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Engine Block Vibrations – An Indicator 
of Knocking in the SI Engine  
 
The factors influencing the onset of knocking have a significant impact on 
how well a SI engine performs. Hence, the efficacy in determining the 
onset and controlling of knock is a key factor in improving the SI engine’s 
performance. This paper provides insight into the role of engine block 
vibrations in determining the occurrence of knock using Empirical Mode 
Decomposition and Short-Time Fourier Transform. To comprehend the 
behaviour of vibration amid normal combustion and knocking conditions, 
the engine block vibration signals are analyzed and compared with the in-
cylinder pressure fluctuations. The features of knock are extracted from the 
engine block vibration signals using Empirical Mode Decomposition. The 
first Intrinsic Mode Function (IMF) thus obtained is used to generate the 
Hilbert spectrum for detecting the occurrence of knock. Similarly, Short-
Time Fourier Transform is also performed on the first IMF to obtain the 
spectrogram. The findings demonstrate unequivocally that 
higher frequency variations are produced when knock occurs. These 
results also indicate that the combination of Empirical Mode 
Decomposition and Short-Time Fourier Transform can be used effectively 
for determining the occurrence of knock. 
 
Keywords: Spark Ignition Engine, Knocking, Empirical Mode Decompo–
sition, Hilbert Transform, Short-time Fourier Transform, Spectrogram. 

 
 

1. INTRODUCTION 
 

The stringent emission norms and the issues pertaining to 
climatic changes had made the researchers consider 
alternate fuels or improving the performance of con–
ventional fueled engines. The studies show that the 
performance of the SI engines improves with the 
compression ratio; however, it results in knocking above 
a particular value, called Highest Useful Compression 
Ratio (HUCR) [1]. Hence, the improvement in the per–
formance of SI engines will not be possible beyond a 
certain limit. However, the knock could be suppressed to 
a certain extent by reducing the in-cylinder tempe–rature 
[1]. Cooled Exhaust Gas Re-circulation, water injection 
system, emulsified fuel, etc., could be used to extend the 
HUCR. Further improvement in the per–formance could 
be possible only if there is a possibility of real-time 
monitoring and control of SI engine knocking. Real-time 
SI engine knock suppression may be accomplished with 
cooled EGR [2]. However, the effectiveness in 
controlling the SI engine knock and improvement in the 
performance of an engine depends on how accurately we 
can predict the occurrence of knock. Many studies are 
available for predicting the occurrence of knock; based 
on the fuel octane number, ignition timing, in-cylinder 
pressure, temperature, the air-fuel ratio, etc. [3-6]. Due to 
the complexity, these studies failed to be efficiently 
employed for the real-time detection of knock. This leads 

to the study of the behavior of various parameters that 
may be affected during the occurrence of a knock. Nano–
fluids were utilized as the coolant by Ollivier et al. [7] to 
explore the transient temperature fluctuations that occur–
red during the onset of knock. To amplify the transient 
temperature fluctuations, grooves facing the coolant flow 
were added to the cylinder liner [7]. This method could 
effectively detect the occurrence of knock. However, the 
time lag caused during the occurrence of tempe–rature 
fluctuations and its analysis to confirm the knock makes 
it unfit for real-time monitoring and control of knock. 

