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Empirical Equation of the Mach 
Number as a Function of the 
Stagnation Pressure Ratio for a Quasi-
One-Dimensional Compressible Flow 
 
In the present work for a quasi-one-dimensional isentropic compressible 
flow model, an empirical equation of the Mach number is constructed as a 
function of the stagnation pressure ratio for an analytical equation that 
algebraic procedures cannot invert. The Excel 2019 Solver tool was 
applied to calibrate the coefficients and exponents of the empirical 
equation during its construction for the Mach number range from 1 to 10 
and 1 to 5. A specific heat ratio from 1.1 to 1.67 and the generalized 
reduced gradient iterative method were used to minimize the sum of 
squared error, which was set as the objective function. The results show 
that for Mach 1 to 10, an error of less than 0.063% is obtained, and for 
Mach 1 to 5, an error of less than 0.00988% is obtained. It is concluded 
that the empirical equation obtained is a mathematical model that 
reproduces the trajectories of the inverted curves of the analytical equation 
studied. 
 
Keywords: objective function, generalized reduced gradient, empirical 
equation, Mach number, quasi-one-dimensional flow, stagnation pressure. 

 
 
1. INTRODUCTION 
 
The numerical characteristics for compressible flow in 
convergent-divergent nozzles vary mainly in the flow 
direction. They can be considered given by its appro–
ximation as quasi-one-dimensional isentropic flow. 
Isentropic flow assumes a steady state, a perfect gas, 
and a non-viscous fluid [1-3]. 

In viscous flows, vortex generation, boundary layer 
detachment, flow separation, and recirculation are 
present [4-6]; the sensitivity of the Mach disk shape to 
radial pressure gradients [7]. As well as the flow sepa–
ration modes present characteristics defined in truncated 
ideal contour (TIC), thrust optimized contour (TOC), 
thrust optimized parabolic (TOP), conical nozzle types 
[8-10], planar nozzles [11, 12] and diffusers [13, 14]. 

It should be noted that for ideal flows, quasi-one-
dimensional models have applications in wind tunnels, 
nozzles, and diffusers, among others [2-4]. Reference is 
made to some wind tunnel tests, such as the experi–mental 
study on the influence of the length of the spike on the 
aerodynamic characteristics of blunt bodies for various 
angles of attack and Mach and Reynolds numbers [15]. 
Study of experimental tests on the calibration of a wind 
tunnel, where a calibration model is used that represents a 
generic configuration of a winged missile [16.17] presents 
comparative results for the standard AGARD-B model in 
the transonic speed range tested in six wind tunnels. That 
model is a simple configuration of a high-speed delta-
winged air–plane. As well as in [18], they also report the 

experimental evaluation of eight SZ-1500 series airfoils for 
low Reynolds numbers tested in a wind tunnel. 

A shock wave is an intense pressure wave that 
travels faster than the speed of sound. The normal shock 
wave occurs in the diverging section for a quasi-one-
dimensional flow and under the nozzle's inlet and outlet 
pressure conditions. In the region where the shock 
occurs, the process is irreversible, and the entropy 
increases; in that region of the shock, the process is not 
considered an isentropic process, and whose shock 
thickness is extremely thin on the order of 10-5 cm 
according to Anderson [2]. 

The analysis for a steady flow without heat transfer, 
for a control volume of a shock wave, considers the 
principles of conservation of mass, energy, momentum, 
and state.Furthermore, by intercepting the Fanno and 
Rayleigh curves, the limits of the thermodynamic 
parameters are defined before and after the shock [1, 19, 
20]. The first analyses of these relations are due to 
Rankine (1870) and Hugoniot (1887), known as 
Rankine-Hugoniot relations. 

The dominant parameter for a compressible flow is 
the Mach number M, and it is classified as subsonic for 
0.3 ≤ M ≤ 0.8, transonic 0.8 ≤ M ≤ 1.2, supersonic 1.2 ≤ 
M ≤ 5, hypersonic M > 5, and sonic M = 1 [2]. 

 
1.1  Normal shock wave in a nozzle 

 
A simple scheme of a convergent-divergent nozzle is 
shown in Fig. 1a; in the position of local area ratio Ax/A

* 
and stagnation pressure ratio Poy/Pox, a normal shock 
wave is located, where Ax is the cross-sectional area in the 
shock position and A* the throat area. The geometric 
parameter of the convergent is the half angle β, and of the 
divergent is the half angle α. At the inlet of the nozzle is 
the stagnation pressure P0 (total pressure), whose pressure 
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has the same magnitude in the combustion chamber, in 
the convergent, and the divergent until the shock position 
at x, where Po = Pox. After the shock, at position y, there 
is the stagnation pressure Poy, whose magnitude is the 
same up to the nozzle outlet. The exhaust area Ae, the 
static pressure Pe and the Mach number Me at subsonic 
velocity are found at the nozzle exit [1,3]. 

The trajectory of the Mach number curve is shown 
in Fig. 1b. The divergent shows the behavior of the 
Mach number pattern before and after the shock, where 
the flow goes from supersonic velocity to subsonic 
velocity; for these conditions, the flow is classified as 
over-expanded flow [2,3]. 

 
Figure 1. A simple scheme of a convergent-divergent 
nozzle. (a) The divergent section refers to the position of a 
normal shock wave. (b) Flow rate pattern in terms of the 
Mach number. Adapted from Anderson [2] 

In the gas dynamics for compressible flow, the value 
of k is variable and is a thermodynamic parameter of the 
gas. It is known as the specific heat ratio; this parameter 
is a positive value, and it is in the range of 1 < k ≤ 1.67. 
For air, the value is k = 1.4; for other gases, such as 
those generated by the combustion of solid, liquid, and 
hybrid fuels used in rocket engines, the value of k is less 
than 1.4 [3]. 

