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Springback Optimization for CNC Tube
Bending Machine Based on an Artificial
Neural Networks (ANNs)

Predicting the springback angle has become the major production problem
among tube benders. Springback is where the tube on a mandrel-less
rotary draw bending tends to bounce back after being bent when the
clamps are released. Accurately predicting the springback angle is crucial
for effective tube bending. Machine learning (ML), a popular prediction
approach, was applied to functions such as prediction or function
approximation, pattern classification, clustering, and forecasting. To
achieve this, the springback angle values from 27 experiments were
collected and used as input into artificial neural networks (ANNs) in one
area of ML. This research was conducted to study the optimization of the
springback angle when bending ASTM A-210 Gr. Al seamless tube with an
outside diameter of 44.45 mm, using the 4 input factors Wall Thickness,
Bending Radius, Dwell Time, and Bending Angle. The results showed that
all factors significantly influence the springback angle in the tube bending
process, different prediction methods were analyzed by comparing the
results using different activation functions. The results showed that the
optimal neural network architecture is 4-98-1; these results were achieved
using the Sigmoid function, giving the lowest mean squared error (MSE) =
0.001892. The resulting coefficient of determination (R°) = 99.42%, the
ReLU function R* = 98.99%, the TanH function R’ = 98.53%, and the
Identity function, which was 79.53%. It was also found that the best
prediction of the springback angle using the best regression equation, with
R’ = 82.32%, was better than the prediction using the 65 neurons with the
Identity function R’ = 79.53%, a 2.79% difference in favor of the
regression equation.

Keywords: Springback optimization, CNC tube bending, ASTM A-210 Gr.

Al, Seamless steel tube, Neural networks.

1. INTRODUCTION

Tubing and pipes have been constructed historically
using materials such as bamboo, clay, lead, and other
materials appropriate for transporting water, gas, and
liquid waste [1]. Currently, pipes and tubes are const—
ructed from polyurethane or metal strips, sheets, or solid
rods. Bending, welding, and butt fitting of joints are
common processes for preparing metal tubes and pipes
for use. Using mandrel-less rotary draw bending
(MLRDB), machines is now a common practice. How—
ever, when the parts that are clamped for bending are
retracted, the tube recovers, and springback occurs,
causing the actual shapes to change from the designed
shape. This affects the machining accuracy as well as
the quality of the tube metal. Therefore, accurate
prediction of the springback angle is vital for controlling
and compensating for the springback. Many experts and
researchers have analyzed the springback factor and the
mechanisms of springback, and rules for predicting
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springback have been suggested [2]. However,
springback remains a significant problem in pipe
bending, especially in small production segments or
when the geometric and mechanical properties of the
raw materials are not constant [3]. The rotary draw tube
bender is illustrated in Figure 1. To know the
compensation value of the springback, it is necessary to
know the value of the springback angle after bending.
The factors that affect springback include tube diameter,
bending radius, bending angle, and yield stress of the
tube material [4].

Machine learning (ML) is a field of study based on
mathematical and statistical methods to create a
predictive model based on historical data. ML is a part
of Artificial Intelligence (AI), with neural networks
(NNs) being applied for ML purposes [6]. Artificial
neural networks (ANNSs) can perform various functions,
such as prediction or function approximation, pattern
classification, clustering, and forecasting [7].

Many researchers have researched the variables that
affect tube bending springback to find the optimum
values for machine setup that achieve a reduction in
machine setup time, reduce the number of experimental
materials, and reduce the problem of waste in the
experimental process. Oliveira, D. A. and Worswick, M.
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Figure 1. Rotary Draw Tube Bender [5]