In-cylinder pressure, acoustic signals, and engine 
block vibrations are used by many researchers for the 
detection and analysis of knock [2, 8, 9]. The acoustic 
signals captured from the engine consist of noise, which 
requires proper analysis before extracting the features of 
knock. There are many methods for denoising the 
signals; among them, wavelets are found to be effective 
[8, 10, 11]. Also, there are various mathematical tools 
for analyzing denoised signals, including the Fourier 
transform, Wavelet transform, Empirical Mode 
Decomposition (EMD), etc. [12-18]. Furthermore, there 
are many variations and extensions of these models for 
extracting the features from the signals more efficiently 
and accurately [2, 9, 19, 20, 21]. Standard Fourier and 
Wavelet approaches use predefined functions as the 
basis for analyzing the signals [13, 22]. The Fourier 
analysis could be done only if there is at least one full 
wave oscillation of a sine or cosine wave to obtain the 
local frequency [13]. Therefore, the instantaneous 
frequency cannot be calculated for non-stationary data 
that changes the frequency now and then. Wavelet 
analysis could provide physically meaningful 
interpretations more accurately to only linear signals 
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[13]. However, discrete wavelets could overcome this to 
a certain extent. Wavelets can be used to resolve inter-
wave frequency modulations having a gradual 
frequency variation. However, it cannot be used to 
resolve intra-wave frequency modulations. This is 
because the basic wavelets have a length of 5.5 
waves[13]. Therefore, the accuracy of the analysis 
depends on the stationarity, linearity, and length of the 
signal [13]. Unfortunately, the signals obtained from the 
SI engine are non-stationary and non-linear. Therefore, 
instead of Fourier Transform and Wavelet Transform, 
EMD is preferred in association with the Hilbert 
Spectrum analysis [13, 23]. However, because of mode 
mixing in EMD, there can be a probability that the 
knock's characteristics will be distributed over many 
Intrinsic Mode Functions (IMFs). This can be overcome 
by an improved version of EMD named Ensemble 
Empirical Mode Decomposition (EEMD).In this, the 
Mode mixing will be likely to be substantially less 
because the mean IMFs generated via EEMD will fall 
within the natural dyadic filter windows [20]. 

To reduce the effect of noise in the analysis, we can 
use in-cylinder pressure that could deliver important 
information about knock with less noise compared to the 
acoustic signals. However, the process is not economical 
since it requires pressure measuring devices in all the 
cylinders for capturing the in-cylinder pressure. Also, the 
analysis is more complicated since the number of signals 
captured depends on the number of cylinders in an engine 
and should be processed in parallel. However, many 
works were done for the real-time detection of knock 
using the in-cylinder pressure. Kim [24] used EEMD and 
Wavelet Packet Decomposition to analyze the in-cylinder 
pressure signals to categorize the cycles as knock and 
non-knock using the machine learning algorithm. Since 
knock produces high-frequency pressure fluctuations, 
Ofner et al. [25] developed 1-D Convolutional Neural 
Network that could capture the frequency-dependent 
features for identifying the knocking cycles. 

Another source of signals bearing knock charac–
teristics is the vibration signals obtained from the 
cylinder block. Accelerometers mounted on the cylinder 
block could capture the vibration. However, the vibra–
tion signals, thus obtained, contain noise since there are 
lots of vibrations occurring in other parts of the engine 
as well. Studies show that the amplitude of filtered 
vibration signals could be used for detecting the 
occurrence of knock and even for developing a knock 
index to classify the knock [26]. Ismail et al.[27] used a 
statistical approach to determine the occurrence of 
knock by comparing it with the knock index calculated 
using the engine block vibrations and the knock 
threshold. The vibration signal captured from the engine 
block contains the signals generated by all the moving 
parts in the engine. Also, there may be many external 
factors that contribute to the engine block vibrations in a 
running vehicle. Studies show that changes in the 
engine’s working parameters affect the vibrations 
produced by the engine [28-30]. These changes are 
significant, and even significant variations are observed 
in the other parts of the vehicle due to these vibrations 
[28-30]. Hence, the data solely depending on the 
amplitude of the vibration signals may fail to determine 

the occurrence of knock as well as to classify the knock 
based on its intensity. However, the engine block vib–
ration analysis finds application in (i) detecting the 
malfunctioning of the moving parts, (ii) determining the 
engine performance, and (iii) designing the other parts 
of the vehicles [28-30]. The location at which the 
vibration signals are captured, as well as the methods 
adopted for analyzing the signals, are different for each 
purpose. Hence, research is going on to identify the 
most accurate and simple methods for each purpose. 

