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Design a New Hybrid Controller Based 
on an Improvement Version of Grey 
Wolf Optimization for Trajectory 
Tracking of Wheeled Mobile Robot 
 
Nonholonomic wheeled mobile robots are considered to be multi-input 
multi-output systems that are performed in varying environments. This 
work presents the trajectory tracking control of a nonholonomic wheeled 
mobile robot (WMR). The Kinematic and the dynamic models of the robot 
were derived. A new hybrid controller was designed, which consisted of 
two controllers based on an optimization algorithm to solve the trajectory 
tracking problem. The first controller is the Fractional order PID 
controller, which is based on the kinematic model and has been applied to 
control the linear and the angular robot velocities, while the second 
controller is a linear quadratic regulator (LQR) and is based on the 
dynamic model used to control the motors' torques. A new, improved 
version of grey wolf optimization wasadopted to tune the parameters of the 
hybrid controller. The main goals of this improvement are rapid 
convergence towards a solution, reducing the effect of the wolves' random 
motion, andbalancing exploitation and exploration processes. MATLAB 
software was used to simulate the results under an S-shape trajectory and 
to evaluate the robustness and performance of the proposed control unit. 
The simulation results demonstrated the adopted control system's activity 
and efficiency based on the mean square error (MSE) between the desired 
and actual trajectory. The values of MSE of trajectory in the X and Y 
directions and the orientation are [6.589*10-4(m) 8.421*10-5(m) 
0.00401(rad)]T. Also, the adopted control system can generate smooth 
values of the control input signals without sharp spikes. The performance 
of the presented control system has been verified and compared with the 
results obtained from the other two control systems, and the simulation 
results have offered the superiority and effectiveness of the hybrid 
controller of this work.  
 
Keyword: Wheeled mobile robot, Hybrid controller, Grey wolf 
optimization 

 
 

1. INTRODUCTION 
 

In recent years, the research about the wheeled mobile 
robot (WMR) increased excitingly because of their 
theoretically regaled characteristics [1]. WMR is consi–
dered the most widely utilized mobile robot type [2]. 
WMR is utilized in many fields or applications, from 
dangerous environments, such as mining and the nuclear 
industry, to daily life applications, such as household 
work and autopilot robots for cars. Also, WMR is suc–
cessfully applied in hazardous environments where 
human life can be endangered, such as in explosive 
detection operations [3]. Trajectory tracking control 
means the ability of the robot to track a desired path or 
trajectory [4]. Many studies solve the problem of 

