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Approach 
 
Additive manufacturing (AM), more specifically laser powder bed fusion 
(LPBF), has become increasingly important for the production of 
complex components. Despite recent improvements, issues with process 
parameter optimization, multi-material approaches, CAx chain, adaption 
for automated mass production, automated process planning, and quality 
control are still major concerns. So far, despite growing interest, the 
technology has not yet made the leap into everyday and large-scale use. 
The use of artificial intelligence offers opportunities to solve many of 
these problems and improve LPBF technology. In this paper, these topics 
are addressed to give the reader a holistic overview of the potential for 
optimization. The individual topics are not only explained and supported 
with example products from various industries but also evaluated in 
terms of cost-effectiveness and quality improvement. By evaluating the 
potentials, restrictions, and recommendations, a framework is created 
for further investigation and practical application of optimization 
approaches.  
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1. INTRODUCTION 

 
Laser powder bed fusion (LPBF) [1] is a form of 
additive manufacturing (AM) [2, 3] that can create 
detailed and unique structural components. The 
development of artificial intelligence (AI), machine 
learning (ML), and deep learning (DL) has spurred 
advancements in a number of industries, including AM 
[4]. The increasing amount of research, as well as 
practical applications, show that AI, more specifically 
ML and DL, has made substantial improvements over 
the years. The industry's continued trend toward 
digitalization has helped to propel this expansion even 
more [5]. Enterprises acknowledge the immense poten–
tial inherent in the acquisition of knowledge from 
historical data, particularly considering the burgeoning 
quantities of information produced as a consequence of 
the pervasive process of digitalization. 

The integration of AI into AM processes has led to 
significant improvements, from development to pro–
duction planning and manufacturing to quality control. 
A prominent application is the utilization of topology 
optimization. This technique employs ML algorithms to 
refine a component's geometry according to its func–
tional demands and limitations, ultimately reducing 
material consumption and weight but preserving perfor–
mance [6]. AI has also been used to improve the 
reproducibility and reliability of AM processes through 

process monitoring and control [7]. For instance, con–
volutional neural networks (CNN) have been used for 
in-situ monitoring of the LPBF process, enabling the 
detection and classification of defects in real time.  

Automatization has the potential to improve the 
productivity, quality, and consistency of the manu-
facturing process and minimize human error. Progress is 
already being made in the development and application 
of automatization technologies in LPBF, and future 
research and development is expected to lead to further 
improvements. To support the design and preparation 
process for LPBF, automatization can already be integ–
rated into the CAD software. Automatic generation of 
layer data can save time and resources already at the 
beginning of the CAx chain [1]. The automatization 
approach is continued in the actual manufacturing 
process. This approach holds great potential, which is 
currently rarely exploited. In terms of the number of 
research projects, there is a great need to catch up here.  

Based on the above, this paper covers topics such as 
AI-based process parameter optimization, multi-mate-
rial approaches, automatization, and potential LPBF use 
cases. Overall, it highlights the benefits of combining 
LPBF, AI, and automatization for improved manufac-
turing outcomes in multiple aspects, including design 
and CAM optimization, process monitoring, and quality 
control. 

 
2. APPROACH TO AI INTEGRATION AND MULTI-

MATERIAL USE IN LPBF 
 
The application of AI can significantly improve the 
quality of components by optimizing process parameters 
and predicting material properties, in-situ quality con–
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trol, and AI-assisted adaptive process control. This 
section discusses these aspects and their potential 
impact on LPBF technology as well as the use of multi-
materials in LPBF. 
 
2.1 AI-supported optimization techniques 
 
Process parameters significantly affect the quality of 
AM components, but also the stability of dimensions 
and shape in different environments after a longer time 
of components application [8]. Among many parame–
ters, in particular, laser power, scan speed, and layer 
thickness must all be precisely controlled to achieve the 
required quality [9]. To overcome this difficulty, AI-
supported optimization techniques have been created, 
improving the effectiveness of the procedure.  

Another optimization method in LPBF is the use of 
AI for material property prediction and in-situ quality 
control. By incorporating AI models, researchers can 
predict material properties, such as density, tensile 
strength, and fatigue life, based on process parameters 
and material compositions, such as minor deviations of 
the starting material composition [10, 11].  

Lastly, AI-supported adaptive process control has 
emerged as a promising avenue for real-time adjust–
ments to the LPBF process. By utilizing AI algorithms 
to analyze sensor data during the printing process, 
researchers can develop adaptive control strategies that 
modify process parameters on the fly in response to 
process variations or detected defects [12]. This appro–
ach can lead to improved manufacturing outcomes and 
more effective processes. 

