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Design of Fractional-Order PID 
Controller for Trajectory Tracking 
Control of Continuum Robots 
 
Continuum robots are the behavioral extension of hyper-redundant robots 
usually inspired by living biological organs. These robots outperform their 
rigid counterparts regarding high flexibility, dexterity, and most 
importantly safe interaction. On the flip side, they are kinematically 
redundant, highly nonlinear, and multi-input, and consequently, their 
controlling remains a complex and challenging task. To this end, this paper 
proposes a Fractional-Order Proportional-Integral-Derivative (FOPID) 
controller to control the continuum robot's end-tip. The proposed controller 
is designed to control the inputs of a class of continuum robots, namely the 
Cable-Driven Continuum Robot (CDCR). To design the controller 
satisfactorily, the Particle Swarm Optimization (PSO) algorithm extracts 
the optimal values of the controller's parameters. The proposed FOPID 
controller’s efficiency and control performance are demonstrated through 
two simulation examples: set-point tracking and point-to-point trajectory 
tracking. In addition, the obtained simulation results are compared to those 
provided by classical and Optimized PID controllers and to some available 
schemes. Given the obtained results, it is clear that the performances of the 
proposed FOPID controller are superior in tracking accuracy and 
smoothness in control signals. 
.  
Keywords: Continuum robot, cable-driven continuum robot, fractional-
order PID controller, particle swarm optimization, trajectory tracking. 

 
 
1. INTRODUCTION 

 
Recently, continuum robots have been given great 
importance in healthcare, rescue missions, and many 
other industrial applications. Due to their lightweight 
and high flexibility, they can perceive, operate, and 
maneuver easily in confined spaces and complex 
environments where rigid-link robots cannot operate [1-
2]. In literature, many classes of continuum robots have 
been developed, fabricated, and commercialized, 
including soft continuum robots [3], fluid-driven 
continuum robots [4], tendon-driven continuum robots 
[5], bellows-driven continuum robots [6], and cable-
driven Continuum robots (CDCR) [7]. In the same 
context, other kinds of robots are developed based on 
experience inspired by nature  [8-9]. However, 
developing effective controllers is still an ongoing need 
due to the complexity of their mathematical models and 
the resulting modeling inaccuracies.  

Although continuum robotic structures introduce 
significant complexity in modeling, significant progress 
has been made in continuum robots, including 
kinematics and dynamics. Among the contributions to 
the kinematics modeling of continuum robots, one can 
cite the works presented in [10-13]. In these works, 
different methods and theories have been used. Most of 
them are based on the so-called Constant Curvature 

Kinematic Approach [14], which is a reduced kinematic 
model commonly used in continuum robotics due to its 
simplicity. Accordingly, many research works have 
been carried out to study the dynamic behavior of 
different types of continuum robots. Regarding the 
continuum robots class considered here, namely Cable-
Driven Continuum Robot (CDCR), different principles 
and methods have been used to establish their dynamics 
models, such as the principle of virtual power [15-16], 
Euler-Lagrange method [17-20], and Newton-Euler 
method [21-22]. Among these kinematic and dynamic 
models used as a general framework for control pur–
poses, one can cite the works presented in [12-13, 17].  

Admittedly, controlling continuum robots has so far 
been a laborious duty. Despite that, great efforts are 
being made to apply classical and advanced control 
techniques to address the control problem. Focusing on 
CDCR's control, only some works have been proposed. 
A Nonlinear Model Predictive Control (NMPC) is 
proposed to solve the trajectory tracking and obstacle 
avoidance problems for planar and spatial CDCR using 
kinematic and dynamic models [13, 23]. In [24], the 
authors applied a nonlinear sliding mode control-based-
adaptive particle swarm optimization algorithm to 
control the CDCR's end-tip in the planar case. Other 
researchers have used classical PID controllers to ensure 
trajectory tracking [17].  

Although the above works significantly contribute to 
controlling CDCRs, these control schemes have some 
limitations, especially when considering the tracking 
accuracy and real-time implementation, controlling 
CDCRs is still in its infancy and remains a challenging 
task. In a first attempt to bridge this gap, the present 
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paper aims to harness the advantages of fractional 
calculus by designing and implementing a Fractional-
Order Proportional-Integral-Derivative (FOPID) 
controller for the sake of controlling a Cable-Driven 
Continuum Robot (CDCR). Indeed, the FOPID 
controller tends to perform better than the classical PID 
version due to characteristics like the nonlinear nature 
and the two extra tuning parameters that allow more 
flexibility and a better adjustment in the controller 
action. However, FOPID’s parameter tuning is a 
difficult task. To this end, the Particle Swarm 
Optimization (PSO) algorithm has been used to achieve 
this purpose such as in [25-26]. In this context, one can 
cite, for example, the recent contributions to FOPID 
robotics control, including mobile robots [27-28], serial 
robot manipulators [29-30], parallel robots [31], as well 
as for rigid mechanisms such as the scissor mechanism 
platform [26]. 

