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At the beginning of the scientific research on vaulted structures, during 

the eighteenth century, scholars such as De la Hire, Couplet and 

Coulomb, primarily considered an arch made of voussoirs with the joints 

that have neither friction nor cohesion between them. Accordingly, in 

order to ensure the equilibrium of the voussoirs, for given extrados and 

intrados, the  problem of determining the direction of the joints was 

imposed, since the resultant thrust forces must be perpendicular to them. 

This paper derives and elaborates in detail the explicit equation that 

defines the precise position and orientation of the joints in a triangular 

arch of general shape. For the two commonly used shapes, namely flat 

arch or plate-bande and triangular arch with its intrados and extrados 

both perpendicular to springings, the closed-form expression of thrust line 

is obtained. In addition, the paper provides the minimum thickness for 

various springing angles. 

 

Keywords: Frictionless, Thrust line, Statical approach, Triangular arch, 
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1. INTRODUCTION 

 

Ancient builders have invented different types of 

structural elements in order to cover openings in a wall 

or to span space between columns. In the first place, 

there was lintel, a piece of monolithic block used in 

trabeated structural system, and later different types of 

so called false or corbel arches were introduced. 

Inclined blocks forming triangular headed opening were 

commonly present in Anglo-Saxon style [1]. The 

invention of arch had provided greater opportunity; 

however, their construction had been based solely on 

experience and intuition [2] until the beginning of the 

scientific research during the eighteenth century. 

Scholars such as De la Hire [3] and Couplet [4] among 

others, primarily considered an arch as the series of 

rigid blocks or voussoirs with the joints (beds) that have 

neither friction nor cohesion between them. 

Accordingly, the resultant thrust forces must be normal 

to the joints and the fact is expressed by the following 

fundamental equality: 

( )
tan

V

H

ψ
ψ=   (1) 

whereas the V and H are the vertical and horizontal 

component of the resultant force, and the ψ is the angle 

between the direction of the joint and the vertical. 

Thereafter, Coulomb [5] posed a problem of 

determining the direction of the joints for given 

extrados and intrados, so that voussoirs are in 

equilibrium [6]. Researchers usually took general 

consideration, and showed the application to the case of 

a flat arch i.e. plate-bande [7], and they have concluded 

that all the joints have to be concurrent to a single point 

[4, 5, 8, 9]. Using geometrical formulation i.e. static 

approach, Aita [10] has carried out the specific 

generalisation of this problem to the triangular shape of 

an arch, and has provided implicit equation for the 

direction of joints. Тreatises on stereotomy dealt with 

the design of vaulted structures, concerning the 

inclination of the joints between voussoirs, within 

essentially geometrical terms without taking any statical 

consequences into account [11]. Coulomb's condition 

that resultant forces must be contained within the 

masonry imposed a limit to the thickness of a plate-

bande; this was later inspected by Mascheroni who 

derived the expression which correlates the thickness, 

span and the springing angle [8]. However, for the 

detection of minimum thickness, when the geometry of 

an arch is slightly more complex, more detailed analysis 

of internal forces is necessary. Hence, the concept of 

thrust line, being the locus of the application points of 

the resultant thrust forces at the joints between the 

voussoirs of the arch, has been introduced, enabling the 

graphical interpretation of the load path [12, 13]. More 

than a century ago, Milankovitch [14] provided the 

exact solution for the minimum thickness of the 

semicircular arch and recently Alexakis and Makris [15] 

have computed the minimum thickness of elliptical 

arches. Although triangular arches are the structural 

precedent of the mentioned ones, their structural 

behaviour is not sufficiently researched. 

The aim of this paper is to ameliorate and extend the 

geometric approach used in [10], through the detailed 

derivation of the explicit equation that defines the 

precise both position and direction of the joints between 

voussoirs of an triangular arch of general shape. 

Subsequently, the expression of thrust line is derived 
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and the minimum thickness for the commonly used 

shapes are computed. In Sec. 2.1 the particular 

geometric elements, necessary for the analytical 

modelling of frictionless triangular arch of general 

shape, are identified and in Secs. 2.2, 2.3 and 2.4 the 

analysis is applied to particular shapes, reducing the 

general expressions. On this basis, the closed form 

expressions of the thrust line of triangular arches are 

derived in Sec. 3. The minimum thickness of two 

particular cases, is considered in Sec. 4; thus, 

equilibrium analysis is conducted for various embrace 

angles, and numerical solutions are computed. 