In the following, these three AI-based optimization 
techniques are described in more detail. 

Traditional optimization methods often rely on trial 
and error and extensive experimentation, which can be 
time-consuming, expensive, and highly dependent on 
the operator's expertise [13, 14]. To overcome these 
challenges, the application of AI, specifically ML, and 
DL techniques, has emerged as a promising approach 
for process parameter optimization in LPBF [15]. One 
such technique involves the implementation of surrogate 
models based on ML algorithms, which can provide a 
data-driven approach to optimize process parameters. 
These surrogate models can be trained on experimental 
data [16] or FEM-simulation results to approximate the 
relationship between process parameters and part 
quality. The smoothed particle hydrodynamics (SPH) 
method, known for its mesh-free numerical approach, 
exhibits notable capabilities in accurately replicating 
intricate geometries and the associated physics involved 
in the liquefaction, flow, and solidification phenomena 
of metallic materials [17]. In the study [18], 3D nume–
rical modeling of selective laser melting (SLM) was 
performed using the discrete element method (DEM) 
and the finite volume method (FVM). The Marangoni 
effect and recoil pressure were incorporated into the 
model. The mechanism for the formation of defects 
such as balling, pores, and distortions in the melt 
trajectories was analyzed. 

MeltpoolNet, a comprehensive framework for 
evaluating ML in the characterization of melt pools in 
additive metal manufacturing, was presented in [19]. An 

extensive dataset of experiments with different alloys 
and AM processes was collected to develop ML models 
for predicting melt pool geometry and defects. Various 
ML algorithms, such as random forest, gradient boos–
ting trees, support vector machines, neural networks, 
etc., were used.  

Additionally, AI-driven multi-objective optimization 
techniques, such as the non-dominated sorting genetic 
algorithm and particle swarm optimization, have been 
employed to optimize multiple conflicting objectives 
simultaneously, such as minimizing surface roughness 
and construction time in order to maximize mechanical 
properties [20, 21]. This study focuses on the appli–
cation of multi-objective optimization and multi-criteria 
decision-making using evolutionary approaches. Evolu–
tionary algorithms such as the non-dominated sorting 
genetic algorithm (NSGA-II) and multi-objective parti–
cle swarm optimizer (MOPSO) were applied. The ana–
lyzed solutions also reveal general trends for optimal 
positions as a function of geometric features.  

All these algorithms can be integrated with surrogate 
models to provide an efficient and robust optimization 
framework for LPBF process parameter optimization. 

Predicting material properties is a crucial aspect of 
LPBF technology as it allows for the optimization of 
processing conditions and the development of new 
materials [16]. 

One such approach involves using ML models to 
predict the optimal process parameters based on histo–
rical data and simulations [22]. The method is based on 
predicting the temperature distribution of a component 
using a graph-theoretical computational heat model. By 
analyzing the model-based temperature trends, potential 
heat buildup in the layers was identified and corrected 
by adjusting the process parameters, which were opti–
mized by iterative FEM simulations.  

It can be shown that such AI models can effectively 
capture the complex relationships between process 
parameters and part quality, enabling more efficient 
parameter optimization and reducing defects [23, 24]. 

As manufactured, LPBF parts exhibit inhomoge–
neous and anisotropic microstructure and poor surface 
quality. Post-treatments such as heat treatment shot 
peening and (electrochemical) polishing can help to 
improve these imperfections. The results from [25] 
show that post-processing methods have a significant 
effect on the residual surface stresses of AM stainless 
steel. In [26], the effects of post-treatments, both indi–
vidually and in combination, on the microstructure, 
surface and mechanical properties, and fatigue behavior 
of AlSi10Mg specimens were investigated using DL 
networks. Roughness, surface modification factor, hard–
ness, residual stresses, and void content were considered 
as input variables, and fatigue life as output variables. 
The sensitivity analyses were performed, showing the 
importance of surface-related properties and the remar–
kable effect of surface post-treatments in improving 
fatigue performance.  

Material property prediction models can be augmen–
ted with process planning techniques to enable a more 
comprehensive approach to LPBF process optimization 
[27]. 
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It's common knowledge that quality control plays a 
major role in most areas of a manufacturing company. 
Therefore, in-situ quality control is essential for detec–
ting and mitigating defects during the LPBF process, 
ensuring the reliability and performance of the manuf–
actured components [28, 29]. 