To do so, the subsequent Sections of the paper are 
structured as follows: the next Section describes the 
mathematical models, including both kinematic and 
dynamic models, of the considered CDCR with two 
sections. Section 3 focuses on FOPID controller deve–
lopment and the tuning process of the controller's para–
meters based on the Particle Swarm Optimization (PSO) 
algorithm. Simulation results for set-point tracking and 
point-to-point trajectory tracking, illustrating the 
effectiveness and performance of the proposed cont–
roller are presented in Section 4. Concluding remarks 
and perspectives of this work are given in Section 5. 

 
2. MATHEMATICAL MODELS OF THE CDCR 

 
Based on the Constant Curvature Kinematic Approach 
(CCKA) [14], this Section summarizes the kinematics 
and dynamic models of the CDCR under consideration. 
The scheme design of the CDCR under consideration is 
illustrated in Figure 1. It is one of the most popular 
continuum robots, with three actuators per Section.  

 
Figure 1. CDCR schematics  

Pursuing control and trajectory tracking objectives, 
hereafter, we present and exploit the mathematical 
equations governing the kinematics and dynamics of the 
considered CDCR [17]. 

 
2.1 Kinematics models 

 
This subsection provides the kinematics of the CDCR, 
including local and global coordinates, rotation matri–
ces, and linear and angular velocities. A set of gene–
ralized coordinates and velocities are needed to describe 
the dynamic configuration of the CDCR under consi–
deration. Therefore, the position vector Pk, with k = 1,2 
of each CDCR’s section end-tip with respect to the 
robot’s reference base and the associated rotation matrix 
Rk  can be calculated recursively as follows: 

1,

1, 1, 2,

P , 1
P

P R P , 2
lcl

k
lcl lcl lcl

k
k
=⎧⎪= ⎨ + =⎪⎩

  (1) 

1,

1, 2,

R , 1
R

R R , 2
lcl

k
lcl lcl

k
k
=⎧⎪= ⎨ =⎪⎩

               (2) 

such as the local position vector ,Pk lcl  and the local 
rotation matrix ,Rk lcl  of each CDCR's Section with 
respect to its reference base are given as follows: 

3

3

,

2 4

,
2 24

P ,
2 24

1 ,
6 120

k k
k k

k k
k lcl k k

k k
k k

x

y

z

θ θ
ρ

θ θ
σ

θ θ

⎧ ⎛ ⎞
⎪ = −⎜ ⎟⎜ ⎟⎪ ⎝ ⎠
⎪

⎛ ⎞⎪⎪= = −⎜ ⎟⎨ ⎜ ⎟⎪ ⎝ ⎠
⎪

⎛ ⎞⎪ = − +⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

               (3) 

,

00 0
R 0 0 1 0 0 ,

0 0 1 0 0 0 1

k k

k lcl

k k

C S

S C

θ θ

θ θ

ρ σ ρ σ
σ ρ σ ρ

−⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

  (4) 

where kCθρ =  is a constant and 21σ ρ= − . C(·) and 
S(·) are the cosine and the sine functions, respectively. 

For further use, the local rotation matrix ,Rk lcl  is 
written as a function of unit vectors, as follows: 

, , , ,R n b t ,k lcl k lcl k lcl k lcl⎡ ⎤= ⎣ ⎦                (5) 

where ,nk lcl , ,bk lcl  and ,tk lcl  are the normal vector, the 
binormal vector, and the tangent vector, respectively. 

By deriving Eq. 1 with respect to time, the linear 
velocity of each CDCR’s section end-tip in the robot’s 
reference base can be expressed as follows: 
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Moreover, for simplicity reasons, the angular velo–
city ωk  is calculated as a function of the tangent vector, 
as follows: 
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such as the local angular velocity 1,ω lcl  is given as 
follows: 

, , ,ω t t ,k lcl k lcl k lcl= ×                        (8) 

where ,tk lcl  is the derivative vector with respect to the 
time of the third column of the rotation matrix ,Rk lcl , 
and “× ” refers to the cross product. 
 