 
2. ANALYTICAL MODELLING OF JOINTS' DIREC–

TION 
 

2.1 Triangular arch of general shape 
 

Consider now the triangular arch which has straight 

intrados and extrados of different inclination, with the 

arbitrarily inclined springing, as shown in Fig. 1 (a). 

Due to the symmetry of the arch, in the following 

discussion only half-arch is considered. 

 

Figure 1. Geometric parameters of triangular arch of 
general shape 

The value h is the height of the arch at the crown, 

and the length l represents the half-span of the triangular 

arch. Angles α and β represent the inclination of 

intrados and extrados, respectively, and the embrace 

angle γ is the angle between the springing joint and the 

vertical crown joint. The angle ψ is angular coordinate, 

which defines the generic section, and is measured from 

the axis of the symmetry of the arch. Its local origin, 

denoted by C, moves along the vertical axis, and the 

distance from the fixed point O is represented by the 

value m(ψ) which is of particular interest in this paper. 

Since the arch is indeterminate to the third degree, 

there is a family of possible equilibrium solutions, 

which can be visualized with lines of thrust (traced with 

the dashed line) obtained through graphical statics 

methods [16]. In order to obtain statical determinacy of 

the arch, one point a thrust line passes through has to be 

assumed; the point B, being the application point of the 

horizontal thrust H acting at the crown joint is chosen, 

and its position is defined by the value q, being the 

vertical distance from the point O. According to (1), the 

reaction force R acts perpendicularly to the springing 

joint. Furthermore, in order to satisfy equilibrium, its 

line of action passes through the intersecting point 

between horizontal line set through the point B and 

vertical line set through the centre of gravity of the half-

arch at the distance xW, as one can see in Fig. 1 (a). 

The problem of the stability of an arch is reduced to 

mainly geometrical tasks solving. Namely, along with 

the usual adoption of unit value for specific weight of 

the material and the depth of an arch, a self-weight of 

the arch or its portion is substituted by the area of the 

corresponding arch segment, limited by extrados and 

intrados lines and by the particular joints between 

voussoirs; then it is applied in the centre of gravity i.e. 

in the centroid of the limited area. 

From the following equality:  r cosψ = -r(ψ)tanβ + h 

+ m(ψ), which represents the abscissa of the intersecting 

point between polar axis i.e. generic section at the angle 

ψ and the extrados (expressed in polar coordinates), we 

solve the radial distance between the point C and the 

extrados, given by the following expression: 

( )
( )

tan sin cos
e

h m
r

ψ
ψ

α ψ ψ

+
=

+
 (2) 

Analogously, from rcosψ = m(ψ) - r(ψ) tanαsinψ we 

solve the radial distance between the point C and the 

intrados, given by: 

( )
( )

1
tan sin cos

m
r

ψ
ψ

α ψ ψ
=

+
 (3) 

The weight V of the upper portion of the arch, 

between crown joint and a generic section at the angle  

ψ, is represented by the corresponding area of the arch 

(Fig. 3 (a)), and can be computed as the difference 

between the areas of two triangles, according to the 

following expression: 

( ) ( ) ( )( )
( )( )

( )

( )( )
( ) ( )

( ) [ ]

2 2

0

2

2

1

2

cos 2 cos
cos

sin sinin

sin cos sin

2cos cos

for ., 0,

e iV r r d

h h m

m

h m

m const

ψ
ψ ϕ ϕ ϕ

β ψ ψ
α

ψ β ψψ

α β ψ ψ

α ψ β ψ

ψ ϕ ψ

= −

  +
   +
    
 
 + =

− −

= ∈

∫

 (4) 

Abscissa xV of the centre of gravity of the upper 

portion of the arch, i.e. of the centroid of the area which 

corresponds to the weight V, is derived as shown in (5). 