trajectory tracking by using various approaches. In [5], a 
hybrid controller was used to solve the motion control 
of a WMR. The hybrid controller consisted of a back–
stepping controller (BSC) based on the kinematic model 
and fractional order PID (FOPID) controller based on 
the dynamic model. The gains' parameters of both BSC 
and FOPID were tuned using a modified version of a 
beetle swarm optimization. In [6], a nonlinear model 
predictive controller (NMPC) was presented to solve the 
trajectory tracking problem of a continuum robot. A 
particle swarm optimization (PSO) algorithm was 
proposed to solve the limited computational burden of 
the NMPC. A circular trajectory was chosen to test the 
efficiency of the adopted controller. In [7], a neural 
network with a PID controller was used to solve the 
trajectory tracking of a mecanum WMR. The kinematic 
and dynamic models of the robot were derived. An 
adopted control system was applied to control the 
robot's velocities. The stability of the control system 
was tested by using the Lyapunov method. In [8], an 
adaptive fractional order parallel fuzzy PID control was 
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adopted for the tracking control of a WMR. The effect 
of uncertainty, noise, and time delay was considered in 
the robot's dynamic model. The gains' parameters of the 
control system were evaluated and tuned using Grey 
Wolf Optimization (GWO).In [9], a multi-objective 
Grey Wolf Optimization (MOGWO) was adopted to 
schedule the material transport systems relying on a 
single WMR. The mathematical model of the MOGWO 
included 13 fitness functions combined to perform an 
optimal solution for the scheduling problem. In [10], 
combined controllers consisting of BSC and Fuzzy-PID 
were applied. BSC was used based on the kinematic 
model of the WMR, while the Fuzzy-PID was utilized 
based on the dynamic model. Infinity trajectory was 
selected to test the performance of the combined 
controller. In [11], the trajectory tracking problem of a 
WMR was solved by using recursive integral BSC. The 
stability of the control system was checked by using the 
Lyapunov method. Two trajectories were chosen, 
circular and lemniscate, to test the performance of the 
control system. In [12], the trajectory tracking problem 
of a WMR with the presence of slipping and skidding 
phenomena was investigated. A nonlinear disturbance 
observer was used to estimate the disturbance effect. An 
integral sliding mode control was employed as a control 
system. In [13], two robotic arms were developed and 
designed to sort and classify objects. The vision system 
conducted the classification process based on size and 
shape. The experimental control system contained one 
master and two slave microcontrollers. Two Arduino 
microcontrollers were enslaved to control the speed of 
the stepper motors, while Raspberry pi4 was employed 
as a master to receive the commands from the vision 
system. In [14], the scheduling problem of a WMR was 
analyzed. The whale optimization approach (WOA) was 
used to select an optimum path in order to carry goods, 
materials, and parts in an industrial environment. A 
modified mathematical model based on the WOA in 
order was suggested to make a minimization to seven 
fitness functions. In [15], a new NMPC was investigated 
as a control system for the trajectory tracking of a 
WMR. A set of enhancements in the cost function and 
optimizer was applied to reduce posture errors. In [16], 
a hybrid control system comprising BSC and fuzzy 
sliding mode control was proposed. BSC was used 
based on the robot's kinematic model, while fuzzy 
sliding mode control was utilized based on the dynamic 
model. The fuzzy logic system tuned the gains' 
parameters of the sliding mode control. A circular 
trajectory was adopted to test the performance of the 
WMR control system. In [17], a fractional order state 
feedback controller was applied for the trajectory 
tracking of a nonholonomic WMR. The proposed 
control system was considered based on the kinematic 
and dynamic models of the robot. The stability of the 
system was checked by using the Lyapunov method. In 
[18], time-varying BSC was used based on the 
kinematic model of the WMR. The Lyapunov stability 
criteria were utilized to test the stability of the control 
system. A circular trajectory was chosen to check the 
performance of the adopted controller. In [19], an 
integral BSC was applied theoretically and 
experimentally to solve the trajectory-tracking problem 

of a WMR. A circular trajectory was selected to test the 
control system's performance, and the results indicated 
that the integral BSC's performance was better than the 
conventional BSC's. 

In this work, a hybrid controller is applied based on 
the kinematic and dynamic models in order to solve the 
trajectory tracking problem of a nonholonomic 
WMR.FOPID controller is applied based on the kine–
matic model to control the robot's linear and angular 
velocities, while the magnitudes of the motor torques 
are controlled by using a linear quadratic regulator 
(LQR) controller. An improved version of the gray wolf 
optimization (IGWO) algorithm is adopted to tune the 
gains parameters of the FOPID controller as well as the 
parameters of the weighted matrices of the LQR 
controller instead of selecting the parameters rapidly. 

 
2. MATHEMATICAL MODEL OF THE WMR 

 
This section presents the kinematic and dynamic models 
of a nonholonomic WMR. It is supposed that the WMR 
moves on a flat surface (without considering the effect 
of the slipping). The robot consists of two driving 
wheels fixed on the same axis and one caster wheel. The 
basic schematic of the WMR is shown in figure (1). 

 
Figure 1. Basic schematic of the WMR 

2.1 Kinematic model: 
 

The Kinematic of the mobile robots describes the rela–
tion between the robot's (body) velocities and the 
wheel's angular velocities [2]. The motion of the WMR 
is controlled by the angular speed of the right wheel 
(ωR) and the angular speed of the left wheel (ωL). The 
translation velocities of both the left and the right 
wheels are evaluated as [2]: 

R RV r ω= ⋅   (1) 

L LV r ω= ⋅    (2) 

where (r) represents the wheel's radius. The linear and 
the angular velocities of the robot body (V and ω) are 
obtained as [3]: 

R VLV

D
ω −=    (3) 

R VLV

D
ω +=      (4) 
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where (D) is the distance between the two wheels. The 
posture of the WMR with respect to the global 
coordinate system is represented by a state vector 
q=[XG, YG, θ]T, and the posture vector with respect to 
the local coordinate system is q=[xL, yL, θ]T. Point (C) 
represents the center mass of the robot. The kinematic 
equation of the robot with respect to the local 
coordinates can be represented as: 

2 2
0 0

L
L

L
R

r r
x

y

r r
D D

ω
ω

θ

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥

= ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥

⎣ ⎦

  (5) 

while the kinematic equation of the robot with respect to 
the global coordinates can be represented as: 
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ω ω
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 (6) 

where (R) is the matrix rotation matrix. 
 