2.2 Dynamic model 
 
In this paper, the dynamic model is a cornerstone 
element of the control law design strategy. Therefore, 
by using the Euler-Lagrange method for the generalized 
coordinates kθ , with 1, 2k = , the dynamic model of 
the considered CDCR can be represented by a system of 
two coupled nonlinear differential equations, as follows: 
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The dynamical model should be represented in the 
state space to simulate and analyze the input-output 
behavior of the considered CDCR. Thus, by introducing 
the state variables, Eq. 9 can be written in the general 
form as follows: 

( ) ( ) ( ) ( )s f s, h s, u= + ⋅t t t t                (10) 

where s(t) is the state variables vector given by Eq. 11.  
f(s,t) and h(s,t) are nonlinear functions. u(t) is the 
command vector, and  is the time parameter. 
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3. FRACTIONAL ORDER CONTROLLER DESIGN 
 
3.1 Fractional order control 
 
The generalization of the classical integer calculus, 
subsequently called fractional calculus, was first 
mentioned in a letter between Leibniz and L’Hospital 
over three centuries ago [32]. However, the idea 
remained a purely mathematical matter for a long time. 
Many researchers have recently focused on fractional 
calculus topics, and great efforts have been made to 
discover its applications in science and engineering. In 
the field of control systems, for instance, the earliest 
attempt was made by I. Podlubny in 1999, who 
introduced the Fractional-Order Proportional-Integral-
Derivative controller [33]. The new controller can be 

abbreviated with FOPID and symbolized as PI Dλ μ  
controller. It is a generalization of the classical PID 
controller, which results in higher flexibility and 
capability due to its two additional parameters, namely: 
the fractional order of the integral λ and the derivative μ 
whose their values can be given with any arbitrary real 
number where their values are chosen generally within 
the range from 0 to 2. Figure 2 summarizes the 
relationship between the classical PID and FOPID 
controllers as a function of the two parameters λ  and μ. 
For instance, when the values of both parameters (λ,μ) 
are equal to 1, the FOPID and PID controller is the 
same. The common categories of PID controllers, 
namely: Proportional (P), Proportional-Integral (PI), and 
Proportional-Derivative (PD) controllers, are obtained 
when the values of both parameters (λ,μ) equal to (0, 0), 
(1, 0), and (0, 1), respectively (see, Figure 2). The 
governing equation of the FOPID controller in the time 
domain can be expressed as follows: 

( ) ( ) ( ) ( )P I Du = ,t K e t K D e t K D e tλ μ−+ +     (12) 

where Kp, KI, and KD denote the proportional, integral 
and derivative coefficients, respectively. λ and μ are the 
integral and derivative order, respectively. u(t) and (t) 
are the input and output in the time domain of the 
controller, respectively. D(·)is a generalized operator of 
integration and differentiation, a mix process commonly 
applied in fractional calculus topics (for more details, 
we refer the reader to references [34-35]). 

 
Figure 2. Relationships between PID’s categories and 
FOPID controllers 

It is worth noting that the FOPID controller gives 
additional specifications and improves the robustness of 
the controlled system, however, parameters tuning is a 
difficult task because most robotic systems, including 
the considered CDCR, are often featured by a complex 
behavior. For such reasons, a particle swarm optimi–
zation (PSO) algorithm is introduced here to tune the 
parameters of the proposed controller. 

 
3.2 PSO algorithm 
 
Nowadays, meta-heuristic algorithms are widely used to 
optimize high-complexity problems in various sciences 
and engineering fields [36-39]. Hereby, thanks to its 
simplicity, the particle swarm optimization (PSO) algo–
rithm [40] is adopted to extract the optimal parameters 
of the proposed controller, thanks to its simplicity [41]. 
In PSO algorithm, a set of particles moves in the search 
space looking for the optimal values of a performance 
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index called cost function. At each iteration iter, each 
particle p changes its velocity and position as a function 
of its local best position iter

pbestP  and the global best 

position iter
gbestP  according to the following equations:  
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where w is the inertia weight rate; viter
p  is the current 

velocity of particle thp  at iteration iter; xiter
p  is the 

current position of particle thp  at iteration iter; r1 and r2 
are two random variables between 0 and 1; c1 and c2 are 
cognitive and social coefficients, respectively. 