The weight W of the half-arch and the abscissa xW of 

its centre of gravity can be obtained from (4) and (5), 

when the value of the generic angle ψ reaches the value 

of the embrace angle γ. 
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 (5) 

Substituting (4) into the fundamental equality given 

by (1), the distance m can be solved explicitly as 

follows: 

( )

( )

( ) ( )
( )

( )

2

cos cos cot sin

cos cos
cos cos cos

2 tan sin

sin

h

h
y

H
m

β α ψ α

α β
ψ α β ψ

ψ α β
ψ

α β

 + −
 
  

− −   
 −   =

− −
   (6) 

The unknown value  of the horizontal thrust H can 

be solved from (6) using the boundary condition which 

defines that the direction of springing joint (when ψ = γ) 

which meets the arch's axis of symmetry at the distance 

m(ψ = γ) = ltanα + lcotγ from the point O, so that the 

value H is: 

( )

( )

( )

( )

2

2

tan cot
cos1 cos

tan 2
2 cos

sin tan cot

l

l h hH

l

α γ
βγ

α
β γ
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  +
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+ + =   −  
+  

  (7) 

Combining with (7), (6) becomes: 
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( )
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h
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l
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β γ
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β

α
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ψ

α β
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 
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 

 + 
  

−  
  −  
   +  −   + +    
  +  =

− −
  (8) 

Thus, the distance m of the intersecting point C 

between a joint's direction and the vertical axis of 

symmetry from the intrados of the arch (point O) is 

obtained as the function of the generic angle ψ. 

Accordingly, for the chosen inclination i.e. the direction 

of a joint between two voussoirs, its specific position 

can be determined using (8). This also applies in the 

particular case where extrados is horizontal (and 

intrados remains inclined), i.e. when β = 0, as shown in 

Fig. 2 (a); other particular cases regarding parallel 

intrados and extrados are considered in the following 

sections. 

 
2.2 Triangular arch with equally inclined intrados 

and extrados 
 

When the intrados and extrados are parallel i.e. equally 

inclined, the thickness of triangular arch becomes 

constant, as shown in Fig. 2 (b). Hence, the angle β 

becomes equal to the angle α, so that expression for the 

weight of arch portion, given by (4), reduces to: 

( ) ( )( ) ( )
1

cos 2 sin sec
2

V h h mψ α ψ ψ α ψ= + −  (9) 

and (5) becomes: 

( )
( ) ( )( )

( )( ) ( )

22cos 3 3 sin

3 2 cos
V

h hm m

x
h m

α ψ ψ ψ
ψ

ψ α ψ

+ +
=

+ −
 (10) 

Further, substituting (9) into (1) one can solve the 

value m: 

( )
( )( )

tan tan

23 2

H H h
m

hh m

α ψ
ψ

ψ
= + −

+
 (11) 

Now the value H is as follows: 

1
cot 2

2 tan cot

h
H h lγ

α γ

 
= + 

+ 
 (12) 

and thus (11) becomes: 

( )
( )( )

( )
tan tan 1 2 tan 2 cot

2 tan cot tan 2

l l h h
m

α ψ α γ
ψ

α γ γ

+ + +
= −

+
  (13) 

 

Figure 2. Particular shapes of triangular arch: (a) inclined 
intrados with horizontal extrados, (b) equally inclined 
intrados and extrados 

 
2.3 Intrados and extrados with perpendicular 

springing 
 

For more specific and most common case, when 

springing joint is perpendicular to intrados and extrados, 

i.e. when γ = α, the weight V of the arch portion 

simplifies from (9) to: 

( ) ( )( )1
cot tan sin 2 4

4
V h h lψ α ψ α= +   (14) 
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and the abscissa xV of its centre of gravity is obtained by 

the substitution of m(ψ) given by (16) into (10). Now, 

the horizontal thrust H is: 

1
cot 2

2 tan cot

h
H h lα

α α

 
= + 

+ 
  (15) 

In addition, the distance m simplifies from (13) to: 

( )
( )
( )

cos sin tan cos1

2 cot tan2

h
m

l h

α α ψ α
ψ

α ψ

 + +
=  

+ −  
     (16) 

 
2.4 Plate-bande 

 

The most particular case, but also the most common one, 

represents flat arch or plate-bande. Herewith, both intrados 

and extrados are horizontal, i.e. α = β = 0. Therefore, the 

expressions given by (9), (10) and (12) are reduced to (17) 

– (19), respectively: 

( ) ( )
1

tan 2 cot
2

V h l hψ ψ γ= +   (17) 

( )
( )

( )

2 2 2tan 3 cot 3 cot

3 2 cot
V

hl l h
x

l h

ψ γ γ
ψ

γ

+ +
=

+
    (18) 

and 

( )
1

2 cot
2

H h l hγ= +   (19) 

Furthermore, (13) reduces to the following equality: 

cotm l γ=   (20) 

One can see that this distance is common for any 

generic section, since it is independent of the angle ψ. 