J. [8] studied the effects of tube bending and
hydroforming processes on the appearance of the
aluminum alloy S-rail structure by using a full-function
tube bending machine and mandrel with a hydroforming
press of 1,000 tons, to determine the effect of bending
severity on the thickness and stress distribution within
the tube. They used Finite Element Method (FEM) to
simulate tube bending and hydroforming processes.
Daxin E and Yafei Liu [9] studied time-dependent
springback when bending 1Cr18Ni9Ti stainless steel
tubes by operating a tube bender and observing the
time-dependent springback. They found that the time-
dependent springback tended to increase with increasing
R/d and noted that the time-dependent spring-back of
stainless-steel tubes resulted from strain hardening. Jing
Liu et al. [10] used FEM modeling to study the pre-
diction effect of thick-walled titanium alloy tubes on
rotary draw bending (RDB) based on strength effects.
Tae-Wan Ku et al. [11] conducted a numerical verifi-
cation and experimental study on the U-bending process
for the heat transfer tube production of SUS304L-grade
stainless steel tubes. Song Feifei et al. [12] studied
springback prediction for a 9.525 mm Ti-3Al-2.5V
tube with 0.508 mm wall thickness. Jui Chang Lin and
Kingsun Lee [13] applied the Taguchi method and FEM
from the ABAQUS 6.12 program to study the variables
in the bending process for seamless tubes, using the
variables of tube wall thickness, tubing material, and
bending radius. Mehmet AlperSofuoglu et al. [14] used
numerical modeling to study springback behavior in
AA6082T6 tubes with three-point bending. They
compared their calculated results with their experi-
mental results to validate the model.

Xin Xue et al. [15] proposed a torsional springback
control strategy for aluminum alloy thin-walled tubes
under RDB bending using a mandrel. Two types of
process control, involving nose mandrel placement and
an axial compression aid, were used to assess control
performance. Linda Borchmann et al. [16] investigated
the influence of machine axis friction on wrinkling
during RDB bending by FEM simulations, considering
the friction of each machine axis. The results showed
the influence of the axial stiffness of the Bend Die,
Wiper Die, Pressure Die, and Mandrel on the inner bend
wrinkling. Yusen Li et al. [17] used FEM methods for
springback prediction of AL6061 tube in the free
bending process by building a FEM model of the
bending process and observing the influence of process
variables such as friction, gap, and shape of moving
mold parts on springback. BikramjitPodder et al. [18]
did forward and reverse modeling of flow forming of
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H30 grade annealed aluminum tube by conducting 136
experiments to identify the influence of feed speed ratio,
roller infeed, and axial stagger on the internal diameter,
springback, and ovality of the aluminum tubes. They
used three neural network approaches: Back propa-
gation neural network, limited memory BFGS Network,
and genetic neural system, comparing the performance
of the 3 neural networks by regression analysis. Huifang
Zhou et al. [2] applied the Taguchi method to study the
springback prediction effect of a 6060-T6 aluminum
tube by considering the cross-sectional effect of using a
mandrel on an RDB, by distinguishing variables that
affect springback, such as bending angle, bending
radius, tube wall thickness, friction between bending die
and tube, the gap between the bending die and the tube,
friction between the wiper die and the tube, the gap
between the pressure die and the tube, the friction
between the wiper die and the tube, the gap between the
wiper die and the tube, and boosting velocity. Huifang
Zhou et al. also used FEM simulation and ANOVA to
identify the variables affecting the springback and tube
cross-section and trained3 types of neural networks to
compare the mean absolute percentage error(MAPE). R
Vimal Sam Singh et al. [19] used an ANNspredictive
model for drilling glass-hemp-flax fiber composites.

The application of artificial intelligence to predict
the springback angle in tube bending is a commonly
used approach. The successful application of artificial
intelligence, machine learning, or deep learning to the
manufacturing process will be most beneficial to the
production process in the future.

2. PROBLEM DESCRIPTION

Many researchers have studied the relationship between
the various factors that affect the value of the
springback angle and have shown the need to prepare
allowances for bending in different degrees to achieve
the best return springback angle. The factors affecting
the return springback angle identified in past research
include tube diameter, tube material, tube wall thick-
ness, bending angle, bending radius, bending speed,
friction of the bending part and tube, clearance of
bending part and tube, relative boosting velocity, and
mandrel position. These input variables strongly influ-
ence springback and require further research to compute
correctly.

The current research was conducted to predict the
effect of the springback angle in bending ASTM A-210
Gr. Al low and medium-pressure steam tubes based on
an artificial neural network by collecting experimental
data. Based on the L27(3%) orthogonal array experi-
mental plan, the input factors were wall thickness,
bending radial, dwell time, and bending angle. The
output factor is the springback angle. The neural
network is used for predictive analysis of the springback
angle value. As indicated in references to prior research,
NN are well-accepted and widely used techniques, and
so were applied in the current research to predict the
springback angle. This is a novel approach to comparing
the different types of activation functions for predicting
the springback angle of the tube, calculating the opti-
mum adjustment of parameters for bending metal tubes,
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shortening the time to carry out the procedure, and cal-
culating the number of specimens required for adjusting
parameters on RDB. The results of this research are
most beneficial for works that include metal pipes with
pipe-bending requirements.