In this work, the in-cylinder pressure and denoised 
vibration signals are analyzed to extract the features of 
knock. The signals are decomposed using EMD, even 
though there are many improved models like EEMD [9, 
20], Complementary Ensemble Empirical Mode 
Decom–position [31], etc. This is due to the better 
adaptability of EMD in decomposing the signals, i.e., it 
could naturally deal with the non-stationarities and non-
linearities. Thus, it could be used effectively in 
extracting the features of the knock from the signals in 
real-time situations. Current work focuses on various 
methods that could be adopted for extracting the 
features of knock within the limitations of EMD and to 
develop a criterion for detecting the SI engine knock 
that could lead towards knock detection and control its 
further occurrence in real-time. The Hilbert Spectrum of 
the first IMF obtained using EMD is analyzed to study 
the features of knock. The spectrogram is also obtained 
by performing Short-Time Fourier Transform (STFT) 
on the first IMF obtained using EMD. The results are 
compared to choose the optimal strategy, which could 
determine the occurrence of knock effectively. The 
following sections address the details regarding the 
methodologies used and the results obtained. 

 
2. ENGINE BLOCK VIBRATION ANALYSIS AND 

SYSTEM CONTROL 

 
In-cylinder pressure and the corresponding engine block 
vibration signals are taken from the research by Fengrong 
et al. [31-33]. They had captured the signals from 4 
cylinders, 4-stroke, in-line SI engine. The ignition timing 
is advanced to induce knock. Two DYTRAN - 621B40 
[31-33] accelerometers were mou–nted on the engine 
block (nearby cylinders 2 and 4) to capture the vibrations 
with a sampling frequency of 51,200 Hz. The pressure 
transducer AVL - GH13Z-31(24) was used to measure 
in-cylinder pressure signals [31-33]. From the literature, 
it is noted that the signals generated during knock contain 
frequencies ranging from 8 kHz to 22 kHz [9]. For better 
accuracy, the noise needs to be eliminated before 
analyzing the signals. Denoising is achieved by applying 
signal filtering techniques using wavelet filters. The use 
of soft thresholding minimizes the chance 
of discontinuities in the denoised signal [34]. The Symlet 
wavelet is used for denoising the signal since it could 
reduce the phase distortion due to its better symmetry. 
The denoised signal is then decomposed using EMD to 
extract the features of knock. The first intrinsic mode 
function (IMF1) thus acquired bears the characteristics of 
knock. Hence, in the current work, only the first IMF is 
used to study the behavior of knock, even though other 
IMFs also might contain the features of knock due to the 
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mode mixing that may arise with the use of EMD. This 
will also help to ensure a simple methodology to timely 
address the occurrence of a knock with less computation. 
Hilbert spectrum and spectrogram of IMF1 are obtained 
to compare its effectiveness in determining the occur-
rence of knock. The following sections contain additional 
details about the analysis. 

 
2.1 EMD Algorithm 

 
EMD was developed by N Huang [13] for analyzing 
non-stationary signals. A signal could be broken down 
using EMD into various components with gradually 
changing amplitude and phase [18]. This property 
enables it to obtain intrinsic patterns at multiple scales 
without assuming that the signal is harmonic in nature, 
stationary, etc., as we do in wavelet Transform or 
Fourier analysis [22]. The iterative process followed in 
EMD for obtaining the IMFs, called sifting, and the 
algorithm used for it is as follows [22]: 
 Find the locations of all the extrema in the signal 

(local extrema), x´(t). 
 Obtain the lower envelope, emin(t), by interpolating 

between all the local minima. Similarly, obtain the 
upper envelope, emax(t), by interpolating between all 
the local maxima. 

Compute the local mean, m(t), from local minima, 
emin(t), and local maxima, emax(t) obtained. 
 Subtract ’local mean’ from ’local extrema’ to ob–

tain the ‘modulated oscillation’, d(t) = x´(t) – m(t) 
 If the modulated oscillation obtained satisfies the 

stopping criterion, then it is taken as the first IMF, 
IMFm = d(t), so that the new local extrema becomes 
x´(t) = x´(t) - IMFm, else set it as the new local ext-
rema x´(t) = d(t) and start reiterating from step 1. 
This process is repeated until all the IMFs are obta-
ined, and the residue becomes a monotonic function. 