Therefore, all the joints are concurrent, i.e. they 

converge to a single point, the result already obtained by 

the eighteenth century scholars (e.g. [4, 5] among 

others), but here it is provided for the completeness of 

the analysis. 

 
3. THRUST LINE ANALYSIS OF TRIANGULAR 

ARCHES 
 

In order to obtain the graphical representation and the 

better understanding of the flow of forces along the 

arch, thrust line analysis is conducted in this section. 

Consider the finite portion of a triangular arch of 

general shape (discussed in Sec. 2.1) shown in Fig. 3. 

We assume the position of the application points B 

of the horizontal thrust H acting at the crown, defined 

by the value q. Now, the resultant thrust force T at the 

generic section at the angle ψ together with its point of 

application A is uniquely determined from the force and 

moment equilibrium of the finite portion of the arch; it 

can be done either graphically with the force polygon 

(see Fig. 1 and 3) or analytically by solving equilibrium 

equations. 

From rotational equilibrium about point A it follows: 

( ) ( )( ) ( ) ( )cos sin VH m q V xψ ρ ψ ψ ψ ρ ψ ψ− + = −
 

Hence, from the previous equality, one can determine 

the distance ρ(ψ) between the thrust line and the point 

C, deriving the closed form expression for the thrust 

line of triangular arch of general shape: 

( )
( )( ) ( ) ( )

( )cos sin

VH m q V x

H V

ψ ψ ψ
ρ ψ

ψ ψ ψ

+ +
=

+
 (21) 

whereas V(ψ), xV(ψ), H and  m(ψ) and are given by (4), 

(5), (7) and (8), respectively; substituting these 

expressions into (21) one can obtain the expanded 

expression of the thrust line (not reported here because 

of its length). 

 

Figure 3. Thrust line: (a) free-body diagram of the isolated 
finite i.e. top portion of triangular arch up to the generic 
section at the angle ψ, (b) force polygon which represents 
the equilibrium of the finite portion of the arch 

In the particular case, where intrados and extrados 

are parallel and perpendicular to the springing (Fig. 4 

(a) and (b)), (14)–(16) with respect to (10) have to be 

substituted into (21) in order to obtain the 

corresponding expression of the thrust line. 

In the case of plate-bande, the expression of the 

thrust line simplifies to the following one: 

( )

( )( )

( )
( )

( )

2

2 2 2

3 cot sec cos 2

cos 3 cot tan 2

3 2 cos 3

3 2 cos

l h q q

l

l q

l h

γ ψ ψ

ψ γ ψ

γ
ρ ψ

γ

 + + +
 
 + + 
 

+  =
+

(22) 

Plotting the graph of thrust line, as well as the 

analysis of its position, in order to detect minimum 

thickness, requires the parametrisation of (21) in the 

following form: 

( ) ( )sinx ψ ρ ψ ψ=      (23a) 

( ) ( ) ( )cosy mψ ρ ψ ψ ψ= −    (23b) 

where the origin of orthogonal coordinate system is 

positioned in the point O, as shown in Fig. 3 (a). 
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A few scholars have concluded that in general case 

the direction of the resultant thrust force does not 

coincide with the direction of the tangent line to thrust 

line (see for example [13, 14, 17, 18]), i.e. V/H ≠ dx/dy. 

Slope of the resultant developed at the generic joint at 

the angle ψ can be determined as the ratio between the 

derivatives of the expressions given in (23): 

dx

dx d

dydy

d

ψ

ψ

=   (24) 

Numerical analysis has shown that (24) equals zero 

when ψ = 0, and when ψ = γ it is different from –tan γ. 

