small” indices n , it is necessary to increase related 

values of ρ . As noticed in Section 2, the utilisation 

factor (the server utilisation) ρ  is /gρ λ µ= =  

/ ( )chg t hgµ α= =  with )/(1 µα ct=  (for a particular 

embarkation process). From this we see that for a fixed 

service time µ/1  (which is in our considered case equal 

to 5s) and the arrival rate of a group of automobiles,  the 
value of  ρ  is proportional with the related product hg  

(the total number of drivers/accompanying cars for 
operational gangs which are engaged in considered 
embarkation process in the Port of Bar). We believe that 
this fact should be useful for port authority to develop 
strategies and directions in order to improve some 
basic/important Ro-Ro automobile terminal’s 
performances. 

Now consider the case when 4=g . Taking 4=g  

and ρ−=10P given by (10) into (8) we obtain  

)1)(1( 4/
1 −−= ρρ eP ,                           (18) 

which substituting in (11) with 1=n  gives     

)1()1( 4/4/4/
12 −−== ρρρ ρ eeePP              (19) 

Taking (10), (18) and (19) in (11) with 2=n  yields   

)1()1( 4/2/4/
23 −−== ρρρ ρ eeePP ,             (20) 

which substituting in (11) with 3=n  immediately gives 
 

)1()1( 4/4/34/
34 −−== ρρρ ρ eeePP               (21) 

 

By using the expressions (10) and (18) - (21), we 
obtain the numerical results given in Table 2. 

Table 2. The values of nP  ( 0,1, 2,3, 4n = ) for 4g =  as a 

function of utilisation factor ρ  

ρ  
0P  1P  2P  3P  4P  ∑

=

4

0i

iP  

0.4 0.6 0.063 0.070 0.077 0.085 0.895 
0.5 0.5 0.067 0.075 0.085 0.097 0.824 
0.6 0.4 0.065 0.075 0.087 0.102 0.729 
0.7 0.3 0.057 0.068 0.081 0.097 0.603 
0.8 0.2 0.044 0.054 0.066 0.081 0.445 
0.9 0.1 0.025 0.032 0.040 0.050 0.247 

 

Now consider the case when 2=g . Taking 2=g  

and ρ−=10P  given by (10) into (8) we obtain  

)1)(1( 2/
1 −−= ρρ eP ,                         (22) 

 which substituting in (11) with 1=n  gives     

)1()1( 2/2/2/
12 −−== ρρρ ρ eeePP              (23) 

The equality (12) for 2=g  can be written as   

2/
32 )1(

2
ρρ

ρ −+−= ePP ,                     (24) 

whence replacing (23) we find that  
 

              )22(
2

)1( 2/
2/

3 ρ
ρ ρρ

ρ

−−
−

= ee
e

P             (25) 

The equality (13) for g = 2 can be written as 

/2 /2
3 4 2 2

P P e P e
ρ ρ ρ− −= +                    (26) 

By substituting (23) and (25) into (26), the following 
is obtained  

)222(
2

)1( 2/2/3
2/

4 ρρ
ρ ρρρ

ρ

+−−
−

= eee
e

P    (27) 

By using the expressions (10), (22), (23), (25) and 
(27), the numerical results given in Table 3 are obtained. 

Table 3. The values of nP  ( 4,3,2,1,0=n ) for 2=g  as a 

function of utilisation factor ρ  

ρ  
0P  1P  2P  3P  4P  ∑

=

4

0i

iP  

0.4 0.6 0.133 0.162 0.052 0.031 0.978 
0.5 0.5 0.142 0.182 0.074 0.049 0.947 
0.6 0.4 0.140 0.189 0.093 0.069 0.891 
0.7 0.3 0.126 0.178 0.104 0.085 0.793 
0.8 0.2 0.098 0.147 0.100 0.090 0.635 
0.9 0.1 0.057 0.089 0.069 0.068 0.383 

 

Finally, consider the case when g = 8 (see more in 
[10]). Then by (10), ρ−=10P , and proceeding in the 

same manner as in the case when g = 6, by using the 
expressions (4), (5),  (8) and (9), we obtain  

)1)(1( 8/
1 −−= ρρ eP ,                       (28) 

)1()1( 8/8/
2 −−= ρρρ eeP ,                     (29) 
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)1()1( 8/4/
3 −−= ρρρ eeP                      (30) 

and 

)1()1( 8/8/38/
34 −−== ρρρ ρ eeePP           (31) 

By using the expressions (10), (28) - (31), numerical 
results given in Table 4 are obtained. 