Although the PSO algorithm has many advantages, 
including simple implementation and its fast conver–
gence ability with few tuned parameters [42-43], the 
convergence towards an optimal solution is not 
guaranteed. However, to avoid the early convergence 
towards the local minima, the regenerating of popu–
lation technique has been added to the PSO algorithm 
[41, 44]. The block diagram of a PSO algorithm is given 
in Figure 3. 

 
3.3 FOPID controller structure 
 
To control the position of the considered CDCR’s end-
tip, two discrete FOPID controllers are implemented. 
One controller is designed to control the bending angle 
of the first Section, and the other controls the second 
Section's bending angle. However, because the two 
sections of the robot share the same geometrical and 
inertial characteristics and properties, the five para–
meters of the two controllers are chosen to be similar. 
The schematic diagram of the proposed controller is 
shown in Figure 4, and the control laws u1(t) and u2(t) 
are given as follows: 
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where e1(t) and e2(t) represent the tracking errors 
between the desired and generated bending angles θ1 
and θ2, respectively. 

In fact, to obtain satisfactory control performance, 
the three coefficients Kp, KI, KD and the two non-integer 
parameters (λ,μ) should be optimally determined. To 
achieve this purpose, the tuning of these parameters, as 
a closed loop system such that the robot satisfies the 
desired specifications, is described below. 

 
3.4 Tuning PIλDμ of parameters 
 
This part aims to extract the optimal values of the 
FOPID controller's parameters using the Particle Swarm 
Optimization (PSO) algorithm. In practice, the main 
step in applying the PSO algorithm is to choose the best 

cost function used to evaluate each particle's fitness. 
Thus, the appropriate cost function to be minimized can 
be defined simply by the performance index given by 
the square error of the two outputs, as follows: 

( ) ( )2 2
1 2= +fC e t e t                       (16)   

 

 
Figure 3. Block diagram of PSO algorithm 

 
Figure 4. Schematic diagram of the proposed FOPID 
controllers 

In the search space, the dimension of the optimization 
problem is (1×5). The population in PSO is the set of 
possible solutions, and the particles are the variables of the 
optimization problem, which represent here the five 
FOPID controller’s parameters, namely: the three coeffi–
cients Kp, KI, KD and the two non-integer parameters (λ,μ). 
The tuning process of the FOPID cont–roller’s parameters 
with PSO algorithm is shown in Figure 5.  

 
Figure 5. FOPID controller's parameters tuning using PSO 
algorithm 
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4. SIMULATION AND ANALYSIS 
 
Two simulation examples are carried out to verify the 
proposed controller's performance and effectiveness. 
The first simulation focuses on set-point tracking, while 
the second is devoted to tracking a circular trajectory. 
Besides, to highlight the control performance, a compa–
rative study for both simulation examples was conduc–
ted between the proposed controller and the two PID 
controller categories: classical PID controller and OPID 
controller. Simulations are carried out in a MATLAB 
environment. The main parameters used for the robotic 
system simulation are listed in Table 1 [17], and the 
optimal controller parameters are given in Table 2. For 
both simulation examples, the sampling time is chosen 
as 0.005 sec. 

4.1 Set-point tracking 
 
To evaluate the performance of the proposed FOPID 
controller, θ1,d = 2θ2,d = π/3 as set-point tracking is 
chosen for both sections of the considered CDCR. 
Figure 6 highlights the tracking performance of the pro–
posed controller compared to the classical and opti–
mized PID ones in which the Mean Squared Error 
(MSE) and the Mean Absolute Error (MAE) are com–
puted for each one (see Table 3). According to the 
results, the proposed controller gives better control per–
formance than others. Specifically, the averages of MSE 

and MAE of the proposed controller are lower than 
those of the OPID controller; see gray boxes in Table 3. 
  