The stopping criterion checks whether the modu–
lated oscillation satisfies the properties of the IMF, 
which is as follows [13]: 
 Either the extrema and the number of zero cros–

sings must be equal, or they can only differ by one. 
 The Mean value of the lower/upper envelope at any 

point should be zero. 
Thus, after the sifting process, IMFs are obtained 

from which instantaneous frequency can be defined. By 
using EMD, we can have inter-wave frequency modu–
lations to explain the waveform deformation due to non-
linear effects and intra-wave frequency modulation to 
explain the dispersive propagation of waves [13]. Also, 
the signal that is decomposed using EMD can be recon-
structed perfectly [22]. Amidst all these positives, mode 
mixing and aliasing are its drawbacks. Mode mixing 
occurs when either one oscillatory mode is present in 
multiple IMFs or more than one oscillatory mode is pre-
sent in one IMF [22]. Aliasing is the overlapping of 
IMF spectra formed due to the sub-Nyquist nature of 
extrema sampling [20]. 

 
2.2 Hilbert Spectrum 

 
The Hilbert Transform offers a special approach to 
defining the imaginary components, though there are 

multiple theoretical ways to do so. The results, thus, 
obtained will be an analytic function [13]. A signal can 
be simultaneously represented in the time and frequency 
domains by using Hilbert Spectrum [18]. This spectrum 
works well for pinpointing the locations in time and 
frequency space where the majority of the energy is 
concentrated. Hence, it can be used as an important tool 
in determining the occurrence of a knock and the 
cylinder at which the knock is occurring. As energy will 
be focused in the high-frequency regions during the 
knock occurrence, the resulting Hilbert Spectrum will 
give an intuitive vision of how much energy is localized 
in the high-frequency range and when it is occurring. 
Hence, it would be a great choice for non-stationary and 
non-linear data analysis. However, the simple Hilbert 
Transform of the denoised vibration signals contains the 
entire details about the frequency content of a signal, as 
it may contain more than one oscillatory mode at any 
instant [35]. Therefore, rather than finding the Hilbert 
Transform of a complete signal, it is applied to the first 
IMF obtained after performing EMD. As a result, using 
the Hilbert Spectrum, we could derive the localized data 
associated with the signal in the frequency domain. 
This, in turn, could identify the hidden local data 
structures that are embedded in the original signal [14]. 
In the current work, the Hilbert Spectrum of the first 
IMF obtained using EMD is plotted to study its 
effectiveness in determining the occurrence of knock. 

 
2.3 Short-Time Fourier Transform 

 
In contrast to the Fourier Transform, Short-time Fourier 
Transform (STFT) could provide time-localized infor–
mation about a signal whose frequency varies with time, 
while the former could only provide time-averaged 
information about the frequency [36]. Hence, STFT 
finds application in analyzing non-stationary signals. 
Moreover, it requires lower computational power. The 
vibration signal was mapped into a 2-D function of time 
and frequency by Al-Badour et al. [37] using STFT.In 
STFT, a non-stationary signal is separated into discrete 
time frames of identical length before being processed 
using Fourier transform [38]. Hence, any changes 
occurring in the signal at any instant could be captured 
in a time frame. However, EMD is more powerful in 
capturing all the physics of non-stationary non-linear 
signals than STFT. Therefore, in the current work, we 
used a combination of EMD and STFT to utilize the 
advantages of both. STFT is applied on the first IMF 
that is obtained after performing EMD of the vibration 
signal to establish the spectrogram. Thus, the advantage 
of EMD in extracting the features of the knock from the 
vibration signal can be utilized. At the same time, we 
will get a meaningful representation of the knock signal 
in a spectrogram, which is an intensity plot of STFT 
magnitude over time. 
 
2.4 Knock detection using In-cylinder pressure 

 
To quantify the intensity of knock, the maximum ampli-
tude of pressure oscillation (MAPO) method was used. 
If the MAPO surges above 0.5 bar, the corres–ponding 
cycle is treated as a knocking cycle. While if it is even 
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higher than 2 bar, it is treated as a strong knock [39]. 
MAPO is obtained using the following relation [39]. 