Table 4. The values of nP  ( 4,3,2,1,0=n ) for 8=g  as a 

function of utilisation factor ρ  

ρ  
0P  1P  2P  3P  4P  ∑

=

4

0i

iP  

0.4 0.6 0.031 0.032 0.034 0.073 0.770 
0.5 0.5 0.032 0.034 0.037 0.080 0.683 
0.6 0.4 0.031 0.034 0.036 0.081 0.582 
0.7 0.3 0.027 0.030 0.033 0.075 0.465 
0.8 0.2 0.021 0.023 0.026 0.060 0.330 
0.9 0.1 0.012 0.013 0.015 0.035 0.175 
 
Notice that the values in the last columns of Tables 

1, 2, 3 and 4 denote the related probabilities that at most 
four automobiles are present at the considered queue 
system.  These probabilities for the cases g = 4 and g = 

2 are graphically presented as a function on the 
utilisation factor ρ )9.04.0( ≤≤ ρ  in Figures 3 and 4, 

respectively. 

 

Figure 3. The sum ∑
=

4

0i

iP  for  the size 4g =  of arriving 

group  as a function on ρ )9.04.0( ≤≤ ρ  

 

Figure 4. The sum ∑
=

4

0i

iP  for  the size 2=g  of arriving 

group  as a function on ρ )9.04.0( ≤≤ ρ  

From Tables 1-4 we immediately obtain the numerical 
results given in Table 5.  

Table 5. The values of 

4

1
i

i

P

=
∑  for 2, 4,6,8g =  as a function 

of utilisation factor ρ  

)(ρ  2=g  4=g  6=g  8=g  

0.4 0.378 0.295 0.183 0.170 
0.5 0.447 0.324 0.199 0.183 
0.6 0.491 0.329 0.197 0.182 
0.7 0.493 0.303 0.179 0.165 
0.8 0.435 0.245 0.142 0.130 
0.9 0.283 0.147 0.082 0.075 

 
Notice that the values from Table 5 present the related 
probabilities that at least one and at most four 
automobiles are present at considered queue system. 
 

4. CONCLUSION  

 
This paper together with the recent papers [8-12] refers 
to the introductory research of the modeling processes at 
the SAT in the Port of Bar. In particular, we study the 
loading processes at seaside link of SAT as a queuing 
model with bulk arrivals. Analyzing some stochastic 
and deterministic characteristics of related loading 
operations, we propose a suitable queue model for 
describing arrivals and services of automobiles at the 
ship ramp  (service). In this paper, we deduce an infinite 
system of linear algebraic equations for related steady-
state probabilites. A suitable recurrence form of this 
system allows use to explicitly express these 
probabilities as a function of  utilisation factor (service 
utilisation).  

Notice that for possible further comparison analysis, 
in this paper we have obtained numerical and graphical 
results related to the mentioned steady-state 
probabilities of the considered queue model concerning 
four different values of the size of arriving group of 
automobiles in the considered queue model. In 
particular, our analytical and numerical results should 
be useful for determining the size of arriving group of 
automobiles g (which is in “port of Bar” case equal to 
6 ) in the sense of optimizations of several important 
performances of modeling processes at the SAT in the 
Port of Bar. 
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МОДЕЛИРАЊЕ ОПЕРАТИВНИХ ПРОЦЕСА 

СА ГРУПНИМ ДОЛАСЦИМА: 

АУТОМОБИЛСКИ ТЕРМИНАЛИ У ЛУКАМА  
 

Р. Мештровић, Б. Драговић 
 

У овом раду описан је процес укрцаја аутомобила на 
брод као модел редова чекања са групним 
доласцима аутомобила на бродској рампи. Овде су 
описане оперативне перформансе аутомобилског 
терминала у луци Бар у односу на разматрани модел 
реда чекања са групним одласцима. Коришћењем 
тог модела добијени су нумерички и графички 
резултати за вероватноће стања разматраног модела 
реда чекања. На основу добијених резултата 
разматрају се вредности вероватноћа стања система 
у зависности од основних перформанси 
моделрианог процеса на аутомобилском термниалу 
укључених у изразу за фактор искоришћења. За 
могућу даљу упоредну анализу добијени су 
нумерички и графички резултати за вероватноће 
стања моделираног система које се односе на четири 
различите вредности величине групе аутомобила 
који долазе на опслуживање, тј. процес укрцаја на 
брод преко бродске рампе. 

 