3. EXPERIMENTAL DESIGN

The study was divided into 2 parts: metal tube bending
experiments applying Artificial Neural Networks
(ANNs) models and subsequent comparison of the
performance of each model.

3.1 Experimental method

In bending, a CNC tube bending machine, Herber 76
CNC TB, shown in Figure 2, was used without using a
mandrel; the workpiece material is a steel tube with an
outer diameter of 44.45 mm, grade ASTM A-210 Gr.
Al. An orthogonal array type L27 experimental plan
(3%, with a total number of 27 bending experiments,
was performed. Input factors included wall thickness,
bending radius, dwell time, and bending angle, with the
output factor of the springback angle [21]. The level of
influence of each factor in the tube bending process is
illustrated in Table 1. The springback angle measu-
rement was examined by the Mitutoyo CMM model
Beyond Apex 707, which is illustrated in Figure 3. The
angle AB was calculated using equation (1)[20].

AO=6,-6, (1)

where A8 is the springback angle, 0, is the targeted
bending angle, and 8, is the actual angle.

Figure 2. Bending operation by the Herber 76 CNC TB.

Figure 4. shows the process of bending tubes and
sizes for use in angle measurements for the Herber 76
CNC TB, including general pipe bending machines that
have similar characteristics. The process consists of 3
steps, see Table 1:

Step 1: With the bending die set at normal degrees,
the tube is fed into a position ready for clamping, and
the tube is clamped against the bending die using a
pressure die and die clamp.

Step 2:The bending die and clamp die guide the tube
end into an arc with the targeted bending angle (6,)
while the pressure die guides the other tube along a
straight line to bring the tube to be bent to the desired
degree.
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Step 3: The clamp die is moved in a straight line to
unlock the tube workpiece. The tube will springback to
the actual angle (6,) as calculated by Equation (1).

Table 1. The influence factors on the springback and the
three levels.

Level
Input Factors 1 ) 3
[A] Wall thickness (mm) 4.57 5.59 6.10
[B] Bending radius (mm) 76.2 114.3 152.4
[C] Dwell time (s) 0 3 6

[D] Bending angle 60 90 120

Figure 3. Mitutoyo CMM model Beyond Apex 707.

3.2 Artificial neural networks (ANNs)

ANNs were applied in this research. The regression-
supervised learning group consisted of 2 groups that
utilized the sample dataset. First, a training group (train
set) using a training subset of the original dataset and a
test group (test set) also using a subset of the original
dataset. That dataset consisted of processing units called
neurons that are connected in a net architecture. This is
divided into one or more hidden layers, and each neuron
has a weight and a bias, both of which can be adjusted
appropriately. The data were analyzed using the
program Spyder 5.1.5, which was developed with
Python. The working process is as follows:

1. Prepare the training and testing data in the neural
network, utilizing the resultant data from the tube
bending experiments on the springback angle value.

2. Divide the data randomly into the training set and
the testing set. A total of 27 data elements were divided
into 2 groups of experimental data as the training set,
which included 21 data points for testing, 80% of the tube
bending experiments data, and 6 data points as the testing
dataset); 20% of the tube bending experiments data.

3. Design the neural network architecture and
calculate the number of neurons in each layer. This
research was performed with 1 hidden layer to find the
number of neurons and determine the appropriate
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architecture of the neural network, then compared with
4 activation functions.

Pressure Die  Clamp Die
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Figure 4. Tube bending process and dimensions for use in
angle measurements.

4. Randomly determine the optimum weights and
initial bias wusing the Limited-memory Broyden—
Fletcher—Goldfarb—Shanno algorithm (L-BFGS), which
is suitable for small datasets. This algorithm works
better than other methods, especially in saving
memory[18].

5. Set the value of the learning rate to 0.001 and the
number of iteration cycles set to 50000, and apply the
Sigmoid Function (Logistic Function), ReLU Function,
TanH Function, and Identity Function to compare these
variables.

6. Feed-forward learning by calculating the sum of
the weights from the values at the output in each layer,
then adjusting the weights and bias reverse by Back-
Propagation (BP) from the output layer. The weight
values submitted for each unit are calculated with the
sum function.

7. Calculate the actual result value obtained from the
activation function and the target result.

8. Calculate the MSE. Check the training stop
condition where the MSE is the lowest value, or the
specified iteration cycle is completed. If the condition is
not met, adjust the weights and bias until the lowest
MSE value is obtained.