For an over-expanded isentropic flow, the calcula–
tions begin with the pressure ratio Pe/P0, whose value is 
previously determined under the condition that the 
shock is present in the divergent at an arbitrary position 
Ax/A

* (Figure 1a), being Pe less than atmospheric pres–
sure. In addition, we have the area ratio Ae/A

* for the 
design condition. The use of analytical equations is 
mentioned below. 

At the nozzle exit, the subsonic Mach number Me is 
determined by equation (1) [1]: 
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The ratio of stagnation pressures Poy/Pox is deter–
mined by equation (2) [1], which is a function of Me: 
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P0y/P0x is substituted in equation (3) [1], and by 
iterative methods, the supersonic Mach number Mx is 
determined at the position of the shock, at reference x: 
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  (3) 

With equation (4) [1] is calculated Ax/A
* at the 

position of the shock, for M = Mx: 
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 (4) 

The subsonic Mach number My at the shock position, 
at the y reference, is calculated with equation (5) [1]: 
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The static pressure ratio Py/Px at the shock position 
is determined with equation (6) [1], which is useful to 
determine the minimum pressure drop Px at the 
supersonic speed position Mx. Where Py is the pressure 
reached when the flow slows down after the shock at 
position My: 
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The calculations for equations (4), (5), and (6) are 
stopped since Mx is determined by iterative methods 
from equation (3). Equation (4) is known as the Stodola 
equation. Calculating the Mach number as a function of 
the area ratio is useful. To obtain the solution, iterative 
methods are applied; this equation has two solutions, 
one for subsonic flow and one for supersonic flow. 

The analytical equations (3) and (4) cannot be inver–
ted by algebraic procedures for solving the Mach num–
ber and are nonlinear problems. Therefore, some known 
method or other mechanisms must be applied to obtain 
empirical equations that yield approximate solutions for 
these two analytical equations. 

As a scientific methodology, heuristics is a set of 
methods and techniques that allow finding a satisfactory 
solution to a problem, and Polya [21] explains how to 
approach it. In engineering sciences, empirical equati-
ons are very common to obtain approximate solutions to 
certain problems, such as fluid mechanics, heat transfer, 
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and deformations of solid materials, among others. The 
complexity of constructing empirical equations lies in 
the methods and tools used to obtain them. 

Lagrange's inversion theorem is reported in the 
literature, which allows inverting analytic equations by 
means of the Taylor series expansion of the inverse 
function of an analytic function. This theorem was 
generalized by Bürmann [22]. 

The Stodola equation (4) was approached by Abu-
Irshaid [23], who applied Bürmann's theorem to obtain a 
mathematical expression for an approximate solution; 
for values close to Mach 1, the series required more 
terms to reduce the error. Authors such as Majdalani 
and Maicke [24,25] also applied Bürmann's theorem to 
the Stodola equation (4) and obtained results similar to 
those reported in [23] for values close to Mach 1. 

For further studies of compressible flow, Ferrari [26] 
applied the Abel equation to obtain new analytical solu–
tions for the steady-state one-dimensional viscous adia–
batic flow of an ideal gas through a conical nozzle or 
diffuser. 

On the other hand, for the case of incompressible 
flow, such as the case of obtaining the explicit solution 
of the nonlinear Colebrook equation, different resear–
chers applied other methods, such as the application of 
infinite recursion [27] and the Wright-ω function [28]. 

From the above, the application of different methods 
to obtain approximate solutions to implicit equations in 
fluid mechanics is observed. In that sense, since the 
solution of the analytical equation (3) is of great impor–
tance to obtain direct calculations of the Mach number 
Mx for supersonic flow at the shock position at Ax/A

*, it 
has been proposed to obtain the solution by applying a 
method different from the mentioned methods. 

In the present work, the objective is to construct an 
empirical equation for the Mach number as a function of 
the stagnation pressure ratio for a quasi-one-dimensi–
onal compressible flow, which satisfies as an approxi–
mate solution the inverse of the analytical equation (3). 

The methodology presents the applied steps that 
allowed for constructing the empirical equation. The 
coefficients and exponents during construction of the 
empirical equation are calibrated with the Solver 
iterative simulation analysis tool in Excel 2019. The 
results of four case studies and the conclusions of the 
analysis are presented. 
 
2. METHODOLOGY 
 
2.1 Squared error conditioning based on fixed data 

and variable data 
 

First, in general, the squared error e2 is conditioned so 
that it can be applied to a standard data set that is 
considered fixed data for the position (xi,yi), and to a 
data set that is considered variable data for the position 
(xi, y´i), but only y´i varies since xi is the same parameter 
for both fixed and variable data. Fig. 2 illustrates the 
positions of the fixed data starting at position (x1,y1) and 
ending at position (xn,yn), and of the variable data 
starting at position (x1,y1) and ending at position (xi, y´n). 

The squared error is expressed as: 
 

 22
i ie y y    (7) 

It should be noted that fixed data is associated with 
experiments, implicit analytic functions, and inverted 
data from analytic equations. The variable data are 
associated with an empirical equation under 
construction y´i = h(xi), composed of trigonometric, 
polynomial, logarithmic, and exponential functions. The 
empirical equation's purpose is to be well structured to 
model the curve's path on the fixed data faithfully. 

 
Figure 2. Fixed data and variable data positions 

The empirical equation y´i = h(xi) has coefficients ai 
and exponents nj, and for its calibration, computational 
tools are required, and one of them is the Excel Solver. 

In the Excel Solver, the sum of the squared error Σe2 
is assigned as the objective function in order to 
minimize, and the coefficients and exponents of the em–
pirical equation under construction are assigned as va–
riable cells. The purpose is for y´i to be as close as pos–
sible to y´i to reduce the squared error to the minimum 
so that the trajectory of the data of the empirical equa–
tion is superimposed on the trajectory of the fixed data. 