2.2 Dynamic model 

 
The dynamic model of the robot describes the motion of 
the robot, taking into account the effect of the system 
inertia and the external forces. The dynamic model 
equations are described according to that depicted in 
figure (2) below. 

 
Figure 2. Dynamic force representation of the WMR 

R LF F m a+ = ⋅    (7) 
( )
2

R LF F
I Dα

−
⋅ = ⋅    (8) 

where (m) is the robot mass, (FR) and (FL) are the forces 
applied to the right and the left wheels, respectively, (I) 
is the mass moment of inertia, and (α) is the angular 
acceleration. Now, the state space model of the robot 
can be represented according to the kinematic and 
dynamic models. The variables of inputs, outputs, and 
states are chosen as follows: 

( ) [ ] [ ]1 2 3 4, , , , , ,R Lx t x x x x V ω ω ω= =   (9) 

( ) [ ] [ ]1 2 3 4, , , , , ,L R L Ru t u u u u F F τ τ= =   (10) 

1 2[ , ] [ , ]L Ry y y ω ω= =   (11) 

where (τL) and (τR) are the left and the right motor 
torques, respectively. From (9), one can obtain: 

1x V=    (12) 

By taking the derivation of both sides of (12), the 
following relation is obtained: 

( ) ( )
1

R LF F
x a t

m

+
= =    (13) 

According to the relation in (10), (13) can be rep–
resented as: 

( ) ( ) ( )1 1 2
1 1

x t u t u t
m m

= +   (14) 

Also, from (9), x2 = ω and its derivation are: 

( ) ( ) ( ) ( )2 1 22 2
D D

x t t u t u t
I I

α −
= = +   (15) 

The following relation can describe the motor's 
torques: 

,L L L L rI F Fτ α ω= ⋅ + ⋅ +   (16) 

,R R R R rI F Fτ α ω= ⋅ + ⋅ +   (17) 

where (F) is the friction force, and (αL) and (αR) are the 
wheel's angular acceleration. The equations of ( 3x ) and 
( 4x ) are obtained as below: 

( ) ( ) ( ) ( )3 3 1 3
1 r F

x t u t u t x t
I I I

= ⋅ − ⋅ − ⋅   (18) 

( ) ( ) ( ) ( )4 4 2 4
1 r F

x t u t u t x t
I I I

= ⋅ − ⋅ − ⋅   (19) 

The general form of the state space equations is: 

x Ax Bu= +    (20) 

y cx=    (21) 

The (14),(15),(18), and (19) can be written in a 
matrix form as: 

( ) ( )

1 1
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0 0 0 0
0 0

2 2
0 0 0 1

0 0

0 0 0 1
0 0

m m
D D
I IFx x t u t
rI
l IF
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l I

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= +− ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥
⎣ ⎦

  (22) 

( )
0 0 1 0

0 0 0 1
y x t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

   (23) 

 

3. TRAJECTORY TRACKING CONTROL DESIGN 
 
This section has discussed the trajectory tracking cont–
rol of a WMR. A new hybrid controller is implemented 
based on the kinematic and dynamic models of a non–
holonomic WMR. The new hybrid controller consists of 
two controllers. The first controller is the Fractional 
order PID (FOPID) controller, which is applied to 
control the linear and the angular robot velocities, while 
the second controller is a linear quadratic regulator 
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(LQR) and is used to design the motors torques (τR) and 
(τL). 
 