AI-driven in-situ quality control techniques can be 
employed to analyze sensor data and detect anomalies, 
such as porosity, residual stress, or surface roughness, in 
real-time [30, 31]. With this approach, which can 
already be integrated by machine manufacturers, small 
and medium-sized companies can already benefit from a 
significant improvement in quality.  

The differentiation of these in-situ processes is made 
according to the detection sensor technology of defects.  

Thermographic imaging is used in [32] to train a 
CNN architecture with depthwise-separable convolu–
tions [33, 34], resulting in automatic defect detection 
with high accuracy during metal printing. The resear–
chers preprocessed the thermographic images by 
resizing them to 64x64 pixels, converting them to 
grayscale, and normalizing their values. They manually 
labeled regions of interest (ROIs) around defects, which 
were areas with high-temperature gradients. The trained 
depthwise-separable CNN achieved an accuracy of 
90,3 % on the test set for defect detection during the 
LPBF process.  

Research paper [35] presents the utilization of a 
long-wave infrared (LWIR) camera for in-situ measu–
rement of powder layer thickness during AM processes. 
Another possible approach to infrared thermography is 
shown in [36]. The findings in this paper establish that 
deviations in inter-layer cooling time (ILCT) exert a 
substantial influence on the quality attributes, manife–
sting as variations in porosity, microstructure, and mec–
hanical properties. An older approach from 2016 faci–
litates close-range infrared camera observations [37].  

Optical sensors such as complementary metal oxide 
semiconductor (CMOS), optical thermography, and 
optical topography are showing good results for in-situ 
observations, too. A good overview is shown in the 
review paper [38]. 

A well-known approach with a CMOS camera in 
this field is presented in [39]. The cameras were sync–
hronized with the machine control system to ensure 
accurate data acquisition during the layer exposure and 
powder recoating process. Subsequently, the obtained 
data were processed and analyzed to monitor and detect 
defects. The concept of time over threshold (TOT) was 
effective in identifying lack-of-fusion void clusters. 
Another research explores the utilization of spatter-
related information for rapid detection of defects and 
analysis of process stability with a high-speed CMOS 
camera outside the chamfer [40].  

While the above-mentioned publications are mainly 
concerned with the detection of defects, the authors of 
[41] deal with the evaluation of geometry. They focused 
on using high-resolution imaging and image 
segmentation to detect errors and defects in 3D-printed 
layers. Various segmentation methods were compared, 
and the study examined the factors affecting 
measurement accuracy, such as repeatability, part-to-
part variability, and build-to-build variability. The 

results demonstrated that active contours segmentation 
methods could achieve accurate contour identification in 
layerwise images but highlighted the importance of 
considering sources of variability.  

As can be seen from the previous sections, there are 
many approaches using different sensors to monitor the 
process. An overview of these can be found in [41]. 

Conventional process control has been used since 
the beginning of LPBF manufacturing. These appro–
aches have already been sufficiently highlighted in the 
review [23] in 2014 and improved in numerous further 
studies. AI-assisted adaptive process control, on the 
other hand, is a promising approach for real-time 
adjustments to the LPBF process, enabling improved 
manufacturing outcomes and more effective processes. 
Such closed-loop process control systems play a vital 
role in ensuring process stability and robustness [42]. 
The combination of AI-powered in-situ quality control 
and adaptive process control techniques can enhance the 
efficacy and efficiency of LPBF processes by allowing 
the system to modify process parameters when it detects 
flaws automatically. This can substantially decrease the 
occurrence of defective components and lead to a 
general improvement in quality [43]. AI-driven closed-
loop control systems can leverage ML models to predict 
and control process variations in real time [44–46]. 
Such models are capable of capturing the intricate, non-
linear connections between process parameters, sensor 
information, and part quality, facilitating the implemen–
tation of more precise and adaptable control strategies 
[22]. By incorporating closed-loop control systems 
alongside in-situ quality control and adaptive process 
management, LPBF processes can become more 
efficient and resilient, ultimately leading to enhan–
cements in component and material quality [47]. 

 The study in [48] establishes the efficacy of ML 
models in detecting defects using in-process images. A 
CNN model was employed to predict porosity. The 
experiments reveal that X-ray computed tomography-
assisted labeling provides more reliable and accurate 
results, achieving a 97 % accuracy in distinguishing 
porosity from non-porosity images. The findings contri–
bute towards reducing post-processing costs and ena–
bling real-time adjustments to printing parameters. By 
analyzing sensor data during the printing process, 
researchers can develop adaptive control strategies that 
modify process parameters on the fly in response to 
process variations or detected defects [49]. Reinfor–
cement learning (RL) algorithms, such as Q-learning, 
Deep Q-Networks, and deep reinforcement learning, 
have been successfully employed in developing 
adaptive process control strategies for LPBF [50, 51]. 