9. When the lowest MSE value is obtained, the
weight and bias are recorded, and the resulting
mathematical equation model is saved to predict the
springback angle from other activation functions.

10. Complete the operation.
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This research studied a mathematical model using an
artificial neural network method. The 4 activation
functions, Sigmoid Function (Logistic Function), ReLU
Function, Tanh Function, and Identity Function, were
compared to identify which model gives better pre-
diction results. The criteria for measuring the perfor-
mance of the mathematical model were divided into 2
criteria as follows.

1. MSE is a measure of the accuracy of a model to
compare the data results obtained from the network and
the actual results obtained from the experimental results.
Equation (2) was used to determine how close the
predicted value is to the true value.

Z;(yi —f (% ))2

n

MSE = (@)

2. R? is a measure of the predicted results from the
various activation functions by comparing the data
results obtained from the different activation function
networks against the actual results obtained from dif-
ferent activation function networks. The experimental
results can be calculated from equation (3).

Z;(yi —f(xi))2
Z?zl(yi -5)

where y; is the actual result of the experiment, f{(x;) is the
predicted result value, ¥ is the mean of the actual results

R*=1-

3

from the experiment, and n is the total number of data
items.

4. RESULTS AND DISCUSSION

4.1 Results of the experiment

A total of 27 experimental results were obtained from
the experiments based on the L27(3%) orthogonal array
experimental scheme [21]. The springback angles for
bending the low and medium-pressure steam tubes of
the ASTM A-210 Gr. Al. are shown in Table 2 and
Figure 5.

Table 2. The L27 test matrix and measured springback
angles.

Run Factors SpringbackAngle (A6)
A|[B|C|D| ) ©

1-3 1 1 1 1 7.93 8.02 7.97
4-6 1 2 |2 2 8.27 8.39 8.41
7-9 1 3 3 3 7.58 7.45 7.61
10-12 2 1 2 |3 8.19 8.33 8.26
13-15 2 |2 3 1 7.15 7.19 7.16
16— 18 2 3 1 2 6.85 6.91 6.82
19-21 3 1 3 2 8.92 8.87 8.95
22 -24 3 2 1 3 7.14 7.08 7.21
25-27 3 3 2 1 6.49 6.39 6.31

The analysis of variance (ANOVA), at the signi—
ficance level of 0.05, showed that the main factors were
tube wall thickness, bending radius, dwell time, and
bending angle, at p< 0.05(see Figure 3). It was shown
that these four main factors significantly influenced the
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springback angle in the tube bending process. In
addition, the reliability of the data is R* = 82.32%, R?
(adj) = 79.11%, so R*> 80%. Therefore, the values ob—
tained are reliable for use in further research.

Table 3. ANOVA of the springback angle.

Source df SSA MSA F-Value | P-Value
A 1 1.2630 1.2630 9.91 0.005
B 1 9.4323 9.4323 74.02 0.000
C 1 1.3613 1.3613 10.68 0.004
D 1 0.9988 0.9988 7.84 0.010

Error 22 2.8034 0.1274
Total 26 15.8587

S =0.356966, R? = 82.32%, R* (adj) = 79.11%

Figure 5. 27 Bending experiments.

4.2 Design results of artificial neural networks
(ANNSs) architecture.

The springback data shown in Table 2, consisting of
initial variables (x) and response variables (y) from 27
runs, were randomly split for training and testing the
network using the frain_test split () function of the
Scikit-learn library by setting random_state = 5. The
result of this function divided the data into 4 groups:
x_train, X _test, y_train, and y test. The result of data
splitting from this function defines the architecture
design of the experimental neural network with 1 hidden
layer from the function MLPRegressor, define
hidden_layer sizes. Initialize weights and bias by
random  method, set solver L-BFGS, set
learning rate init=0.001 (Initial learning rate used), set
number of max_iter = 50000 (max iteration), activation
function performs comparison 4 functions include
Sigmoid Function (Logistic Function), ReLU Function,
TanH Function, and Identity Function.

The Spyder 5.1.5 software was used to analyze the
data. The function sklearn.neural network imports the
MLPRegressor model for the Multilayer Perceptron
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with Regression to find the MSE based on equation (1).
The stop condition is either when the MSE is lowest or
when the iteration cycle is completed. If the stop
condition is not met, the weights and biases are adjusted
until the lowest MSE value is obtained.