3.1 Fractional order PID (FOPID) controller: 
‘ 
A fractional order PID (FOPID) controller is a nonlinear 
tuneable feedback control system [20]. The structure of 
the FOPID controller contains five parameters which 
are proportional gain (kp), integral gain (ki), derivative 
gain (kd), integral order (α), and the derivative order (β). 
(α) and (β) may not be integers. The basic equation of 
the FOPID controller in the time domain is [20]: 

( ) ( ) ( ) ( )p i du t k e t k D e t k D e tα β−= + +   (24) 

where u(t) is the controlled signal, and e(t) is the error 
signal. When WMR tracks a desired trajectory, some 
tracking errors appear in X, Y, and θ directions. The 
mathematical model of the tracking errors is presented 
as follows: 

x d

y d

dz

e X X

e Y Y

e θ θ

⎡ ⎤ −⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

   (25) 

The general ranges of each FOPID control parameter 
are: 

[ ] [ ] [ ]
[ ] [ ]
0 1.5 , 0 0.25 , 0 0.75

0 0.1 , 0 0.125

p i dk k k

α β

= − − = −

= − = −
   

In this work, the FOPID controller is adopted to 
control the magnitudes of the linear and the angular 
robot velocities`, so two FOPID controllers are used. 
The optimum magnitudes of the five FOPID parameters 
are computed from the optimization algorithm in the 
next section. 
 
3.2 Linear quadratic regulator (LQR) controller 
 
LQR control is considered an optimal and modern 
control method [21]. LQR is utilized to minimize the 
WMR tracking position errors according to the integral 
of the quadratic performance index (J) that is written as 
[21]: 

( )0

1
2

T TJ x Qx u Ru dt
∞

= +∫  (26) 

u Kx= −    (27) 

where u(t) is the controlled torque signal, (Q) is a 
positive semi-definite symmetric matrix, (R) is a posi–
tive definite matrix, and (K) is the optimal gain matrix 
that is evaluated as below [21]: 

1 TK R B P−=   (28) 

where (P) is a positive definite matrix which is obtained 
from the Riccati equation as below [21]: 

1 0TA P PA PBR BP Q−+ − + =   (29) 

where (A) and (B) are the state and the input matrices 
that are described in (22). 

The (R) and (Q) matrices are represented as: 

1 1

2 2

3 3

4 4

0 0 0 0 0 0

0 0 0 0 0 0
,

0 0 0 0 0 0

0 0 0 0 0 0

R Q

R Q
R Q

R Q

R Q
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

In this work, the main purpose of using LQR control 
is to design the left and right motion torque. 

Selecting the best or optimum parameters of mat–
rices (Q) and (R) is very important because it reflects on 
the performance of the LQR controller. In the present 
work, the parameters of matrices (Q) and (R) are not 
selected arbitrarily, but instead of that, they are chosen 
optimally by using the optimization algorithm that is 
discussed in the next section. 

 
4. IMPROVED GREY WOLF OPTIMIZATION (IGWO) 

ALGORITHM    
 
The grey wolf optimization (GWO) algorithm is a meta-
heuristic algorithm that emulates the gray wolf's beha–
vior. It was introduced in 2014 by Mirjalili and Lewis in 
order to solve optimization problems [22]. It is iterative 
and population based on other meta-heuristic algorithms, 
like particle swarm optimization (PSO), artificial bee 
colony (ABC), ant colony optimization (ACO), etc. The 
mathematical model of the GWO consists of four basic 
parts: social hierarchy, encircling prey, and hunting and 
attacking prey. The social hie–rarchy of the GWO 
contains four wolves' leadership kinds which are alpha 
(α), beta (β), delta (δ), and omega (ω) [22]. Alpha (α) 
kind is considered the strongest type, which is responsible 
for the decision-maker in the group, while the beta (β) 
kind is the advisor of alpha. Delta (δ), as well as omega 
(ω), is placed in the third and fourth positions in the 
hierarchy of the wolf, as illustrated in figure (3). 

 
Figure 3. Hierarchy of the grey wolves [22] 

GWO is considered a population-based inspired 
algorithm because it builds an initial random population. 
During the iterative procedure, the positions of the 
search agents are changed to obtain better solutions. The 
operation of the wolf (α), wolf (β), and wolf (δ) changed 
by their positions continuously at the iteration, and the 
equations that represent the encircling phase are [23]: 

( ) ( )PD C X t X t= ⋅ −    (30) 

( ) ( )1 PX t X t A D+ = − ⋅   (31) 

where A  and C  are the coefficient vectors, PX  is the 
position vector of the prey, X  is the grey wolf position 
vector, (t) is the current iteration, (t+1) is the next ite–
ration, and D  is the distance between the grey wolf and 
the prey. The coefficients A  and C  have depicted as [23]: 
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12A ar a= −    (32) 