Research [52] presents a layerwise imaging appro–
ach for monitoring. The method entails capturing and 
analyzing images of fused and pre-placed powder layers 
under oblique illuminations to detect possible defects 
and enhance the quality of the produced parts. With 
advancements in sensing techniques, real-time control 
for adjusting parameters and addressing process anoma–
lies reduce defects in the deposited builds.  

A possible way of the above-mentioned techniques 
is used in [53]. Supervised ML is applied to detect 
defects using high-resolution imaging. Video monito–
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ring with a high-frame-rate camera allows for cost-
effective detection of changes in the melt pool and its 
surroundings. Statistical process control (SPC) charts 
were used to analyze the processed video volumes, 
revealing under-melting, over-melting, material spatter, 
and their correlation to defects. 

Another emerging approach involves the use of RL 
for adaptive process parameter optimization in LPBF 
[51]. RL algorithms can learn optimal control policies 
by interacting with the environment, exploring the para–
meter space, and adapting to variations in the process 
conditions.  

 A novel Deep Reinforcement Learning (DRL) fra–
mework was developed in [51] aimed at optimizing the 
LPBF process to mitigate defects in fabricated 
components. The framework leverages computationally 
efficient simulations of temperature distribution and 
employs neural networks trained using the Proximal 
Policy Optimization algorithm to regulate process para–
meters. The resultant control policies demonstrate 
remarkable efficacy in defect reduction while ensuring a 
consistent melt pool. Another RL approach introduces a 
new methodology that leverages high dynamic range 
optical imaging and CNNs to predict surface roughness 
[54]. The methodology incorporates spatially resolved 
and layerwise feedback signals, effectively addressing 
the shortcomings of prior methods. The predicted roug–
hness maps act as feedback for reinforcement learning 
techniques, enabling the determination of optimal 
process parameters across varying conditions.  

To further minimize latency and enable a new in-situ 
process, it requires new hardware. Previous research has 
focused on sensor data acquisition and real-time control 
strategies based on conventional methods that can only 
handle much-reduced metamodels. The reason for this 
state of research is the previous use of CPU-based 
computation units. Analogously, field-programmable 
gate arrays (FPGA) are used in control engineering for 
dynamic applications, but they are only suitable for AI-
based metamodels to a limited extent.    

In contrast, the computation can be performed using a 
neural processor unit (NPU) specifically designed for 
computing artificial intelligence algorithms (e. g. Akida 
BrainChip). The advantage of using such a processor unit 
is the fast response time of the control loop, which makes 
it possible to influence the dynamic process at an early 
stage specifically. A possible detection can be done by an 
event camera, which offers various advantages for the 

process analysis. This camera system works on the prin–
ciple of the human eye instead of a shutter system (Figure 
1). A charged-coupled device (CCD) camera captures a 
complete image after a fixed defined time, which 
increases the needed computing power. Thus, changes in 
the event camera are recorded separately for each pixel 
and only sent to the evaluation system when a change of 
state occurs. As a result of the change, heavily over–
exposed and dark areas can be displayed particularly well 
- and at a speed similar to that of a high-speed camera. In 
summary, this methodology offers a state of the art that 
has not been explored before.  

Currently, there are no publications using an event 
camera or an NPU-based evaluation unit in the field of 
LPBF manufacturing; however, this would be in promi–
sing improvement proposal. 
 
2.2 Multi-material approaches 
 
The use of multi-materials in LPBF opens up new 
possibilities. Unlike single-material modeling, different 
physical properties are assigned to different material 
particles on the same powder layer. This requires a 
precise assignment of parameters for each material [55]. 
These systems typically use a combination of multiple 
powder feed options, such as hoppers and traditional 
powder application [56]. There are three main strategies 
for printing multi-material structures with LPBF [57]:  

1. The process is performed directly on a substrate, 
and the multi-component part consists of the 
substrate and printed layers [58, 59] 