There are other tools, such as Lingo, R, Maple, 
Matlab, Fortran, and Python, among other similar, for 
which code must be structured to calculate the minimum 
of the objective function. On the other hand, for the 
Excel Solver, it is enough to enter the necessary data. 
 
2.2 Data conditioning of the analytical equation 
 
The analytical equation (3) was conditioned to generate 
the discrete Mach number data for two phases: the first 
phase was set for the Mach number range from 1 to 10, 
and the second phase for the Mach number range from 1 

to 5 is expressed as /oy oxP P    2 2/
n

x xM a bM   
 

2/
m

xcM b   . Being the expressions for the exponents 

n = k/(k-1) and m = 1/(k-1) and for the coefficients a = 
2/(k+1), b = (k-1)/(k+1) and c = 2k/(k+1). The nume–
rical values of the coefficients and exponents for k = 
1.1, k = 1.2, k = 1.3, k = 1.4, k = 1.5, k = 1.6 and k = 
1.67 are presented in Table 1. 

Discrete Mach number data was generated for 1.1, k 
= 1.2, k = 1.3, k = 1.4, k = 1.5, k = 1.6 and k = 1.67, in 
the range of 1 ≤ Mx ≤ 10 and 297x10-9 < Poy/Pox ≤ 1; the 
Mach number is discretized with an increment ΔMx = 
0.01 for the range of 1 ≤ Mx ≤ 2  and ΔMx = 0.1 for 2 ≤ 
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Mx ≤ 10. The discretization for ΔMx = 0.01 is in order to 
smooth the curve patch for values close to the position 
Poy/Pox = 1 and Mx = 1. In total, n = 190 was discretized 
for the range of 1 ≤ Mx ≤ 10, used in the first phase, and 
n = 170 for 1 ≤ Mx ≤ 5, used in the second phase. 
 

Table 1. Values of coefficients and exponents of the 
equation (3) 

k n m a b c 
1.1 11 10 0.95238 0.04761 1.04761 
1.2 6 5 0.90909 0.09090 1.09090 
1.3 4.33333 3.33333 0.86956 0.13043 1.13043 
1.4 3.5 2.5 0.83333 0.16666 1.16666 
1.5 3 2 0.80000 0.20000 1.20000 
1.6 2.66666 1.66666 0.76923 0.23076 1.23076 

1.67 2.49253 1.49253 0.74906 0.25093 1.25093 

 
The discrete data generated by the analytical 

equation (3) were plotted for 1 ≤ Mx ≤ 10, as shown in 
Fig. 3a in the initial position. And for a second graph, 
the position was reversed, becoming the data of the 
Mach number Mx of the abscissa to be the ordinate and 
the Poy/Pox data of the ordinate to be the abscissa, as 
shown in Fig.3b in the inverted position. The same 
figure shows that curve k = 1.4 is located in the center 
of the group of analytic curves, both in its initial and 
inverted position. 

 
 

Figure 3. The behavior of the trajectories of the analytical 
curves. (a) Initial position. (b) Inverted position 

The curves shown in Fig.3b are very important since 
the Mach number data of those curves are the fixed 
data, which belong to the exact solution of the analytical 
equation (3), and all the curves have a convergence 
point at position Mx = 1 and  Poy/Pox = 1. And with the 
support of the standard data, the empirical equation will 
be constructed. 
 
2.3 Coefficient of determination and percentage 

error 
 

The coefficient of determination R2 is calculated with 
equation (8) [29]: 
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The sum of the squared error is expressed as: 

 22
, ,1 1

n n
x a x en ne M M     (9) 

where n is the number of discrete Mach number data, 
the same quantity for the analytical and empirical 
equations, it should be noted that during the 
construction of the empirical equation, the sum of the 
squared error must be considered as the minimum of the 
objective function in the Excel Solver. 

For calculation purposes, the Mach number of the 
analytical equation (3) is represented as Mx,a which is 
fixed standard data, and of the empirical equation as 
Mx,e, which is variable data, which is based on the 
squared error conditioning principle e2 = (Mx,a – Mx,e)

2. 
The variance of the dependent variable is expressed 

as: 
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The average of discrete Mx,a is expressed as 

, /x aY M n  . Each data of Y corresponds Y = Mx,a; 

therefore 
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The following expression determines the percentage 
error e of the Mach number: 
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2.4 Solver iterative simulation analysis tool 

 
Excel Solver version 2019 was used to calibrate the 
coefficients and exponents of the empirical equation. 
And its use was based on the fact that it is a versatile 
and easy-to-use tool to optimize the minimum of the 
sum of the squared error set as the objective function. In 
addition to including within the options the generalized 
reduced gradient method (GRG) [30] for nonlinear 
optimization solutions, it facilitates the search for 
solutions for the calibration of coefficients and expo–
nents without restrictions during the construction of the 
empirical equations. 

Table 2 presents the parameters and options in 
ExcelSolver that are applied to calibrate the coefficients 
and exponents of the empirical equation. 
 

Table 2. Parameters and options in the Solver tool 

Parameter 
Objective function cell: sum of square error 
Objective cell condition: minimum 
Changing variable cells: coefficients and exponents 
Subject to restrictions: no restrictions 

Option 
Estimate: squared 
Derivatives: central 
Iterative method: GRG Nonlinear 

 
Solver options considered it for time 10000 seconds 

and 10000 iterations. As Solver considers evaluating 
between zero and one, the range of accuracy and con–
vergence, as well as tolerance equal to or greater than 
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zero; for these three options, the decimals were set to 
10-12. The closer to zero, the accuracy, tolerance, and 
convergence, the better the results; however, more time 
is required to get the minimum objective function's 
solution during optimization. It should be noted the 
decimal numbers that Excel takes into account in its 
spreadsheets are up to 10-15. 

 
2.5 Construction of the empirical equation 
 

This section presents the steps of constructing the em–
pirical equation for the Mach number range from 1 to 10. 