Table 1. Geometric and material of the simulated CDCR  

Par. Designation Value 
lk Section length 0.3 m 
m Disk mass 0.01 kg 
E Young’s modulus 210 GPa 

Id Inertia moment of disk 3.97 · 10-12 m4 
Ixx Backbone inertia  3.06 · 10-7 m4 

Table 2. Optimal parameters of the considered controllers 

 FOPID OPID PID  PID [17] 
Kp 1.1863 1.0964 1.1863 0.1 
KI 4.2258 5.7056 4.2258 2.7 
KD 3.01705 0.7885 3.01705 0.3 
λ  0.998 1 1 1 
μ 0.768 1 1 1 

Table 3. Recorded MSE and MAE values in case of set-
point tracking for both sections 

Controllers MSE MAE 

1θ  2θ  1θ  2θ  
FOPID 0.0519 0.0072* 0.0841 0.0325* 
OPID 0.0494* 0.0110 0.0785* 0.0402 
PID  0.0524 0.0089 0.0847 0.0326 

PID [17] 0.0945 0.0231 0.1704 0.0850 
*Best value 

 
Figure 6. Comparison of the responses obtained for the considered controllers during set-point tracking 

 
Figure 7. The step responses of μ = 1 and λ with different values 
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Figure 8. The step responses of λ = 1 and μ with different values 

To inspect the influence of the FOPID's parameters 
on the control performance in particular the fractional 
integral order λ and the derivative μ, Figures 7 and 8 
compare the property of the step responses of the above 
set-point tracking when μ = 1, λ = 0.5:0.25:1, and 1λ = , 
μ = 0.5:0.25:1, respectively. 

 
4.2 Point-to-point trajectory tracking 

 
This simulation uses the same circular-shaped trajectory 
of [13] to evaluate the proposed FOPID controller 
against trajectory tracking. By using the same initial 
conditions mentioned above, the desired and generated 
bending angles for both sections and the Euclidean 
errors between them are shown in Figure 9. From this 
Figure, it can be seen that the curves are almost super–
posed where the average errors are respectively smaller 
than 0.002° and 0.006°.  

 
Figure 9. Desired and generated bending angles and Eucli–
dean errors between them 

To clarify more about the tracking performance of the 
proposed controller, Figure 10 highlights the desired and 
generated circular-shaped trajectory and Euclidean errors 
between them along x - axis and z - axis. This Figure 
shows that the curves are almost superposed and that the 
average errors are smaller than 0.002 mm and 0.008 mm 
along x - axis and z - axis, respectively. These results 
indicate the good control performance of the proposed 
FOPID controller. It should be noted that the displayed 
trajectories in Figure 10 are performed using the 
kinematics models presented in Equation 1. The required 

control signals to track the circular-shaped trajectory are 
shown in Figure 11. From this Figure, it is clear that the 
proposed controller gives better control performance 
regarding the smoothness of control signals. 

 
Figure 10. Desired and generated Cartesian trajectories and 
Euclidean errors between them 

 
Figure 11. Required control signals to track the circular-
shaped trajectory 
 

5. DISCUSSION 
 
The simulation results and a comparison analysis bet–
ween the classical PID controllers, OPID controller, and 
FOPID controller showed that the FOPID is a perfect 
trajectory tracking dynamic controller because of its 
flexibility and capability stemming from the fractional 
order of the integral and the derivative. The control 
signals of the proposed FOPID controller are smoother 
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Table 4. Recent contributions in control of CDCRs 

Robot Control techniques Trajectory accuracy 
CDCR: Continuous shape, rigid 

structure, multi-section, 
controlled by cables. 

Proposed FOPID controller Accuracy: < 8 · 10-3 mm
Validation: Simulation of a planar CDCR with two 
sections using dynamic model 

NMPC-PSO scheme [13] Accuracy: < 3 · 10-4 mm
Validation: Simulation of a planar CDCR with two 
sections using kinematic and dynamic models 

NMPC-PSO scheme [23] Accuracy: < 7 · 10-4 mm
Validation: Simulation of a spatial CDCR with two 
sections using kinematic model  

Optimized Nonlinear Sliding 
Mode Control [24] 

Accuracy: < 1.38 · 10-1 mm 
equivalent to: MSE = 2.3069 · 10-5 
Validation: Simulation of a planar CDCR with two 
sections using dynamic model. 

PID controller [17] Accuracy: < 5.5 · 10-1 mm 
Validation: Simulation of a planar CDCR with two 
sections using dynamic model 

 
and less in amplitude than other controllers. Also, the 
proposed controller can control the CDCR's end-tip with 
positioning errors of less than 0.008 mm, representing 
0.13% of the total length of the CDCR. Overall, the 
proposed FOPID controller shows good performance in 
tracking the accuracy and smoothness of control signals 
compared to the classical and optimized PID controllers 
suggested for comparison in this paper. 