2. The multi-material part is printed by depositing 
different materials layer by layer [60] 

3. Multiple materials are mixed and deposited 
together [61–65]. 

The study of the authors in [58] presents a 
comprehensive assessment of additively-manufactured 
maraging tool steels, encompassing the entire process 
from powder production to hybrid builds. It investigates 
the effect of powder recycling on powder charac–
teristics, highlighting the similarities in size distribution 
and chemical homogeneity between virgin and re-used 
powder while noting the lack of flow capability in the 
reused powder. Hybrid builds demonstrate a cohesive 
interface, exhibiting no signs of de-bonding during 
tensile deformation. Additionally, a heat treatment 
approach is proposed for the maraging steel powder 
/H13 tool steel substrate. 
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Figure 1. Working principle of an in-situ parameter adjustment based on metamodels and an event camera 
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Figure 2. Number of publications with the prompts in the legend over the last five years, according to Google Scholar 

The study [60] investigates the interfacial properties 
of dissimilar materials, namely 316L stainless steel and 
C52400 copper alloy. The interfaces exhibit robust 
metallurgical bonding, characterized by the inter–
diffusion of elements and the presence of fine grains. 
Both interfaces feature isolated alloy islands with 
diverse shapes and morphologies. Cracking predomi–
nantly initiates at the interface and propagates towards 
the stainless steel side, although no material separation 
occurs in the contact region. The thickness of the inter–
face depends on the printing sequence, and a small 
amount of CuNi alloy is formed at the interface. These 
findings enhance the comprehension of interfacial pro–
perties in dissimilar materials manufactured via SLM.  

The authors of [65] conducted three experiments 
using different steel powders and an Aurora Labs S-
Titanium Pro LPBF system. They achieved in-situ mixing 
and adaptive process control at different levels, as evi–
denced by elemental maps, EDS line scans, microhar–
dness, and microstructure analyses. The results show the 
successful implementation of multi-material processing 
with controlled spatial deployment of materials. 

A completely new approach is taken by the authors 
in  [66]. They successfully demonstrated the utilization 
of LPBF for the fabrication of multi-material parts by 
integrating metal foil within the LPBF process. The 
issue of powder contamination is effectively mitigated. 
An optimal laser power range of 120-140 W is iden–
tified, striking a balance between attachment stability 
and minimizing thermal distortion. The contour cutting 
quality of the applied foil is contingent upon foil 
leveling and laser process parameters, with laser poli–
shing proving effective in reducing burr heights. Achi–
eving metallurgical bonding between IN625 foil and 
316L substrate validates the feasibility of multi-material 
applications with customizable properties by applying 
individual foils. 

 
3. APPROACH TO AUTOMATIZATION 

INTEGRATION IN LPBF 
 
As mentioned earlier, LPBF has received a lot of 

attention recently. The number of citations in the 
various categories indicates the growing importance of 
this process in industry and research, see Figure 2. 
Figure 2 also shows that the number of researches dea–
ling with the integration of automatization in LPBF is 
increasing. This increased interest is not surprising 
because, as can be seen in Figure 3, AM has high eco–
nomic potential for the industry. However, complexity 

is also at the core of this figure because the more 
complex the components, the more economical AM 
becomes.  

Complexity
Co

st
s p

er
 u

ni
t

Part costs over complexity

Additive 
manufacturing

Conventional
manufacturing

 
Figure 3. Advantages of AM in terms of cost and design 

 Sub-areas of automatization discussed in this section 
are the automatization of processes from engineering to 
production planning and manufacturing to quality 
assurance. 
 
3.1 Optimizing CAx process-chain 
 
Digital twins have gained attention for bridging the 
physical and digital worlds by collecting and analyzing 
data [67]. In AM, digital twins can improve the 3D 
printing of objects with desired mechanical properties. 
However, their development faces challenges, including 
the need for a better understanding of the concept, 
methods, and system integration. 

Digital twins fulfill process requirements, including 
FE simulation, process parameter optimization, and 
sustainability evaluations [68]. In the context of additive 
LPBF manufacturing, the focus is on the CAx chain. 
The CAD to CAM system transition in LPBF introduces 
media discontinuity, especially in CAM programming. 
Neutral formats used for CAD (Step, Iges, ...) import 
lack the transfer of attributes, model-based definition 
(MBD), and process manufacturing information (PMIs), 
requiring manual processes and preventing the appli–
cation of pre-calculated metamodels and feedback on 
CAD file formats. Consequently, a poor digital twin 
(automatic bidirectional data flow from the digital to the 
physical world) becomes a digital model (manual bidi–
rectional data flow from the digital to the physical 
world) [69], hindering automatic data flow to the 
physical model. 