As a strategy, as an initial phase, the empirical 
equation for the curve k = 1.4 is built since it is located 
in the center of the family of curves, later with the 
empirical equation obtained, it is approached for the 
other curves to calibrate their coefficients and exponents 
as discrete data; and as a final phase, the coefficients 
and exponents are calibrated as a function of k. 

The steps to construct the empirical equation Mx = 
f(Poy/Pox) for the curve k = 1.4, are as follows: 

Step 1: It was taken as a reference that the empirical 
curve begins at Poy/Pox = 1 and Mx = 1, the convergence 
point for all analytical and empirical curves. It is known 
that the ratio of stagnation pressures is in the range of 
297x10-9< Poy/Pox ≤ 1 on the abscissa axis and of Mach 
number in the range of 1 ≤ Mx ≤ 10 on the ordinate axis. 

Within the family of functions, the natural logarithm 
function Mx = ln(Poy/Pox) has the virtue of evaluating the 
argument for Poy/Pox = 1, where Mx = ln(1) = 0. 
Therefore, the beginning of the construction of the 
empirical equation is given by equation (12): 
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The graph of the curves of the analytical and 
empirical equations is shown in Fig.4a. Where the 
empirical curve registers negative Mach number values 
and is out of phase, and starts at the position Poy/Pox = 1 
and Mx = 0; therefore, equation (12) must be manipu–
lated to adjust its behavior on the analytical curve. 

Step 2: To translate the curve on the ordinate axis, the 
unit was added to equation (12); in addition, the argument 
Poy/Pox of the logarithm became the deno–minator to flip 
the curve, for which a new equation (13) was obtained. 
The graph of the empirical curve is shown in Fig.4b, 
where the Mach number has positive values, and the 
curve begins at the position Poy/Pox = 1 and Mx = 1: 
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Step 3: This step adds coefficients and exponents to 
equation (13) to fit the curve. As coefficients and 
exponents are added in each step, the iteration is done in 
Solver, which is routinely repeated. 

The logarithm was raised to the power p, as shown 
in the new equation (14). As an initial condition, p = 1 
was established to start the iteration. By minimizing the 
sum of the squared error, which is the objective 

function, Solver gave p = 1.253343. The graph of the 
curves in Fig.4c shows that the empirical curve is closer 
to the analytical curve: 
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Step 4: The above equation was raised to the power 
n = 1 and p = 1.253343 as shown in equation (15); 
Solver reported n = 1.491785 and p = 0.712427. In Fig. 
4d, it is shown that the empirical curve is more in line 
with the analytical curve: 
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Step 5: The term (Poy/Pox)
m was added to divide the 

previous equation and the coefficient a to multiply; as 
shown in equation (16),  m = 0.1 and a = 1 were 
assigned, and the values n = 1.491785 and p = 
0.712427. When optimizing, Solver reported: m = 
0.150776, a = 0.947419, p = 0.389651, n = 1.349928. In 
this step, the empirical curve was superimposed on the 
analytical curve, as shown in Fig. 4e: 
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For equation (16), the percentage error reached a 
maximum peak e < 0.9% for the region of Mach number 
close to 1; for other regions, the error was below e < 
0.35%, as shown in Fig. 4f. In addition, the coefficient 
of determination R2 = 0.999996 was obtained, close to 
R2 ≈ 1; and the sum of the squared error yielded Σe2 = 
0.075. 

It should be noted that Fig. 4 illustrates the evolution 
of the empirical curves on the inverse analytical 
equation (3) curve for stages 1, 2, 3, 3, 3, 4, and 5 
performed. 

The error peak close to 0.9% is high despite having 
R2 ≈ 1. Therefore, the empirical equation (16) must be 
adapted, and another term must be added to reduce the 
error.  

This consideration of reducing the error allows 
better numerical precision; in this way, the results of the 
empirical equation will be more adjusted to the 
numerical data of the analytical equation (3). Therefore, 
a new empirical equation has to be obtained, which is 
presented in step 6. 

Step 6: The new empirical equation (17) is presented 
in this step. 
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Figure 4. The behavior of the evolution and adjustment of 
the empirical curve on the analytical curve for k = 1.4. (a) 
Step 1, (b) step 2, (c) Step 3, (d) Step 4, (e) Step 5, and (f) 
Mach number percentage error for step 5. 
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The procedure to obtain equation (17) Mx = 
f(Poy/Pox) is as follows: the nomenclature of the 
coefficients was adapted as ai and that of the exponents 
as nj. Equation (16), the section of the first term, was 

taken as the basis. The second term was carefully 
constructed to satisfy the decrease of the error percen–
tage and increase the exact decimal digits of the Mach 
number. 

For a prior adjustment of the coefficients and expo–
nents of equation (17), the Solver was not applied; 
therefore, the calibration was manual. To avoid diver–
gence of the sum of the squared error, the assignment of 
the coefficient and exponent values was controlled so 
that the sum of the squared error was less than unity. A 
series of numerical tests were performed, and the most 
satisfactory results, which are four tests, are presented in 
Table 3. It should be noted that the values of a1, n1, n2, 
n3, and n4 in tests 1 and 2 correspond to the data gene–
rated in step 5 for equation (16). 

Table 3. Manually calibrated values of coefficients and 
exponents for k = 1.4 

Test 1 2 3 4 
 Coefficient 
a1 0.947419 0.947419 0.5 0.5 
a2 1 0.5 1 1.2 
 Exponent 
n1 0.150776 0.150776 0.1 0.1 
n2 0.150776 0.150776 0.1 0.1 
n3 0.389651 0.389651 0.3 0.33 
n4 1.349928 1.349928 1.8 1.81 
n5 1 0.5 0.1 0.07 
n6 1 0.5 0.5 0.15 
n7 1 0.5 0.5 0.6 
Σe2 548.2 296.2 32.95 0.05 
Error % 46 37 13 0.8 

 
From Table 3, test 4 was the most satisfactory since 

it has the percentage error of Mach number less than 
1%, and the sum of the squared error Σe2 = 0.05. 
Therefore, the data from test 4 were taken as the initial 
condition to calibrate the coefficients and exponents 
with the Solver. 