22C r=    (33) 

where 1r  and 2r  are random vectors within the range 

[0,1], and a  represents a convergence factor that 
decreases from 2 to 0 through the iterations, and its 
equation can be defined as [23]: 

max

2
2

t
a

T
= −    (34) 

where Tmax is the maximum number of iterations. 
The hunting behavior mechanism in GWO is guided 

by (α,β,δ) grey wolves. First, the prey's location is 
unknown, but an assumption has been made that makes 
the wolves know the location of the prey. The 
mathematical model of the hunting process is defined as 
[23]: 

1 2

3

, ,D C X X D C X X

D C X X

α α β β

δ δ

= ⋅ − = ⋅ −

= ⋅ −
 (35) 

where Dα , Dβ  and Dδ  represent the distance bet–
ween the wolves α, β, and δ and the pack wolf, res–
pectively. 

The main outcome of the GWO is the solutions that 
avoid trapping in the local minima. But, the problem of 
balancing exploitation and exploration and making the 
wolves' location as close as possible to the prey needs to 
be enhanced. In the classical GWO, the updating 
position of the grey wolf is defined by Eq.(31). 
Therefore, a new, improved algorithm, i.e., Improved 
Grey Wolf Optimization (IGWO), is adopted. The 
parameters 1r  and 2r  in the classical GWO are random 
vectors within the range [0,1] whose magnitudes are 
considered to be decisive in adducing the balance 
between the exploitation and exploration processes; in 
addition, it is included in the account of the A  vector 
which enters into account of Eq. (31). So, a new mat–
hematical model for representing 1r  and 2r  parameters 
is expressed as below: 

( )1 2 0.835 0,1 0.165
t
Nr r rand e= = ∗ + ∗   (36) 

where (t) is the current iteration, and (N) is the number of 
optimized parameters, equal to 11 parameters. From Eq. 
(36), it can be seen that the 1r  and 2r  vectors are not 
entirely random values such as in the classical GWO 
optimization, i.e.,(Eqs. 32 and 33) but it contains a part 

0.365
t
Ne∗  (which is considered to be an adaptive part) 

that is changed with each iteration. This modified 
equation, i.e., (Eq. 36), achieves a sufficient balance 
between the exploitation and exploration processes and 
increases the chance of making the wolf close to the prey. 

In the current work, IGWO is applied to compute the 
optimum values of the (Q) and (R) matrices' elements of 

the LQR controller as well as the optimum magnitudes 
of the FOPID controller parameters. 
 
5. RESULTS AND DISCUSSIONS 
 
This section verifies the adopted hybrid controller by 
simulation work with MATLAB software. The physical 
parameters of the WMR are selected based on the real 
magnitudes found in [9] and summarized in Table (1) 
below. 
Table 1. Physical Parameters of the WMR 

Parameter Value 
r 0.05m 
D 0.27m 
m 4kg 
I 2.5 kg.m2 

 
The simulation is carried out by tracking WMR with 

an S-shape trajectory. The trajectory consists of nine 
segments (S1→S9). Five of the nine segments are line 
segments with a desired angular velocity ωd=0 and a 
desired linear velocity Vd=0.15 (m/s). The other four 
segments are arc segments with a desired linear velocity 
Vd=0.15 (m/s) and a desired angular velocity ωd=0.6 
(rad/s). The following equations represent the S-shape 
trajectory below: 

1- For horizontal segments, the trajectory equations are:  

0

0

0

d d

d

d

x x v t

y y

θ

+ ∗⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   (37) 

2- For vertical segments, the trajectory equations are:   

0

0

0

d

d d

d

x x

y y v t

θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + ∗⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   (38) 

3- For arc segments: 

( )
( )

0

0

cos

sin

10

d

d

d
d

x x R

y y R

t

θ
θ

θ θ

⎡ ⎤
⎢ ⎥+⎡ ⎤
⎢ ⎥⎢ ⎥ = +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ±⎢ ⎥
⎣ ⎦

  (39) 

where (t) is the simulation time. Different initial 
conditions for [xd, yd, θd]T are required to generate the 
desired trajectory. The values of the initial conditions 
are listed in Table (2). 
Table 2: Initial conditions for square trajectory 