Modern CAD/CAM systems like Siemens NX avoid 
media breaks and the use of neutral file formats and 
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offer add-ons for LPBF functions. These systems enable 
direct implementation of adjustments in the CAD file 
based on deformation, such as modeling oval holes that 
become circular after printing. Linking these models to 
the product lifecycle management system (PLM) is 
necessary, but machine-related CAM systems often lack 
complete connectivity. The absence of this link prevents 
the availability of manufacturing information to the 
ERP system for production control. Post-processors 
convert CAx system models into machine-readable code 
for manufacturing. Siemens NX stands out as it offers 
machine-specific post-processors directly, eliminating 
the need for third-party suppliers. Machine manufa–
cturers typically do not provide post-processors due to 
offering CAM software. 

In summary, it can be concluded that a consistent 
data flow between engineering and ERP can only be 
achieved if media breaks are avoided.  
 
3.2 Adaption for automated processes 

 
Automatization plays a vital role in enhancing the effi–
ciency, consistency, and repeatability of LPBF pro–
cesses. The optimization and automatization heavily 
rely on data-driven decision-making, which allows 
valuable information and insights to be extracted from 
the vast amounts of generated data [70]. AI-powered 
techniques such as principal component analysis and 
cluster analysis can be employed to identify patterns, 
trends, and correlations within the data, enabling the 
development of informed process optimization strate–
gies [71, 72]. AI-driven decision support systems can 
also be integrated with automated process planning and 
closed-loop control systems to provide real-time feed–
back and suggestions for process modifications, further 
enhancing efficiency and quality [73, 74]. 

Automatization and increased efficiency in AM 
require a holistic approach. Furthermore, the automa–
tization of component feeding using robots and other 
specialized solutions plays a key role. Article [75] 
presents a methodology for designing handling systems 
that automate the handling of LPBF components, inclu–
ding the selection of gripping and clamping devices, 
robots, and peripheral systems. It provides insights into 
the potential benefits of automated gripping and clam–
ping in AM, as well as the integration of post-
processing into the overall process chain. 

Another aspect explored in the research paper [76] is 
the application of multiple lasers in AM machines to 
increase productivity. While multi-laser machines can 
significantly reduce processing time, their use on a 
single workpiece can be complex and impact material 

properties. The paper investigates the influence of 
multi-laser scan strategies on the creep characteristics of 
LPBF alloy 718. The findings demonstrate that emplo–
ying multi-laser scan strategies does not adversely affect 
creep behavior and enables a reduction in build time 
while maintaining mechanical integrity. These results 
support the application of LPBF for complex geometries 
and improved operational efficacy. 

Figure 4 provides a summary of the most important 
improvements, considering both cost-effectiveness and 
quality improvement. The figure illustrates a trade-off 
between these two aspects, with quality being crucial in 
the long run to establish brands [77]. The highest po–
tential for economic efficiency lies in multi-laser mac–
hines, although using multiple lasers on one component 
can lead to distortion issues. In terms of quality, in-situ 
quality measures, such as automatic parameter adjust–
ment, show significant potential and cost-effectiveness. 
Combining these measures with a multi-laser appli–
cation can further increase economic potential by 
reducing scrap and associated costs. 

The research recommendation aims to stimulate new 
areas in the automatization of LPBF processes. Multi-
laser applications and automated part handling is 
highlighted as offering high economic potential, as AM 
operations are time-intensive and do not require 
constant personnel supervision. The use of personnel is 
only necessary for unloading finished parts, removing 
remaining powder, and sawing the printed parts from 
the base plate. An automatic part handling system, 
combined with the zero-point clamping system, can 
automate these tasks fully. However, the automatic 
removal of powder residues remains a challenge. Inter–
changeable work areas for machines [78], allowing 
parallel cleaning and unloading with production (like 
matrix production [79, 80]), can be a potential solution, 
like those used at the BMW group [81, 82]. Due to the 
short operating times of the robot, a multi-machine 
configuration with a robot should be considered. 
Whether a closed industrial robot with large payloads 
and an automated guided vehicle (AGV) is used or a 
collaborative robot on an AGV depends largely on the 
base plate and, thus, the size of the component. 
 
3.3 Automated process planning 
 
Automated process planning is an essential aspect of 
LPBF, as it allows for the generation of optimized build 
plans and process parameters based on the geometry and 
material requirements of the components [83, 84]. 