To optimize the minimum of the sum of the squared 
error, as an objective function, the following was taken 
into account changing variable cells: a1, a2, n1, n2, n3, 
n4, n5, n6 and n7, and without restrictions. Consecutive 
repetitions of runs were performed until numerical 
convergence was obtained, the calibrated values of 
coefficients a1 = 0.476086 and a2 = 1.245852, and the 
exponents n1 = 0.108771, n2 = 0.091835, n3 =0.328732, 
n4 = 1.821138, n5 + 0,083785, n6 = 0.176509, and n7 = 
0.618819, respectively. 

Fig. 5a illustrates the empirical curve superimposed 
on the analytical curve, and Fig. 5b shows the 
percentage error curve of the Mach number. The error 
reached the maximum peak e < 0.012% for the region of 
Mach number close to 1, the smallest error concerning 
equation (16) which has a peak of e < 0.9%. In addition, 
the coefficient of determination R2

 = 0.999996 was 
obtained, close to R2 ≈ 1, and the sum of the squared 
error yielded Σe2 = 9.9864x10-7. 

With equation (17) already constructed in its final 
stage, the coefficients and exponents of the curves of the 
extremes were determined for for k = 1.1, k = 1.2, k = 
1.3, k = 1.4, k = 1.5, k = 1.6 and k = 1.67. For example, 
to calibrate the ai and nj for k = 1.3, we took as initial 
data the ai and nj obtained for k = 1.4, applied the 
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Solver, and obtained the new values of ai and nj for k = 
1.3. Similarly, we calibrated the ai and nj for the other k 
values. The values of the calibrated ai and nj for the 
Mach number range from 1 to 10 are presented in the 
resultsin Tables 4 and 5. Similarly, with equation (17), 
ai and nj were calibrated for the Mach number range 
from 1 to 5. The values are presented in the resultsin 
Tables 7 and 8. 

 
Figure 5. The behavior of the evolution and adjustment of 
the empirical curve on the analytical curve for k = 1.4 (a) 
Step 6, and (b) Mach number percentage error for step 6. 

To obtain equation (17) Mx = f(Poy/Pox,k) as a 
function of two variables, with the discrete data of the 
coefficients and exponents for each value of k. For 
example, for each data of k = 1.1, k = 1.2, k = 1.3, k = 
1.4, k = 1.5, k = 1.6 and k = 1.67 we have the values of 
the coefficients ai and the exponent nj, so that with these 
data we construct the polynomials ai = f(k) and nj = f(k),  
which are the initial data to apply the Solver. 

 The data in Tables 4 and 5 were used for the Mach 
number in the range 1 to 10, and Tables 7 and 8 were 
used for the Mach number in the range 1 to 5. 

This phase of polynomial calibration started with the 
smoothest curve that reported the discrete data and was 
anchored as fixed and constant data. The remainder of the 
discrete data was taken as variables in the changing cell 
and re-optimized to obtain new values of coef–ficients 
and exponents. Then, the smoothest curve trajectory was 
searched again, anchored as a constant value, and 
optimized until new values of the remaining discrete data 
were recorded. The procedure was repeated until the last 
polynomial was obtained. It was very complicated beca–
use it was trial and error. The poly–nomials obtained are 
shown in the results; the Mach number range from 1 to 1 
is presented in Table 6, and for Mach number range from 
1 to 5 is presented in Table 9. 
 
3. RESULTS AND DISCUSSION 
 
This section presents the results for four case studies, 
calculated with the empirical equation (17): two cases 
for 1 ≤ Mx ≤ 10, one for ai and nj, and another for ai = 
f(k) and nj = f(k). And two cases for 1 ≤ Mx ≤ 5, one for 
ai and nj, and another for ai = f(k) and nj = f(k). 
 
3.1 Case studies 

 
For case 1, in Tables 4 and 5, the results are presented; 
it was evaluated for discrete data, where the coefficients 
a1 and a2 and of the exponents n1, n2, n3, n4, n5, n6 and n7 
were calibrated for each value of k, for Mx = f(Poy/Pox) in 

the range of 1 ≤ Mx ≤ 10. For case 2, Table 6 presents 
the results; it was evaluated for polynomials, where the 
coefficients ai = f(k), and of the exponents nj = f(k), for 
Mx = f(Poy/Pox,k)  in the range of 1 ≤ Mx ≤ 10. 

Case 3 was evaluated similarly to case 1, 
considering the range of 1 ≤ Mx ≤ 5; the results are pre–
sented in Tables 7 and 8. Likewise, case 4 was 
evaluated similarly to case 2, for the range of 1 ≤ Mx ≤ 
5; the results are presented in Table 9. 

Table 4. Case 1 (discrete).Values of coefficients and expo–
nents for 1 ≤ M ≤ 10 

 Specific heats ratio, k 
 1.1 1.2 1.3 1.4 
 Coefficient 
a1 0.492179 0.479552 0.476537 0.476086 
a2 1.086264 1.178176 1.254848 1.245852 
 Exponent 
n1 0.026083 0.052875 0.081332 0.108771 
n2 0.017577 0.045007 0.069289 0.091835 
n3 0.331909 0.329867 0.328471 0.328732 
n4 1.827822 1.835295 1.817479 1.821138 
n5 0.062189 0.073795 0.075084 0.083785 
n6 0.169086 0.165590 0.166910 0.176509 
n7 0.684540 0.650321 0.628955 0.618819 

Table 5. Case 1 (discrete).Values of coefficients and 
exponents for 1 ≤ M ≤ 10 (continued) 