By basing the experimental design on the architec—
ture of the artificial neural network, using the Sigmoid
or Logistic activation function, the optimal architecture
of 4-98-1 was found, which consisted of 4 neurons in
the input layer, 98 neurons in the hidden layer and 1
neuron in the output layer, with the MSE = 0.001892.
The results of the experiment to determine the optimal
number of neurons using the Sigmoid activation func—
tion are shown in Figure 6.

Using the ReLU activation function, it was found
that the optimal architecture was 4-64-1, meaning that
the network consisted of 4 input layer neurons, with 64
neurons in the hidden layer and 1 neuron in the output
layer, with the MSE = 0.001758. The experiment's re—
sults to determine the optimal number of neurons using
the ReLU activation function are shown in Fig. 7.

Using the TanH activation function for the experi—
mental design of the architecture of the artificial neural
network, it was found that the optimal architecture was
4-87-1 meaning that the network consisted of 4 input
layer neurons, 87 neurons in the hidden layer, and 1
neuron in the output layer, with the MSE = 0.002035.
The results of the experiment to determine the optimal
number of neurons using the TanH activation function
are shown in Figure 8.

When the Identity activation function was used, the
optimal architecture calculated was 4-65-1, with 4 input
layer neurons, 65 neurons in the hidden layer, and 1
neuron in the output layer, with the MSE = 0.115551.
The results are shown in Figure 9.

These test results from using each of the 4 activation
functions, Sigmoid, ReLU, TanH, and Identity, showed
that the optimal neural network architecture is 4-98-1,
being comprised of 4 input layer neurons, 1 output layer
neuron, and 1 hidden layer. The number of neurons in
the hidden layer was tested with 1 to 100 neurons to
find the lowest MSE numbers of neurons. The number
of neurons of the Sigmoid activation function was 98
neurons and the lowest MSE value = 0.001892; the
ReLU activation function is 64 neurons with the lowest
MSE value = 0.001758; the TanH activation function is
87 neurons with the lowest MSE value = 0.002035, and
Identity activation function is 65 neurons with the
lowest MSE value = 0.115551, as shown in Table 4.

Table 4. Compares each type of activation function to its
optimal architecture and other values.

Actwapon Reaspnable Train/Test MSE
function architecture
Sigmoid 4-98-1 80/20 0.001892
ReLU 4-64-1 80/20 0.001758
TanH 4-87-1 80/20 0.002035
Identity 4-65-1 80/20 0.115551

Applying the 4 activation functions, 1 hidden layer
was identified, and the architecture of the artificial neural
network and the best mathematical model were expe—
rimentally identified. A regression equation to predict the
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springback angle by comparing the springback angle showing the prediction results of the springback angle
from the experiment and the prediction results from the are shown in Figure 10.
regression equation was used, and all. comparisons
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Figure 6. The optimum number of neurons from the Sigmoid activation function. (MSE =0.001892, Nodes = 98)
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Figure 7. The optimum number of neurons from the ReLU activation function. (MSE =0.001758, Nodes = 64)
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Figure 8. The optimum number of neurons from TanH activation function. (MSE =0.002035, Nodes = 87)
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Figure 9. The optimum number of neurons from the Identity activation function. (MSE =0.115551, Nodes = 65)

410 = VOL. 51, No 3, 2023 FME Transactions



9.50
9.00
8.50

800 | grctuncd yaopong

Spingback Angle
~
)
1

ooy
o
S

=
n
=]

---e--- Experimental Regression

6.00

L

\

.i
?nu‘-@- "‘ﬁ
¥l \ \
i g
W

,,

3
. o
i
=

o
Pr‘*au:.-_-g

Sigmoid RelU ---e--- TanH ---e--- Identity

12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Number of sample

Figure 10. Comparison of the springback angle prediction results from each type of activation function.

9.0
5 s R=99.42% e
= <n
&)
= 80 e
i e
DI-* 7.5 /
=
2710 e
g
b 65 /
w £
6.0
60 65 70 75 80 85 90
Experimental Springback Angle (A6)
9.0
- a5 R=9853% e
]
2 80 7~
o
& 75 //
T 70
5 /
E 6s

-

6.0
6.0 6.5 7.0 75 8.0 8.5 9.0

Experimental Springback Angle (A6)

9.0
o5 R=9899%

: -
| -

7.0 A

6.5 /

E

RelLU - Predicted

6.0
6.0 6.5 7.0 7.5 8.0 8.5 9.0

Experimental Springback Angle (A8)

851 Rr=79539
8.0
75

7.0

Identity - Predicted

6.5

60 65 70 75 80 85 90
Experimental Springback Angle (A0)

Figure 11.Scatterplot with regression line of the relationship between the target effect and the comparative prediction result
from using the activation function for each type of springback angle.