Multi-Laser Part HandlingIn situ quality Adaptive controlROI

Quality

Zero clampingAutomatic sawing Automatic measuring Automatic postprocess

Multi-Laser In situ quality Adaptive control Part Handling* Zero clampingAutomatic sawing Automatic measuring Automatic postprocess

CAx-chain

CAx-chain

 
Figure 4. Quantitative return on invest (ROI) and quality increase of different automatization aspects 
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AI-driven algorithms, such as genetic algorithms and 
simulated annealing, have been employed to optimize 
the build orientation, support structures, and scan 
strategies in LPBF [85, 86]. By integrating these 
algorithms with surrogate models for process parameter 
optimization, researchers can develop comprehensive, 
automated process planning frameworks that minimize 
build time, material usage, and defects while maxi–
mizing component quality [87, 88]. 

The scientific article [89] proposes the utilization of 
ontology as a means to enhance knowledge repre–
sentation in the domain of process planning for LPBF. 
The ontology captures relevant concepts, relationships, 
and constraints, facilitating knowledge sharing and 
decision-making. A schematic diagram illustrates the 
ontology's development process, highlighting its poten–
tial benefits in improving process planning.  

A major challenge in planning is the auto ID process 
of components in manufacturing. The publication  [90] 
deals with the use of combined auto-ID systems in 
additive process chains. It shows that a lack of auto–
matization and digitalization limits the economic suc–
cess of additive production. The systematic selection 
and combination of suitable systems can provide a ne–
cessary database for effective production control. Here, 
ultrawideband (UWB) for tracking and indoor loca–
lization of the batch is used, while data matrix codes 
(DMC’s) are printed directly on the parts and used for 
identification of every single part. The procedures 
mentioned refer to production control, which is essen–
tially a part of the supply chain. Consequently, however, 
the consideration of (factory) standards and attributes in 
the CAD/CAM chain is missing in this context of LPBF 
process planning.  

In the study [91], modified data in AM is introduced 
using the Standard for the Exchange of product model 
data Numerical Control (STEP-NC). The existing 

STEP-NC lacks the necessary definitions for process 
parameters and scan strategies. The proposed data rep–
resentation establishes clear definitions for interlayer 
relationships, technology controls, and scan strategies. 
This research underscores the importance of information 
models in AM, advocating data representations as vital 
enablers of AM technology and ensuring seamless data 
exchange among systems. 

Optimizing the part build orientation is critical for 
achieving high-quality and efficient manufacturing. The 
orientation of a part impacts its mechanical properties, 
surface quality, and the time it takes to build. By 
automatically determining the optimal orientation, the 
LPBF process can be fine-tuned to reduce support 
volume, minimize volumetric error, enhance surface 
roughness, lower build time and cost, and ultimately 
produce parts with the desired properties [92]. Therefore 
an XML Schema of the author of [93] is used to 
construct a moderately complex information model of 
LPBF process plans, achieving the goal of polymor–
phism despite challenges in defining data structures. 
 
3.4 The 3D scanner as a measuring instrument 
 
3D scanners have the potential for reverse engineering 
and quality monitoring. The scanners based on laser 
triangulation have an increasing accuracy and therefore 
increasing interest. In the field of reverse engineering, 
mainly 3D scans of spare parts that are no longer avai-
lable are created and reprinted. Among other fields, the 
authors in [94] present a 3D-printed protective cover for a 
micro automatization device for cutting silicon wafers. 
Commercial systems like Zeiss's T-Hawk 2 handheld 
scanner can scan large objects and be operated manually 
without a tripod. These devices meet the ISO 10360 stan-
dard for coordinate measuring machines and have an 
accuracy of 0,035 mm.  
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Figure 5. General view of a perfect LPBF process chain with four different layers 
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Accuracy can be further improved by robot guidance or 
rotating devices with tripods. However, coordinate mea–
suring machines have significantly higher accuracy in an 
ideal measuring room environment. Compared to tradi–
tional coordinate measuring machines, 3D scanners are 
faster, do not require explicit programming, and obtain 
the whole part.  

Complex models, such as those used in LPBF, can 
be effectively inspected externally. This process plays a 
crucial role in the digitalization chain. By utilizing PMIs 
and MBD in CAD models, data can be directly 
transferred to the laser scanner. This enables automated 
evaluation of part quality based on defined tolerances. 
The data is also automatically integrated into the quality 
management system (QMS) and enterprise resource 
planning (ERP) system, connecting the design, quality 
control, and production processes. 

Automatization offers additional potential in this 
context. Components can be measured fully automa–
tically on the printing plate or afterward, with the 
scanner positioned by a robot or vice versa. For comp–
lex geometries requiring scanning from all sides, two 
robots can collaborate, similar to car body welding app–
lications. One robot positions the component, while the 
other positions the scanner. After quality control, down–
stream production can proceed. This approach helps 
detect defects early, reducing costs and minimizing the 
ecological footprint by reducing scrap. Nevertheless, 
this actually isn't evaluated. Figure 5 shows the optimal 
structure of an LPBF process chain holistically. 