Trajectory Segment Initial Condition 
S1 [0 0 0]T 
S2 [0.5 0 0]T 
S3 [0.75 0.25 π/2]T 
S4 [0.75 0.55 π/2]T 
S5 [0.5 0.8 π]T 
S6 [0 8 π]T 
S7 [-0.25 1.05 π/2]T 
S8 [-0.25 1.3 π/2]T 
S9 [0 1.6 0]T 
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The robot starts its movement from an initial position 
which is represented by q=[0 0 0]T, and figure (4) mani–
fests the tracking performance of the adopted controller. 

 
Figure 4. S-shape trajectory tracking performance 

The above figure shows that the desired trajectory is 
within the blue color, and the actual or robot trajectory 
is within the red color. Also, it is clear from the above 
figure that the WMR can achieve a very good matching 
with the desired trajectory. 

The optimum values of the FOPID controller and the 
elements of R and Q matrices are: 

0.8215, 0.09875, 0.3265, 0.02267

12.5569 0 0 0

0 11.2897 0 0
,

0 0 3.6584 0

0 0 0 7.5619

2.895 0 0 0

0 5.1181 0 0

0 0 1.1147 0

0 0 0 4.6028

p i dk k k

R

Q

α= = = =

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Figure (5) displays the position and orientation errors. 

 
Figure 5.Tracking errors behavior of the trajectory  

The above figure reveals that all errors go to a zero 
value after about three seconds. The maximum tracking 
error in the (X) and (Y) directions at the beginning of the 
simulation are 0.008 (m) and 7*10-4 (m), respectively, 
and these values after three seconds are decreased to zero 
value. At the same time, the maximum orientation error is 
about -0.025 (rad), which is decreased to zero after about 
two seconds. Also, the values of the mean square error 
(MSE) of trajectory in the X and Y directions as well as 
the orientation, are [6.589*10-4 (m) and 8.421*10-5 (m) 
0.00401(rad)]T, respectively. 

Figure (6) illustrates the variation of the robot 
velocities with the simulation time. 

 
Figure 6.Linear and angular velocities of WMR 

The linear velocity of the robot is with the red color, 
while the angular velocity is with the green color. It can be 
observed from the above figure that the WMR takes a short 
time (about two seconds) to reach the desired velocities 
(V=0.15 m/s and ω=0.6 rad/s) at each trajectory segment. 
Figure (7) evinces the controlled torque's behavior. 

 
Figure 7: The generated controlled torques behavior 

The simulation results from figures (4) to figure (7) 
demonstrate the activity and the efficiency of the adop–
ted control system by showing the ability of the control 
system to generate the smooth values of the control input 
signals (V, ω, τ) without any presence of sharp spikes. 

To test the performance of the hybrid controller, that 
is adopted in this work, a comparison study has been 
done with the work of [11] that used recursive integral 
backstepping control during the circular trajectory. 
Figures (8) and (9) portray the simulation results of the 
comparison study. 

 
Figure 8. Trajectory tracking performance (a) by the pro–
posed controller of this work(b) by the controller that was 
adopted in [11]. 
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Figure 9. Trajectory errors (a) by the proposed hybrid cont–
roller of this work (b) by the controller that was adopted in [11]. 

From figure (8) that is shown above, it can be noticed 
that the desired trajectory is with the blue color, while the 
robot trajectory is with the red color. Accor–ding to this 
figure, a very good tracking performance is obtained from 
the adopted controller of this work and the controller 
proposed in [11] because the simulation tracking follo–
wed by WMR is considered almost coin–ciding. Figure 
(9) elucidates the tracking errors from both controllers. 

Figure (9a) depicts a very good trajectory response, 
where all the errors go after about one second to a zero 
value, while in figure (9b), the tracking errors in the (X) 
and (Y) coordinates are not convergent to a zero value. 
Still, instead of that, they fluctuate between zero and (-
0.01 m). This matter indicates that the controller's per–
formance adopted in the present work is better and more 
robust than the controller proposed in [11].  

The performance of the proposed hybrid controller 
of this work is further tested with the hybrid controller 
comprising backstepping and fractional-order PID 
controller adopted in [5] during the 8-shape trajectory. 
Figure (10) reveals the comparison study's simulation 
results and trajectory performance. 