From Figure 11, it can be observed that the Sigmoid
activation function or Logistic function gave a prediction
value that was closest to the experimental springback
angle with R? = 99.42% based on equation (2). The
ReLU activation function gave an R* = 98.99%, and the
TanH activation function gave an R* = 98.53%. The
Identity function gave the lowest R* = 79.53%.

Another observation was that the prediction of the
springback angle using the regression equation gave a
higher R* than the prediction using the 65 neutral in 1
hidden layer by a neural network with the Identity
activation function, which had an R* = 79.53%, but the
prediction using the regression equation [21] had an R?
= 82.32%, which was 2.79% higher.

Comparisons of the given R’ suggest that the
appropriate 4-98-1 architecture should be chosen,
consisting of 4 neurons in the input layer, 98 neurons
in the hidden layer (1 hidden layer), 1 neuron in the
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output layer, and that mathematical model derived
from the Sigmoid activation function should be used,
with an R* = 99.42% for predicting the springback
angle. To obtain the most accurate prediction of the
springback angle for bending metal tubes, Figure 11
shows the relationship between the target result and the
comparative prediction result from each type of
activation function of the springback angle value.

1. DISCUSSION

1. A suitable neural network architecture of 4-98-1,
consisting of 4 neurons in the input layer, 98 neurons
in the hidden layer (1 hidden layer), 1 neuron in the
output layer, and a mathematical model derived from
the Sigmoid activation function was chosen with the
lowest MSE = 0.001892 when predicting the result, the
R* = 99.42%.
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2. The Sigmoid activation function or Logistic
function gives a prediction value that is close to the
experimental springback angle. The best activation
function gave R* = 99.42%, followed by the ReLU
activation function with R*> = 98.99%, and the third
was the TanH activation function, with R* = 98.53%.
The Identity activation function gave the lowest R* =
79.53%.

3. The best prediction of the springback angle using
the best regression equation, with R* = 82.32%, was
better than the prediction using the 65 neutral in 1
hidden layer by a neural network with the Identity
activation function, which gave R? =79.53%, a 2.79%
difference in favor of the regression equation.

4. The prediction of the springback angle using the
neural network was more accurate than the prediction
value calculated by the regression equations.
Consideration should also be given to selecting the
appropriate activation function.

5. When considering the structural design of a
neural network for springback angle prediction,
assigning only 1 hidden layer and experimentally
determining the number of neurons less than 100
neurons may not be the most accurate prediction value.
If deep learning is introduced with an increase in the
number of hidden layers or the number of neurons, it
may yield higher predictive accuracy.

6. A good understanding of computer programming
is now critical for artificial intelligence, machine
learning, and deep learning applications. Researchers
now need up-to-date knowledge of computer
programming and appropriate languages and software
packages.

2. CONCLUSION

This research was conducted to study the optimization
of the springback angle in bending ASTM A-210 Gr.
Al seamless tube with an outside diameter of 44.45
mm by using 4 input factors: Wall Thickness, Bending
Radius, Dwell Time, and Bending Angle. The results
showed that all factors significantly influence the
springback angle in the tube bending process, different
prediction methods, and comparing the results using
different activation functions. The results showed that
the optimal neural network architecture is 4-98-1,
consisting of an input layer of 4 neurons, a hidden
layer of 98 neurons, and an output layer of 1 neuron, as
calculated using the Sigmoid activation function which
gave the lowest MSE = 0.001892 and R? = 99.42%.
The ReLU activation function gave the next best R* =
98.99%, with the TanH activation function giving R* =
98.53%, and the lowest R? = 79.53% given by the
Identity activation function. It was also found that the
best prediction of the springback angle using the best
regression equation, with R* = 82.32%, was better than
the prediction using the 65 neurons in 1 hidden layer
by a neural network with the Identity activation
function, which gave R* =79.53%, a 2.79% difference
in favor of the regression equation.