 ˆmax
 




 o

o
MAPO P   

Here P̂ is the filtered pressure that was obtained after 
passing the in-cylinder pressure through a band-pass 
filter between the frequencies 6 – 20 kHz. o is the 

crank angle corresponding to the initiation of combus-
tion and δ is the duration of combustion. 

The effectiveness of representing the knock signals 
using the Hilbert Spectrum and spectrogram is addressed in 
the current work and is explained in the following section. 
Also, the Hilbert Spectrum and spectrogram are compared 
along with the MAPO to study their effectiveness in 
classifying the knock based on its intensity. 
 
3. RESULTS AND DISCUSSION  
 
Figures 1 and 2 show the in-cylinder pressure fluctu–
ations with and without the occurrence of knock.[31-33]. 
EMD was used to decompose the engine block vibration 
signals that corresponded to the in-cylinder pressure 
signals shown in Figs. 1 and 2 [31-33]. Figures 3 and 4 
show the IMFs obtained on decomposing the vibration 
signals produced during the presence and absence of 
knock, respectively. From Fig. 3 and 4, it is clear that 
vibrations up to 100 g are produced during the SI engine 
knock, while the maximum amplitude is only 20 g 
during the absence of knock. Higher amplitudes in the 
IMF 1 obtained may be concluded as due to the occur-
rence of knock. The presence of knock could not be 
determined just by the fluctuation in the amplitudes of 
the vibration signals, as was the case with the variations 
in the in-cylinder pressure. There may be other factors 
also that cause amplitude fluctuations in the engine 
block vibrations. Therefore, for further analysis and co-
nfirmation, we performed investigations using the Hil-
bert Spectrum and spectrogram to visualize the energy 
distribution of the signal at various frequency levels. 

 

Figure 1: In-cylinder pressure during the occurrence of 
knock [33]. 

 
Figure 2: In-cylinder pressure during the absence of knock 
[33]. 

 
Figure 3: First five IMFs obtained after decomposing the 
engine block vibration signals using EMD. The signal was 
captured during the presence of a knock. 

 
Figure 4: First five IMFs obtained after decomposing the 
engine block vibration signals using EMD. The signal was 
captured during the non-knocking cycle. 

 
Figure 5: Hilbert Spectrum of the first IMF obtained after 
performing EMD on the engine block vibration signals 
produced during the absence of knock. 
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Figure 6: Hilbert Spectrum of the first IMF obtained after 
performing EMD on the engine block vibration signals 
produced during the presence of knock. 

MAPO is calculated to be 5.46 bar and 0.237 bar 
corresponding to the in-cylinder pressures shown in Fig. 
1 and 2, indicating the presence of a very strong knock 
and the absence of knock, respectively. 

Figures 5 – 8 show the Hilbert spectrum and 
spectrogram corresponding to the IMF1 obtained during 
the occurrence of knock and non-knock conditions. 
From Fig. 6, it is observed that the energy level of the 
vibration signal falls in the higher frequency ranges, 
above 20 kHz, during the occurrence of knock. While 
this was not visible in the Hilbert Spectrum obtained for 
the normal combustion process (Fig. 5). However, 
studies revealed that the vibrations are generated when a 
knock occurs in a range of frequencies between 8 to 22 
kHz [9]. From Fig. 5, we can see that the energies of 
vibration fall in frequencies above 10 kHz even during 
the normal combustion process. Therefore, it might be 
difficult to compare the signals for determining the 
occurrence of knock during the continuous working of 
an SI engine. To strengthen this, additional analysis of 
the signals containing data on engine block vibrations 
generated during combustion in all cylinders in an 
engine is required. 