 
Figure10. Trajectory tracking performance (a) by the pro–
posed hybrid controller of this work and (b) by the hybrid 
controller that was adopted in [5] 

Table (3) evinces the comparison results of the mean 
square error (MSE) for the state error components (eX, 
eY, eθ) obtained from the hybrid controller of this work 
(LQR-FOPID-IGwo) and the hybrid controller of the 
work [5]. Figure (10a) illustrates a very good matching 
between the desired and actual tracking, while there are 
some small deviations between the reference and the 
actual trajectory in figure (10b). Figure (10) exhibits the 
hybrid controller methodology of the current work 
having an effective performance and is better than the 
hybrid controller in [5].  
Table 3: MSE of the two controller methodologies for 8-
shape trajectory 

Trajectory Controller 
Methodology 

MSE 
(eX)  
(m) 

MSE 
(eY) 
(m) 

MSE 
(eθ) 

(rad) 
 

8-shape 
BSC-

FOPID [5] 
1.642 
 e-03 

5.087 
e-03 

4.051 
e-03 

LQR-
FOPID-IGWO 

(current 
method) 

6.225 e-
04 

8.157 
e-04 

6.041 
e-04 

 
The results that are tabulated in the above table 

indicate that the magnitudes of the MSE of the hybrid 
controller methodology of the present work (LQR-
FOPID based on IGWO) are less than those of the 
hybrid controller methodology adopted in [5] (BSC-
FOPID). This matter indicates that the performance of 
the controller methodology of this work is better than 
the hybrid controller [5]. 

 
6. CONCLUSIONS 
 
In the current work, based on the kinematic and dy–
namic models of the WMR, a new hybrid controller 
consisting of LQR and FOPID based on an optimization 
algorithm is proposed to solve the trajectory tracking 
problem. The new hybrid controller is utilized to find 
the best control actions (robot velocity and the gene–
rated torques) with more stability and without any osci–
llation in the output response. A new modified version 
of the GWO is adopted to tune and select the optimum 
values of the control system parameters with a mini–
mum time. The main goals of this improvement are 
rapid convergence toward a solution, reducing the effect 
of the wolves' random motion, and balancing the explo–
itation and exploration processes. The S-shape tra–
jectory is selected to present the robustness of the adop–
ted control system. The simulation results elucidated 
that the proposed hybrid controller can generate smooth 
robot velocities (V=0.15 m/s and ω=0.6 rad/s) and 
smooth motors torques which are not exceeded 0.2 
(N.m) without any sharp spikes, as well asall position 
and orientation errors go to a zero value after about 
three seconds. The values of the MSE of S-trajectory in 
the X and Y directions and the orientation are 
[6.589*10-4 (m) and 8.421*10-5 (m) 0.00401(rad)]T, 
respectively. The robustness of the adopted hybrid 
controller is verified and compared with two cases or 
works, and all the comparisons are developed in 
MATLAB software. In the first case, a comparison is 
conducted with a work that used recursive integral 
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backstepping control during a circular trajectory. The 
simulation results showed that the performance of the 
new hybrid controller of this work is better than that of 
the recursive integral backstepping control through a 
circular trajectory in terms of the position and the 
orientation errors' values. The errors' values obtained 
from the present new hybrid controller are convergent to 
a zero value after 1 second, while the errors' values ob–
tained from the recursive integral backstepping control 
fluctuate between (0 and -0.01 m) during all the simu–
lations. While in the second case, a comparison is car–
ried out with combined backstepping and FOPID cont–
rollers during an 8-shape trajectory. The MSE magni–
tudes obtained from backstepping and FOPID cont–
rollers of all errors are [1.642 e-03 (m), 5.087 e-03(m), 
and 4.051 e-03 (rad)]T, whereas the MSE magnitudes 
obtained from the new hybrid controller of this work, 
i.e., (LQR-FOPID-IGWO) are [6.225 e-04 (m),  8.157 
e-04 (m) and 6.041 e-04]T. This matter indicates that the 
performance of the controller methodology of this work 
(FOPID- LQR-IGWO) is better and more robust than 
that of the controller systems adopted in the previous 
works. Future work will focus on other interesting 
problems, such as avoiding static and dynamic obstacles 
in a complex environment and the trajectory tracking of 
a holonomic WMR. 
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Symbols 