 Specific heats ratio, k 
 1.5 1.6 1.67 
 Coefficient 
a1 0.459335 0.452209 0.448856 
a2 1.176689 1.112404 0.987731 
 Exponent 
n1 0.134325 0.158001 0.174837 
n2 0.110978 0.133166 0.150141 
n3 0.327411 0.326984 0.326356 
n4 1.862755 1.885781 1.891396 
n5 0.094015 0.106094 0.126569 
n6 0.208957 0.245299 0.319088 
n7 0.605354 0.598374 0.594572 

Table 6. Case 2 (polynomial). Values of coefficients and 
exponents as a function of k, for 1 ≤ M ≤ 10 

Coefficient 
a1 = 0.3142k4 – 1.8391k3 + 4.0145k2 – 3.9103k + 1.919 
a2 = 70.796k4 – 406.37k3 + 865.67k2 – 811.33k + 283.7 

Exponent 
n1 = -0.0378k4 + 0.2521k3 – 0.5816k2 + 0.8404k – 0.4757 
n2 = -0.0019k2 + 0.2542k – 0.254 
n3 = -0.0126k2 + 0.0282k + 0.3119 
n4 = -1.2384k4 + 7.2241k3 – 15.887k2 + 15.527k – 3.881 
n5 = -2.9764k4 + 17.769k3 – 39.184k2 + 37.918k – 13.543 
n6 = -8.2402k4 + 49.594k3 – 109.6k2 + 105.8k – 37.583 
n7 = -0.1164k3 + 0.6056k2 – 1.1321k + 1.3324 

Table 7. Case 3 (discrete). Values of coefficients and 
exponents for 1 ≤ M ≤ 5 

 Specific heat ratio, k 
 1.1 1.2 1.3 1.4 
 Coefficient 
a1 0.537840 0.511532 0.496921 0.488949 
a2 1.176279 1.229231 1.251125 1.291484 
 Exponent 
n1 0.015236 0.014004 0.018284 0.020207 
n2 0.019383 0.058125 0.089087 0.119308 
n3 0.334694 0.334831 0.334934 0.335207 
n4 1.720268 1.816176 1.878027 1.922165 
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n5 0.054244 0.063208 0.058474 0.046825 
n6 0.173349 0.197771 0.224437 0.250492 
n7 0.727952 0.735660 0.738437 0.744708 

Table 8. Case 3 (discrete). Values of coefficients and 
exponents for 1 ≤ M ≤ 5 (continued) 

 Specific heats ratio, k 
 1.5 1.6 1.67 
 Coefficient 
a1 0.479420 0.472944 0.467792 
a2 1.281022 1.304331 1.310532 
 Exponent 
n1 0.022130 0.027203 0.034554 
n2 0.147488 0.177197 0.198434 
n3 0.335485 0.335462 0.335182 
n4 1.975362 2.012170 2.035745 
n5 0.036499 0.022511 0.013486 
n6 0.288247 0.311133 0.323000 
n7 0.750570 0.749942 0.744086 

Table 9. Case 4 (polynomial). Values of coefficients and 
exponents as a function of k, for 1 ≤ M ≤ 5 

Coefficients 
a1 = 0.034k3 – 0.116k2 + 0.1286k + 0.4851 

a2 = 0.0228k3 – 0.1375k2 + 0.2828k + 0.9883 
Exponents 

n1 = 0.1878k4 – 0.9798k3 + 1.8897k2 – 1.5298k + 0.4473 
n2 = 0.0526k3 – 0.2254k2 + 0.6634k – 0.502261 

n3 = 0.333333 
n4 = -0.221k4 + 1.0635k3 - 1.8905k2 + 1.5326k + 1.22594 

n5= 0.3377k3 – 1.5728k2 + 2.341k – 1.0537 
n6= -0.086k3 + 0.3613k2 - 0.1311k – 0.0116 

n7 = -0.0385k3 + 0.1431k2 – 0.1518k + 0.7475 

 
Figure 6. Case 2. (a) Empirical curves superimposed on the 
analytical curves. (b) and (c) Detail. 

The empirical curves obtained with equation (17) and 
data from Table 6 of case 2, for Mx = f(Poy/Pox,k) in the 
range of 1 ≤ Mx ≤ 10, are shown in Fig.6a. An enlarged 
detail of the ends of the family of curves is shown in Fig. 
6b and Fig. 6c. It is observed that all the empirical curves 
(equation (17)) are superimposed on the analytical curves 
(equation (3)) for k = 1.1, k = 1.2, k = 1.3, k = 1.4, k = 
1.5, k = 1.6 and k = 1.67 respectively. 

All the analytical and empirical curves converge at 
the position Poy/Pox = 1 and Mx = 1. It should be noted 
that the graphs of case 2. Cases 1, 3, and 4 are not 
included since the trajectories of the curves are similar. 
In addition, it is indicated that cases 3 and 4 only cover 
the range of 1 ≤ Mx ≤ 5. 

 
3.2 Comparative analysis of cases 

 
The Mach number values obtained with the empirical 
equation (17) are compared with the exact values of the 
analytical equation (3). They are only considered for k = 
1.1, k = 1.3 k = 1.5 and k = 1.67; the other values of for 
k = 1.2, k = 1.4, k = 1.6, the results are similar. 

In Tables 10,11, 12, and 13, the proximity to the 
exact solution is evidenced when comparing the results 
of the empirical equation. How the decimals fluctuate 
by excess and by default indicates that the empirical 
curves oscillate and intercept with analytical curves. For 
case 1 (Table 10), the Mach number error is less than 
0.018%; for case 2 (Table 11), the error is less than 
0.063%; for case 3 (Table 12), the error is less than 
0.004%, finally, for case 4 (Table 13) the error is less 
than 0.00988%. 