In other words, thrust line is perpendicular to the crown 

joint and is not perpendicular to the springing joint. 

 
4. MINIMUM THICKNESS 

 
Expressions for the thrust line given in the previous 

section do not assume a limit thrust line i.e. the 

minimum (limit) thickness of the arch with the 

corresponding limit value of horizontal thrust. In order 

to determine the limit thrust line, it is necessary to 

determine the admissible collapse mode i.e. limit 

equilibrium state (see Fig. 4). 

 
a. Minimum thickness of frictionless perpendicular 

triangular arch 
 

When the triangular arch with parallel extrados and 

intrados is considered, the application point of the 

horizontal thrust at the crown joint has to be set at its 

lower extremity, so that point B coincides with the point 

O and the value q equals zero. From that point thrust 

line departures from intrados approaching extrados. 

Numerical analysis with respect to (24) has shown that 

when ψ = γ the slope of thrust line is smaller than the 

slope of the extrados. Therefore, when the limit state is 

assumed, thrust line firstly touches extrados close to 

springing, and then it approaches the springing moving 

away from the extrados; at the springing joint, it passes 

between extrados and intrados, but much closer to the 

extrados, as shown in Fig. 4 (b). 

Triangular arch of sufficient thickness t = h cos α is 

shown in Fig. 4 (a) and one admissible thrust line is 

traced according to (23). We search for the (minimum) 

thickness necessary to accommodate only one, i.e. limit 

thrust line. In other words, it is necessary to detect the 

point of the thrust line with the tangent coincident to the 

extrados. The analytical solution is not known to the 

authors, so the numerical solutions have been obtained 

through the developed iterative process. Namely, for 

each generic section, the distance along the polar axis 

between the thrust line, i.e. the application point of the 

resultant thrust force, and the extrados is computed, and 

the minimal value which defines critical section is 

detected. In order to obtain the limit thickness of the 

arch, it has to be modified in iterative procedure 

regarding the critical section, until the thrust line 

reaches the extrados up to a satisfactory precision; in the 

conducted calculations, all the values have been 

computed with the precision of 10-14. Thus, the 

numerical values of the theoretical minimum 

thicknesses for the most common inclination angles are 

provided in Tab. 1. 

 

Figure 4. (a) Arch of sufficient thickness; limit equilibrium 
state and the corresponding minimum thickness: (b) 
perpendicular triangular arch, (c) plate-bande 

Table 1. Minimum thickness t/l of triangular arch of equally 
inclined intrados and extrados with perpendicular 
springing 

α [°]  15 30 45 60 

t/l  0.131662 0.268033 0.412902 0.563537 

 

On the basis of numerical results obtained for 

embrace angles from 2,5 to 62,5 stepwise 2,5 degrees, 

the correlation between inclination angle and the 

minimum thickness can be approximated with 

satisfactory accuracy by the following expression: 

2/ 0.000015 0.00847 0.00086t l α α= + +     (25) 

One can see that this correlation is approximately 

linear, since the quadratic coefficient in (25) is almost 

three magnitudes lower than the linear one. It has also 

been concluded that for the greater value of embrace 

angle different analytical modelling has to be 

formulated, since the value m reaches negative value for 

the arch portion around the crown. 

 
b Minimum thickness of frictionless plate-bande 

 

In order to satisfy equilibrium of plate-bande, lines of 

action of horizontal thrust acting at the crown, reaction 

force acting perpendicularly to the springing and the 

weight of the half plate-bande acting vertically at its 

centre of gravity have to be concurrent [5]. When the 

minimum thickness is assumed, the application point of 

the horizontal thrust at the crown has to be set at its 

higher extremity, so that the value q = h, and the 

reaction force acts at the springing's lower extremity 

(Fig. 4 (c)), and this is expressed by the following 

equality: 
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( ) tanWh l x γ= −        (26) 

where the abscissa xW of the centre of gravity of half 

plate-bane is obtained when ψ = γ according to (18), so 

it becomes: 

( )
( )

2tan 3 3 cot

3 2 cot
W

h h i l
x

i h

γ γ

γ

+ +
=

+
      (27) 

Now, from (26) we solve h and divide by l, 

obtaining the explicit solution for the minimum 

thickness as the function of embrace angle: 

4 2

3

3sec 3sec 3 3
/

tan 3tan
t l

γ γ

γ γ

+ + −
=

+
     (28) 

Numerical solutions of (28) for the various embrace 

angles γ which correspond to the common springing 

angles are given in Tab. 2. 