ωR The angular speed of the right wheel (rad/s) 
ωL The angular speed of the left wheel (rad/s) 
VR Translation velocity of the right (m/s) 
VL Translation velocity of the left (m/s) 
r Wheel's radius (m) 
V The linear velocity of the robot body (m/s) 
ω Angular velocity of the robot body (rad/s) 
D The distance between the two wheels 
C The point of the center mass of the robot 
m The robot mass 
FR Forces applied to the right wheel (N) 
FL Forces applied to the left wheel (N) 
I Robot mass moment of inertia 
α Angular acceleration of the robot body 

(rad/s2) 
τR The right motor torque (N.m) 
ΤL The left motor torque (N.m) 
F Friction force 
αR Right wheel angular acceleration (rad/s2) 
αL Left wheel angular acceleration (rad/s2) 
u(t) The controlled signal 
e(t) the error signal 
ex Error in X-direction (m) 
ey  Error in X-direction (m) 
ez Orientation error (rad) 
kp Proportional gain 
ki Integral gain 
kd Derivative gain 
Q Positive semi-definite symmetric matrix 
R Positive-definite matrix 
K Optimal gain matrix 
P Riccati Matrix 
A State matrix 
B Input matrices 
t Current iteration 
T Total number of iterations 

1r ,  2r   Random vectors 

a  Convergence factor 

N Number of optimized parameters 

Abbreviations 

WMR Wheeled Mobile Robot 
BSC Backstepping controller 
PID Proportional-Integral-Derivative 
FOPID Fractional order PID 
NMPC The nonlinear model predictive controller 
PSO Particle swarm optimization 
GWO Grey Wolf Optimization 
MOGWO Multi-objective Grey Wolf Optimization 
WOA Whale optimization approach 
LQR Linear quadratic regulator 

 
 

ДИЗАЈНИ НОВОГ ХИБРИДНОГ КОНТРОЛЕРА 
ЗАСНОВАН НА ПОБОЉШАНОЈ ВЕРЗИЈИ 
ОПТИМИЗАЦИЈЕ СИВИ ВУК ЗА ПРАЋЕЊЕ 

ПУТАЊЕ МОБИЛНОГ РОБОТА НА 
ТОЧКОВИМА 

 
Р.М. Хусеин 

 
Нехолономски мобилни роботи на точковима се 
сматрају системима са више улаза и више излаза 
који се изводе у различитим окружењима. Овај рад 
представља контролу праћења путање нехоло–
номског мобилног робота на точковима (ВМР). 
Изведени су кинематички и динамички модели 
робота. Дизајниран је нови хибридни контролер који 
се састојао од два контролера заснована на 
оптимизацијском алгоритму за решавање проблема 
праћења путање. Први контролер је ПИД контролер 
фракционог реда, који је заснован на кинематичком 
моделу и примењен је за управљање линеарним и 
угаоним брзинама робота, док је други контролер 
линеарни квадратни регулатор (ЛКР) и базиран је на 
динамичком моделу. користи се за контролу обртног 
момента мотора. Нова, побољшана верзија 
оптимизације сивог вука је усвојена за подешавање 
параметара хибридног контролера. Главни циљеви 
овог побољшања су брза конвергенција ка решењу, 
смањење ефекта насумичног кретања вукова и 
балансирање процеса експлоатације и истраживања. 
МАТЛАБ софтвер је коришћен за симулацију 
резултата под трајекторијом С-облика и за процену 
робусности и перформанси предложене контролне 
јединице. Резултати симулације су показали 
активност и ефикасност усвојеног система 
управљања на основу средње квадратне грешке 
(МСЕ) између жељене и стварне путање. Вредности 
МСЕ путање у правцима Кс и И и оријентације су 
[6,589*10-4(м) 8,421*10-5(м) 0,00401(рад)]Т. Такође, 
усвојени систем управљања може да генерише 
глатке вредности контролних улазних сигнала без 
оштрих скокова. Перформансе приказаног система 
управљања су верификоване и упоређене са 
резултатима добијеним из друга два система 
управљања, а резултати симулације су понудили 
супериорност и ефективност хибридног регулатора 
овог рада. 

 