For comparison, Table 4 lists recent contributions to 
the control of Cable-Driven Continuum Robots (CDCRs). 
By analyzing these contributions, it is noted that the best 
performances are achieved by the FOPID controller 
except that of Nonlinear Model Predictive controllers 
based Particle swarm Optimization (NMPC-PSO) [13, 
23]. However, considering the simplicity, computation 
time, and cost, the proposed FOPID controller is better 
than NMPC-PSO despite the relative lack of precision. 
As a general conclusion of our analysis, the proposed 
FOPID controller can be used fruitfully to test essentially 
other models for all continuum robots. 

 
6. CONCLUSION 

 
This paper proposes a Fractional-Order Proportional-
Integral-Derivative (FOPID) controller for the trajectory 
tracking problem of a class of continuum robots, namely 
Cable-Driven Continuum Robots (CDCR). The efficacy 
of the FOPID controller has been demonstrated in set-
point tracking and point-to-point trajectory tracking 
problems and compared to classical and optimized PID 
controllers and the available literature works. The re–sults 
confirm that the FOPID controller shows signi–ficant 
promise as an alternative controller. However, FOPID's 
parameter tuning is challenging; thus, the PSO algorithm 
is used for optimal parameters thanks to its simplicity. 

As a perspective for this work, we intend to imple–
ment the proposed FOPID controller in a 3D dynamic 
space using an exact model rather than an approximate 
one as well as taking into account obstacle avoidance 
during trajectory tracking. 
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NOMENCLATURE 

C  Cosine function. 
fC  Cost function. 

D  Generalized operator of integration and 
differentiation. 

e  Trajectory error 
f, h  Nonlinear functions. 

k  section index, with 1, 2.k =  

PK  Proportional coefficient 

DK  Derivative coefficient 

IK  Integral coefficient 
 Section length 

lcl  Local, means with respect to local frame 
n,b, t  Unit vector of rotation matrix 
P  Vector position 
R  Rotation matrix 
s  State variables 
S  Sine function 
t  Time 

u  Control signal  
, ,  x y z Cartesian coordinates 

Greek symbols 

λ  Integrator order 
μ Differentiator order 
θ  Bending angle 
ϕ Orientation angle  
ω  Angular velocity 

 Abbreviations and Acronyms 

CCKA Constant Curvature Kinematic Approach 
CDCR Cable-Driven Continuum Robot 
FOPID 
 

Fractional-Order Proportional-Integral-
Derivative 

MAE Mean Absolute Error 
MSE Mean Squared Error 
NMPC Nonlinear Model Predictive Control 
OPID 
 

Optimized Proportional-Integral-
Derivative 

P Proportional  
PD Proportional-Derivative 
PI Proportional-Integral 
PID Proportional-Integral-Derivative 
PSO Particle Swarm Optimization 

 
 

ДИЗАЈН ПИД КОНТРОЛЕРА ФРАКЦИОНОГ 
РЕДА ЗА КОНТРОЛУ ПРАЋЕЊА ПУТАЊЕ 

КОНТИНУАЛНИХ РОБОТА 
 

А. Белхири, А. Амоури, А. Шерфиа 
 
Континуум роботи су продужетак понашања хипер-
редундантних робота који су обично инспирисани 
живим биолошким органима. Ови роботи надмашују 
своје круте колеге у погледу високе флекси–
билности, спретности и што је најважније безбедне 
интеракције. Са друге стране, они су кинематички 
редундантни, веома нелинеарни и са више улаза, и 
сходно томе, њихово управљање остаје сложен и 
изазован задатак. У ту сврху, овај рад предлаже 
контролер разломачног реда пропорционално-
интегрално-деривативни (ФОПИД) за контролу 
крајњег врха робота континуума.  
Предложени контролер је дизајниран да контролише 
улазе класе континуалних робота, односно 
Кабловски континуални робот (CDCR). Да би се 
контролер дизајнирао на задовољавајући начин, 
алгоритам Оптимизације ројем честица (PSO) 
издваја оптималне вредности параметара контро–
лера.  
Ефикасност и перформансе контроле предложеног 
ФОПИД контролера демонс–трирани су кроз два 
примера симулације: праћење задате тачке и 
праћење путање од тачке до тачке. Поред тога, 
добијени резултати симулације се пореде са онима 
које дају класични и оптимизовани ПИД регулатори 
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и са неким доступним шемама. Имајући у виду 
добијене резултате, јасно је да су перформансе 

предложеног ФОПИД контролера супериорне у 
тачности праћења и глаткости контролних сигнала. 

  
 

 