Alike the Hilbert spectrum, STFT of the IMF 1 was 
done to obtain the spectrogram, as shown in Fig. 7 and 8. 
The findings demonstrate that, in contrast, to the normal 
combustion process, the energy level of the signal is 
high when a knock occurs. Also, we could see that there 
are higher energy levels in the frequency range above 
20 kHz during the occurrence of knock (Fig. 8). 
However, we can see that some lower energy level also 
falls in the high-frequency range during the normal 
combustion process (in the absence of knock) (Fig. 7). 
This is not visible in the Hilbert Spectrum of the 
vibration signals produced during non-knocking cycles. 
Similar to that of the Hilbert Spectrum, a spectrogram 
could also be used to identify the time as well as the 
cylinder in which the knock is occurring. Further 
investigations are required to find the effectiveness of 
the Hilbert Spectrum and spectrogram for determining 
the occurrence of knock, especially when the signal that 
is to be analyzed is captured from a multi-cylinder 
engine. This is because the effectiveness of the results 
may depend on the sample length of the signal and 

engine operating parameters like engine speed, the 
torque developed, etc. Also, the spectrogram or Hilbert 
Spectrum may change if the sample signal consists of a 
combination of vibrations produced during the presence 
and absence of knock. 

 
Figure 7: Spectrogram plotted using IMF 1 obtained after 
performing EMD on the vibration signals taken during the 
non-knocking cycle. 

 
Figure 8: Spectrogram plotted using IMF 1 obtained after 
performing EMD on the vibration signals taken during the 
presence of knock. 

Figure 9 shows the in-cylinder pressure, its 
corresponding engine block vibration signal, and IMFs 
obtained after decomposing the vibration signals using 
EMD. The signals are captured at 2800 rpm and spark at 
28° BTDC [33]. The signal captured is the combination 
of vibration signals generated during the combustion 
processes in each cylinder. From Fig. 9, we can see that, 
in some instances, the amplitude of vibrations goes 
above 20 g. This may be due to the occurrence of 
knocking, as seen in Fig. 3. We observe three points 
where the vibration signals fall above 20g, i.e., around 5 
ms, 16.5 ms, and 37.5 ms, respectively. This may be due 
to the occurrence of knock. However, further 
investigations are necessary to confirm the same. 
Similar to the previous analysis, Fig. 10 shows the in-
cylinder pressure captured at 4000 rpm and spark at 20° 
BTDC [33], its corresponding engine block vibration 
signal, and IMFs obtained after decomposing this 
vibration signal using EMD. From Fig. 10, we can see 
that, in some instances, the amplitude of vibrations goes 
above 20 g, i.e., around 12 ms and 27 ms, which may be 
due to the occurrence of knock, as discussed previously. 
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Figure 9: In-cylinder pressure [33] and first five IMFs 
obtained after decomposing the engine block vibration 
signals captured at 2800 rpm using EMD. 

 
Figure 10: In-cylinder pressure [33] and first five IMFs 
obtained after decomposing the engine block vibration 
signals captured at 4000 rpm using EMD. 

 

 
Figure 11: Hilbert spectrum of the IMF 1 obtained after 
performing EMD on the engine block vibration signals 
captured at 2800 rpm. 

Figure 11 and 12 shows the Hilbert spectrum corres–
ponding to the first IMFs obtained after decomposing 
the engine block vibration signals shown in Fig. 9 and 
10, respectively. In the Hilbert Spectrum obtained, the 
energy distribution is found to have frequencies above 8 
kHz corresponding to the combustion process in each 
cylinder. Furthermore, the intensity of energy in the 
higher frequency range is found to be high, around 
0.005 seconds and 0.0165 seconds (Fig. 11) and 0.011 
seconds and 0.026 seconds (Fig. 12), respectively, for 
both cases. On comparing the amplitude of the 
vibrations and their corresponding energy distribution in 
the Hilbert Spectrum, we could infer that the higher 
amplitude vibrations corresponding to 5 ms and 16.5 ms 
shown in Fig. 9 are due to the occurrence of knock. This 
is due to the higher energy vibration signals with higher 
frequencies produced during these instances. However, 
this was absent in the higher amplitude vibrations 
around 37.5 ms; hence it may not be due to the 
occurrence of knock. 