Table 10. Case 1 (discrete). Mach number values calculated 
with the empirical equation (17) and Tables 4 and 5 

 Specific heats ratio, k 
 1.1 1.3 1.5 1.67 

Mach number 
Analytical Empirical 

1 1.000000 1.000000 1.000000 1.000000 
2 2.000014 1.999944 1.999909 1.999920 
3 2.999841 2.999897 2.999975 3.000035 
4 4.000064 4.000074 4.000086 4.000066 
5 5.000097 5.000063 5.000029 4.999984 
6 5.999964 5.999982 5.999963 5.999947 
7 6.999913 6.999948 6.999959 6.999980 
8 8.000008 7.999977 7.999998 8.000034 
9 9.000083 9.000021 9.000025 9.000035 

10 9.999912 9.999975 9.999979 9.999905 

Table 11.Case 2 (polynomial). Mach number values calcu–
lated with the empirical equation (17) and Table 6 

 Specific heats ratio, k 
 1.1 1.3 1.5 1.67 

Mach number 
Analytical Empirical 

1 1.000000 1.000000 1.000000 1.000000 
2 2.000692 2.000283 2.000669 1.999579 
3 3.000916 3.000661 3.001670 2.999569 
4 4.001232 4.001270 4.002457 3.999529 
5 5.001418 5.001636 5.002705 4.999276 
6 6.001357 6.001882 6.002638 5.998966 
7 7.001175 7.002167 7.002464 6.998694 
8 8.000942 8.002634 8.002294 7.998488 
9 9.000591 9.003237 9.002179 8.998384 
10 9.999845 10.00000 9.999974 9.999915 
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The most accurate values are for discrete data; how–
ever, they have the disadvantage that they are individual 
curves for each k value. 

While the empirical equation with the data of coeffi–
cients and exponents as a function of k allows dealing with 
a family of curves within the range of 1.1 ≤ k ≤ 1.67, the 
advantage is much greater regarding individual curves. 

Table 12. Case 3 (discrete). Mach number values calculated 
with the empirical equation (17) and Tables7 and 8 

 Specific heats ratio, k 
 1.1 1.3 1.5 1.67 

Mach number 
Analytical Empirical 

1 1.000000 1.000000 1.000000 1.000000 
2 2.000002 1.999996 1.999996 1.999985 
3 2.999995 3.000003 3.000004 3.000014 
4 4.000005 3.999999 3.999999 3.999993 
5 5.000056 5.000050 5.000050 5.000073 

Table 13. Case 4 (polynomial). Mach number values 
calculated with the empirical equation (17) and Table 9 

 Specific heats ratio, k 
 1.1 1.3 1.5 1.67 

Mach number 
Analytical Empirical 

1 1.000000 1.000000 1.000000 1.000000 
2 1.999972 1.999991 2.000016 2.000052 
3 3.000160 3.000204 3.000208 3.000290 
4 4.000368 4.000251 4.000082 4.000060 
5 5.000486 5.000164 4.999690 4.999507 

 
The results of the Mach numbers presented in Tables 

10-13 have to do with the calibrations of the coefficients 
and exponents. The solution search engine by iterative 
methods in Solver was based on the GRG. The unrestricted 
condition was applied to the variables, where the objective 
function was the minimum sum of the squared error. 

The calibration phase to obtain the polynomials ai = 
f(k) and nj = f(k) presented difficulty and was very labo–
rious because the discrete data for each value of k did 
not only present curves but also fluctuations. In addi–
tion, this was compounded by the fact that the errors 
during calibration increased rather than remained the 
same or decreased. Therefore, to avoid sharp increases 
in the errors, the polynomials of orders 2, 3, and 4 were 
evaluated repeatedly, and the one with the lowest error 
was selected, and this was done for each coefficient and 
exponent. It should be noted that sometimes the errors 
increased above 2%, which is why we tried to obtain the 
errors as close as possible to the discrete data values. 

It is summarized, in Table 14 shows the magnitudes 
of the percentage errors of the Mach number and the 
coefficients of determination R2 ≈ 1 for the four cases of 
study. Figure 7 shows the behavior of the Mach number 
errors for the four cases. 

Table 14. Comparative table of cases for different ranges of 
Mach number 

Cases Mach 
number 

Error % 
 

Coefficient of 
determination 

1 (discrete) 1-10 0.018 0.99999 
2 (polynomial) 1-10 0.063 0.99999 
3 (discrete) 1-5 0.004 0.99999 
4 (polynomial) 1-5 0.00988 0.99999 

 
Figure7. Percentage errors of Mach number. (a) Case 1, (b) 
Case 2, (c) Case 3, and (d) Case 4 

The empirical equation (17) is a mathematical repre–
sentation of the solution of the inverse of equation (3). It 
significantly contributes to the area of gas dynamics for 
quasi-one-dimensional isentropic compressible flow. 
However, it can be improved by modifying or adding 
more terms to reduce the error further. 

The analytical equations (3) and (4), among other 
mathematical expressions, are widely used to simulate 
the compressible flow in one dimension for an ideal gas 
or real gas, for which different computational iterative 
calculation procedures are applied to obtain the 
solutions [31-36]. 

Applying the empirical equation (17), the following 
are considered for the design of a nozzle at Mach 3, 
flow k = 1.4 and Ax/A

* =4.234. The inlet pressure of the 
nozzle P0=3.5547 atm is considered a constant value, 
and the pressure at outlet Pe is variable. For the 
divergent shock to occur,the pressure ratio rp = Pe/P0 is 
0.2183 < rp < 0.9866, and the Mach number at the 
outlet is 0.1384 < Me < 0.4751. For the shock to occur in 
the divergent section, the outlet pressure Pe is 1 < Pe < 
3.5075; for this range, four cases are established: rp = 
0.4; rp = 0.5; rp = 0.6 and rp = 0.7. 

The behavior patterns of the trajectories of the 
curves for the Mach number and how the normal shocks 
are distributed in the local positions in Ax/A

*  for the su–
personic flow Mx and subsonic flow My are shown in 
Fig. 8. As the magnitude of rp decreases, the position of 
the shock is translated toward the nozzle outlet. 