This research is limited to 1 hidden layer within the
limits of 1-100 neurons. In future work, the thesis will
be tested to ensure that a better effect is achievable if
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the number of hidden layers is added to deep learning
or the number of neurons is greater than 100.
Additionally, other appropriate components should also
be selected, such as excitation function, number of
hidden layers, neuron limitation, etc.
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ABBREVIATIONS
Al Artificial Intelligence
ANNs Artificial Neural Networks
BP Back-Propagation
FEM Finite Element Method
MAPE Mean Absolute Percentage Error
ML Machine Learning
MLRDB  Mandrel-Less Rotary Draw Bending
MSE Mean Squared Error
NNs Neural Networks
RDB Rotary Draw Bending
NOMENCLATURE
fx) Predicted result value
R’ Coefficient of determination
y Mean of the actual results
Vi Actual result of the experiment

CIITPUHI'BEK OIITUMHU3AIIMJA 3A ITHI]
MAIIUHY 3A CABUJAIBE IEBA
3ACHOBAHY HA BEHITAYKUM

HEYPOHCKHUM MPEKAMA (AHH)

C. Konrny, K. ContunepmnyHs, C.B. Knenaposa

[IpenBubhame yria HazagoBama je IOCTAJIO IJIABHU
MIPOM3BOIHU Mpo0JIeM Koj caBujaya 1eBu. CripuHroek
j€ MecTo rjie IeB Ha POTALHOHOM caBujamy 0e3 TpHa
UMa TEHJEHIHM]y Jia OJICKOYM HAaKOH IITO je caBHjeHa
Kajga ce crere ociobone. [Ipenusno npensuhame yria
Ha3a/I0Baba je KJbYYHO 33 S(PUKACHO CaBHjarbe ICBH.
Mamuacko yueme (MJI), mnomymapan mpuctyn
npeasulamy, IpUMEHBEH je Ha (YHKIHje Kao IITO Cy
npeapuhame WM anpokcuMmandja  QyHKuuja,
knacudukanyja obpasama, Tpynucame U IpenBuhame.
Ja 6u ce 0BO IOCTHTIIO, BPEAHOCTH YIJIOBA OACKOKA M3
27 excnepuMeHaTa Cy MPHUKYIUbeHe W KopuiheHe Kao
yna3 y Bemrauke HeypoHcke mpexe (AHH) y jennoj
obsactu MJI. OBO HCTpaKMBame je COPOBEACHO paiu
Ipoy4yaBamba ONTHMH3AlMje YIJIa Ha3aJ0Bamba MpH
capujaby ACTM A-210 I'p. Al OemaBHa neB ca
CIOJbHUM TIpeuHuKkoM ox 44,45 MM, kopucrehu 4
ynasHa ¢axropa [leOspuna 3uma, Pamujyc caBujama,
Bpeme 3anpkaBama u Yrao caBujama. Pesynrtatu cy
MOKa3aJIM J1a CBM (haKTOpW 3HAYAjHO yTHUYy Ha Yrao
Ha3aJoBama Yy IpOLeECy CaBHjamba ILIEBH; PasJIMYUTe
MeTone mpenBuhama Cy aHaIM3UpaHe MopehememM
pe3yntara KopummhemeM — pasTUuuTHX  (YHKIOHja
akTuBanyje. Pesynratu cy mokasaid Ja je ONTUMalIHA
apxXHUTeKTypa HeypoHCKe Mpexe 4-98-1; oBu pesynraTu
Cy TOCTUTHYTH KopuihewmeMm curmoujaHe (yHkiuje,
najyhu Hajmamwy cpenmy kBanpaTtHy rpemky (MCE) =
0,001892. JloOujeHu KOCHUIMJEHT ICTEPMHHAIIH]C
(P2) = 99,42%, PeJIY dyukuuja P2 = 98,99%, TauX
¢ynkmja P2 = 98,53%, u ¢pynkunja Unenrurera, koja
je omma 79,53%. Takohe je mponaheHo ma je HajOOIBE
npeauhame yria moBparka y3 TmomMoh HajOosbe

413 = VOL. 51, No 3, 2023




perpecuone jenHauuHe, ca P2 = 82,32%, Ouno Gosbe ujoMm wuzpeHrutera P2 = 79,53%, wTo mnpencrasiba
on mpensuhama KopumhemeM 65 HeypoHa ca (QyHKII- pasnuky oz 2,79% y KOpHUCT jeqHa4YrHa perpecuje.
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