 
Figure 12: Hilbert spectrum of the IMF 1 obtained after 
performing EMD on the engine block vibration signals 
captured at 4000 rpm. 

Figure 13 and 14 shows the spectrogram of the first 
IMFs of the signals given in Fig. 9 and 10. From Fig. 13, 
it is clear that the vibration energy is maximum at 
0.004721 seconds. Also, there are energy levels in the 
higher frequency regions (above 15 kHz) during the 
same period. Hence, it could be concluded as a strong 
knock. The MAPO is corresponding to this in-cylinder 
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pressure is calculated as 4.94 bar, which is higher than 2 
bar, indicating a strong shock. We can also see another 
peak, smaller in amplitude than the former, at 0.01616 
seconds, with some vibration energy falling in the 
higher frequency range between 10 kHz - 20 kHz; this 
may be due to a weak knock. The MAPO corresponding 
to this is calculated to be 1.93 bar, indicating a weak 
knock since the value is less than 2 bar. For the 
remaining in-cylinder pressures obtained from cylinders 
4 and 2, MAPO is calculated to be 0.28 bar and 0.18 bar, 
respectively. Since the value is less than 0.5 bar, it is 
said to be a non-knocking cycle. This was also evident 
in the energy of vibrations produced corresponding to 
these regions (shown in Fig. 13), indicating a non-
knocking cycle. Similarly, from Fig. 14, we can observe 
that the energy level is maximum at 0.02589 seconds. 
We can also observe the energy levels in the higher 
frequency regions (above 15 kHz) during the same 
instance, indicating a strong knock. Another peak is 
observed at 0.01112 seconds with very low energy 
falling in the higher frequency range between 10 kHz - 
20 kHz. However, the vibration energies around 8 kHz 
are almost the same for both. Therefore, later can also 
be considered as an indication of a strong knock. MAPO 
is also calculated using the in-cylinder pressure signals 
obtained from the corresponding cylinders. They are 
found to be 2.15 bar and 2.12 bar corresponding to 
cylinders 3 and 2, respectively, indicating strong knock. 
This further underlines the inference obtained using the 
Spectrogram. From the in-cylinder pressure signals 
corresponding to cylinders 1 and 4, MAPO is calculated 
to be 0.46 bar and 0.43 bar, respectively, which is less 
than 0.5 bar, indicating a non-knocking cycle. 

 
Figure 13: Spectrogram plotted using the IMF 1 obtained 
after performing EMD on the engine block vibration signals 
captured at 2800 rpm. 

From Figures 11 - 14, it is evident that the maxi–
mum value of energy at the higher frequency region is 
not constant. Hence, proper experiments need to be 
conducted to find the energy level of the vibrations 
produced during the knocking cycles that occur in the 
entire engine operating range for fixing the threshold 
values. Information regarding the firing order and the 
engine speed are the only additional data required for 
identifying the cylinder in which knock is produced. We 
can also see that in both the Hilbert Spectrum and the 
spectrogram obtained, energy distribution of the 
vibration signals is also observed above 10 kHz for both 
the knock and non-knock conditions. However, the 

spectrogram could provide more clarity in the results 
than that could be conveyed by the Hilbert spectrum. 

 
Figure 14: Spectrogram plotted using the IMF 1 obtained 
after performing EMD on the engine block vibration signals 
captured at 4000 rpm. 

 