It should be noted that the curve span for the 
supersonic flow up to the shock position and for the 
subsonic flow after the shock is determined with 
equation (4) for each position of A/A*. The subsonic 
Mach number, after the shock, from My to Me, is 

calculated with the area ratio */ yA A    */ xA A  

 * */ /y xA A . For */ xA A , the area *
xA  is the critical area 

in the throat, the value of A is variable in the range from 
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Ay to Ae, and the ratio * */y xA A  is a constant value. 

When a shock wave is present, the critical area A* 
increases as the wave passes through; therefore, the 

ratio of critical areas, before the shock *
xA  and after the 

shock *
yA , is determined by equation (18): 

 
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* 2 2 2

* 2

2 1

2 1
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ky y x
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A M k M

MA k M

 
    
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  (18) 

The empirical equation (17) facilitated the calcula–
tions by connecting with the analytical equations invol–
ved (1), (2), (4), (5), (6), and (18) to obtain the curves 
shown in Fig. 8. 

 
Figure8. Mach number patterns in the divergent for flow 
with k = 1.4 

Table 15 presents the magnitudes of the parameters 
at the shock position Ax/A

*, for rp = 0.4, rp = 0.5, rp = 
0.6 and rp = 0.7. 

Table 15. Magnitudes of the parameters in the position of 
the shock corresponding to Fig.8 

Parameter Pressure ratio, rp 

 0.4 0.5 0.6 0.7 
Poy/Pox 0.432 0.526 0.621 0.718 

Mx 2.674 2.433 2.213 2.004 
My 0.497 0.519 0.545 0.576 

Py/Px 8.175 6.740 5.551 4.521 

Ax/A
* 3.105 2.478 2.029 1.694 

 
In convergent-divergent nozzles for the over-

expanded flow condition, and according to the designs 
of the aerodynamic profiles of the walls, the shock wave 
can reach values close to Mach 5. Therefore, the 
empirical equation (17) and the data from Tables 7, 8, 
and 9, for the range of 1 ≤ Mx ≤ 5 and 1.1 ≤ k ≤ 1.67, is 
an appropriate and relevant option to be applied. 

One of the control parameters is the percentage error 
to calibrate coefficients and exponents of empirical 
equations, which indicates how much the empirical 
curves should be adjusted to the analytical ones, and 
calibration is a laborious task. 
 
4. CONCLUSIONS 
 
The method applied to construct the empirical equation 
(17) shows that it is possible to obtain approximate 

solutions to certain problems of analytical equations that 
algebraic procedures cannot invert. 

The empirical equation (17) is a mathematical 
representation that satisfies the solution of the inverse of 
the analytical equation (3). Therefore, it is a significant 
contribution to gas dynamics for a quasi-one-
dimensional isentropic compressible flow. 

The determination coefficients present values of 
R2≈1 for the four study cases. The coefficients and 
exponents of the empirical equation (17) for  
1 ≤ M ≤ 10, the error is less than 0.018% for the discrete 
data and less than 0.063% for the polynomials. 
Likewise, 1 ≤ Mx ≤ 5 presents the Mach number error of 
less than 0.004% for the discrete data and less than 

0.00988% for the polynomials.  
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NOMENCLATURE 

ai Empirical equation coefficients 
Ae Area at the nozzle outlet 
Ax Area at shock position 
A* Critical throat area 
α Half angle of divergent 
β Half angle of the convergent 
e Mach number percentage error 
e2 Squared error 
GRG Generalized reduced gradient 
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k Specific heat ratio 
M Mach number 
Me Mach number for subsonic flow, at the 

nozzle outlet 
Mx Mach number for supersonic flow at 

shock wave position 
Mx,a Mach number for discrete data from the 

analytical equation 
Mx,e Mach number for discrete data from the 

empirical equation 
My Mach number for subsonic flow at the 

position of the shock wave 
nj Exponents of the empirical equation 
Pe Static pressure at the nozzle outlet 
Px Static pressure at shock position for 

supersonic flow 
Po Stagnation pressure at the nozzle inlet 
Pox Stagnation pressure before the shock 
Py Static pressure at shock position for 

subsonic flow  
Poy Stagnation pressure after the shock 
R2 Coefficient of determination 
r Nozzle radius  
rp Pressure ratio 
x Reference point at the shock position 

for supersonic flow 
y Reference point at the shock position 

for subsonic flow 
  

 
ЕМПИРИЈСКА ЈЕДНАЧИНА МАХОВОГ 

БРОЈА КАО ФУНКЦИЈА ОДНОСА 
СТАГНАЦИОНОГ ПРИТИСКА ЗА 
КВАЗИЈЕДНОДИМЕНЗИОНАЛНИ 

СТИШЉИВИ ПРОТОК 
 

С.Л. Толентино 
 

У овом раду за квази-једнодимензионални 
изентропски компресибилни модел струјања, 
конструисана је емпиријска једначина Маховог 
броја као функција односа притиска стагнације за 
аналитичку једначину коју алгебарске процедуре не 
могу да инвертују. Алат Екцел 2019 Солвер је 
примењен за калибрацију коефицијената и 
експонената емпиријске једначине током њене 
конструкције за опсег Маховог броја од 1 до 10 и 1 
до 5. Специфични однос топлоте од 1,1 до 1,67 и 
генерализовани итеративни метод смањеног 
градијента су користи се за минимизирање суме 
квадратне грешке, која је постављена као циљна 
функција. Резултати показују да се за 1 до 10 маха 
добија грешка мања од 0,063%, а за 1 до 5 маха 
мања од 0,00988%. Закључује се да је добијена 
емпиријска једначина математички модел који 
репродукује путање обрнутих кривих проучаване 
аналитичке једначине. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