Table 2. Minimum thickness t/l of plate-bande for the 
different values of embrace angle γ 

γ [°] 15 30 45 60 75 

t/l 0.131599 0.265983 0.395644 0.475087 0.376158 

 

It should be noted that the value which corresponds 

to 30° is in accordance with the one obtained by 

Venturoli [8]. In addition, it is derived that the 

maximum of (28), representing the maximum value of 

minimum thickness, corresponds to γ = 61,57°. In the 

frame of Couplet's assumptions on structural behaviour 

of material, flat arches are infinitely strong regardless 

thickness [19]; however, within the frictionless 

hypothesis, as we can see, finite thickness is required to 

ensure stability. Substituting (28) into (19) we derive 

the value of horizontal thrust for the plate-bande of 

minimum thickness: 

( )
( )

( )

2 2 4 2

min 2
4 2

3sec 2 3 sec sec 1

2tan 3cot 1

l

H

γ γ γ

γ

γ γ

 
+ + + 

 =

+

  (29) 

Inspecting (30), for the unit value of half-span l, one 

can conclude that horizontal thrust decreases very little 

up to 45°, and that after 60° it decreases very rapidly. 

Furthermore, one can conclude that the flat arch which 

has the usually used embrace angle of 30° (springing 

angle equals 60°) has low minimum thickness value, but 

oppositely exerts great horizontal thrust. 

 
5. CONCLUSION 

 

Frictionless hypothesis has been considered from the 

beginning of the scientific research on vaulted 

structures, and remains of particular interest to present 

days. One of the main tasks is the determination of 

appropriate stereotomy, i.e. the way of cutting the 

particular voussoirs that form an arch, in order to ensure 

only normal component of the resultant thrust forces at 

the joints between the voussoirs. 

This paper examined equilibrium solutions of the 

triangular arch of general shape in the absence of friction 

and cohesion. Thus, the explicit equation for the direction 

of joints between voussoirs has been derived. Further, the 

thrust line analysis under frictionless hypothesis has been 

conducted and the closed-form expression for the thrust 

line has been obtained. Two common shapes, namely flat 

arch or plate-bande and triangular arch which has 

intrados and extrados perpendicular to springing have 

been treated in detail. Hence, the limit equilibrium states 

have been considered, and the numerical solutions for 

minimum thickness regarding common values of 

springing angle have been computed. 

The analysis carried out in this paper may be used as 

the basis for statical formulation for the case of circular 

arch. The correlation between arch's shape and the 

envelope of the directions of joints between voussoirs, may 

be analysed. In order to obtain results closer to practical 

structural behaviour, it is necessary to conduct an analysis 

within the framework of limit equilibrium analysis, which 

concerns friction, what is the subject of further research. 
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АНАЛИЗА РАВНОТЕЖЕ ИДЕАЛНО 

ГЛАТКОГ ТРОУГАОНОГ ЛУКА: 

ГЕОМЕТРИЈСКИ ПРИСТУП 

 

Д. Николић, Р. Штулић 

 

С почетка научног приступа у изучавању засвођених 

структура, током осамнаестог века научници попут 

Лаира, Куплеа и Кулона су првобитно разматрали 

лукове добијене ређањем сводних каменова 

занемарујући трење и кохезију на споју између њих. 

У складу с тим, резултантне силе морају бити 

управне на спојеве. Тако се намеће проблем 

одређивања праваца тих спојева, како би се 

обезбедила равнотежа лука задатог интрадоса и 

екстрадоса. 

У овом раду се изводи експлицитна једначина 

тачног  положаја и оријентације спојева у 

троугаоном луку општег облика. Посебно се 

разматрају раван лук и троугаони лук с интрадосом 

и екстрадосом  управним на ослоначки пресек. На 

основу тога су добијени изрази за потпорну линију, 

те су у зависности од угла ослањања израчунате 

вредности за минималну дебљину. 

 