4. CONCLUSION 
 

The engine block vibration signals are decomposed 
using EMD. The first IMF obtained after decomposing 
the vibration signals produced while knock occurs 
evaluated with that obtained during the non-knocking 
cycle. The higher amplitude fluctuations in the signal 
could be used to locate the occurrence of knock in the 
time domain. However, this alone is not sufficient to 
confirm the occurrence of knock. Hilbert spectrum and 
spectrogram of the signal are obtained to demonstrate 
the amplitude fluctuations of the signal in a time-
frequency domain. The results show that, during the 
occurrence of knock, the amplitude of signals falls in 
the high-frequency region, i.e., above 10 kHz.  From the 
Hilbert spectrum and the spectrogram of the signal, it is 
clear that both could be used individually to determine 
the occurrence of knock and also to locate the cylinder 
at which it is occurring. Further studies reveal that the 
combination of EMD and STFT (spectrogram) provides 
more clarity than the Hilbert spectrum obtained after 
EMD alone. MAPO calculated using the in-cylinder 
pressures also produced the same inferences as that 
obtained using the Spectrogram. The current study also 
shows that the vibration signals captured from the 
engine block alone could be used to extract the features 
of knock. This reduces the cost incurred for the sensors 
and the computational power for using in-cylinder 
pressure to determine the knock. According to the 
observations from the current work, the criterion for 
detecting the presence of knock may be fixed as the first 
IMF that exceeds the amplitude of 20g and has fre–
quencies above 10 kHz taken together. Furthermore, the 
energy intensity of vibration signals falling in the higher 
frequency range above 10 kHz can be analyzed to 
categorize the knock as strong or weak.  

The methodology described in this work could be 
used to detect the presence of knock with minimum 
computation. Emphasis was given to identifying a 
mechanism to determine the knocking cycles so that it 
could be used in real-time.  However, all the features of 
knock could not be extracted using EMD due to the 
mode mixing. The findings, however, demonstrate that 
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spectrograms may accurately capture the vibration 
signals generated during SI Engine knock in their time-
frequency domain, even if some characteristics may 
have been lost while decomposing. 

The pattern of the spectrograms obtained for the 
several knocking and non-knocking cycles could be 
used to train the machine learning algorithm. Thus the 
current work can be extended further to determine the 
knocking cycles and to take appropriate control mea–
sures, such as the reduction in the in-cylinder tempe–
ratures using cooled Exhaust Gas Recirculation, etc., to 
prevent its further occurrence of knock in real-time.  
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NOMENCLATURE 

P̂  
Filtered pressure having frequencies 
between 6-20 kHz is the  

x´(t) Local extrema 
emin(t) Lower envelope 
emax(t) Upper envelope 
d(t) Modulated oscillation 

Greek symbols 

o  Ignition timing 

δ Duration of combustion 

ACRONYMS AND ABBREVIATIONS 

HUCR Highest Usable Compression Ratio 
EMD Empirical Mode Decomposition 
IMFs Intrinsic Mode Functions 
EEMD Ensemble Empirical Mode Decomposition 
STFT Short-Time Fourier Transform 
MAPO Maximum Amplitude of Pressure Oscillation 
BTDC Before Top Dead Centre 
 

 
ВИБРАЦИЈЕ БЛОКА МОТОРА - ИНДИКАТОР 

КУЦАЊА У СИ МОТОРУ 
 

В.К.А. Џозеф, Т. Гирешкумаран 
 

Фактори који утичу на почетак куцања имају 
значајан утицај на то колико добро СИ мотор ради. 
Дакле, ефикасност у одређивању почетка и 
контроли детонације је кључни фактор у побољ–
шању перформанси СИ мотора. Овај рад даје увид у 
улогу вибрација блока мотора у одређивању појаве 
детонације коришћењем емпиријске деком–позиције 
и краткорочне Фуријеове трансформације. Да би се 
разумело понашање вибрација у условима нормал–
ног сагоревања и куцања, сигнали вибрације блока 
мотора се анализирају и упоређују са флуктуацијама 
притиска у цилиндру.  
Карактеристике куцања се издвајају из вибрацијских 
сигнала блока мотора коришћењем емпиријског 
режима декомпозиције. Прва тако добијена 
функција унутрашњег мода (ИМФ) се користи за 
генерисање Хилбертовог спе–ктра за откривање 
појаве детонације. Слично, краткорочна Фуријеова 
трансформација се такође изводи на првом ИМФ-у 
за добијање спектрограма. Налази недвосмислено 
показују да се веће вари–јације фреквенције 
производе када дође до куцања. Ови резултати 
такође указују на то да се комби–нација емпиријског 
модуса декомпозиције и крат–котрајне Фуријеове 
трансформације може ефикасно користити за 
одређивање појаве детонације. 

 