 
4. POTENTIAL USE CASES FOR AI-BASED 

IMPROVEMENTS OF AN LPBF PROCESS 
 
4.1 Personalized medical implants 

 
The production of personalized medical implants is a 
promising application for LPBF processes [95]. It can 
be utilized to develop customized implants tailored to 
individual patient needs, optimizing mechanical proper–
ties and biocompatibility [96]. In-situ quality control 
and adaptive process control can further enhance the 
production process by ensuring high-quality implants 
with minimal defects [97]. This can ultimately lead to 
improved patient outcomes and more efficient health-
care systems [98, 99]. 

A study [100] found that LPBF-produced porous 
implants with pore sizes of 500-700 μm and porosity of 
60% ÷ 70 % exhibited the best bone integration. Such 
implants have a structure and performance similar to 
human cancellous bone. Possible corrosion does not 
pose a risk for implants, as shown by the results in 
[101]. After 28 days of exposure to a 0.9 wt% NaCl 
solution, improved corrosion resistance was shown due 
to the formation of an oxide layer.  

Although the LPBF process offers flexibility and 
precision in the production of complex implants, there 
are some limitations, as already discussed and 
sufficiently stated in this paper, but they also affect the 
production of medical implants [102]. The use of lattice 
structures allows the stiffness of individualized implants 
to be adjusted, which can lead to faster bone healing 
[103]. 

4.2 Aerospace components 
 
AM has the potential to revolutionize the aerospace 
industry by enabling the production of lightweight, 
optimized metallic components suitable for space flight. 
However, industry leaders still harbor concerns about 
the readiness of AM for flight parts, given the high 
stakes in terms of safety and cost.  

The aerospace industry can benefit significantly 
from improvements in LPBF processes [104]. Topology 
optimization and generative design techniques can be 
employed to minimize weight while maintaining perfor–
mance, leading to reduced fuel consumption and emis–
sions [105, 106]. High-speed X-ray imaging quantifies 
pore formation and further enhances the production 
process by ensuring high-quality titanium components 
with optimized mechanical properties [107] – which are 
often used in aerospace. In-situ quality control and 
adaptive process control can contribute to more reliable 
and repeatable manufacturing processes, meeting the 
stringent requirements of the aerospace industry [108]. 

In the aerospace industry, various components are 
manufactured using the LPBF method, including support 
and landing gears, servo-hydraulic control elements, 
hydraulic and electromechanical actuators for flap drives, 
gyro systems for guided missiles, and drive elements for 
land vehicles in extraterrestrial use [109, 110].  

The study [111] discusses the benefits of AM, add–
resses reliability and safety concerns, and presents 
successful case studies in the aerospace industry. 

One example is engine components such as blade-
integrated discs (blisks), which were previously made 
from nickel-based superalloys that were difficult to 
machine. The Fraunhofer Institute for Production Tech–
nology (IPT) is conducting a new process chain [112]. 
The researchers aim to manufacture blisks close to the 
final contour to minimize material waste and machining. 
This can reduce material consumption, which brings 
both economic and ecological benefits. 

The research paper [113] is a valuable resource for 
individuals who wish to expand their knowledge of AM 
applications in aerospace.  

 
4.3 Automotive industry 
 
The scientific research results on LPBF-manufactured 
automotive components show that the LPBF process is 
widely used in the automotive industry. The limitations 
of the process lie in its scalability for mass production, 
which is typically strong in the automotive industry. 
This section is, therefore, inevitably dominated by 
automatization solutions. Research in LPBF has also led 
to the development of methods for removing support 
structures from LPBF-manufactured parts. A promising 
approach for the removal of support structures is to 
chemically dissolve them [114]. This application is the 
result of the IDAM project, which was essentially led by 
the ILT and has a project duration of three years.  

Article [115] examines the use of Inconel 718 turbine 
blades in the pre-design phase for turbochargers. The 
study demonstrates that by optimizing the processing 
parameters, the fusion can be uniform and match the 
intended geometry. Areal and point EDS inspections 
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were conducted on the virgin powder and samples, 
yielding favorable results. However, production in the 
automotive industry does not only require turbine blades, 
but other components around the mixture charging of the 
exhaust side are also under high-temperature stress and 
require flow-optimized structures [116]. This type of 
application is also suitable for self-fluxing Ni-based alloy 
coatings as they are widely used under conditions of 
wear, corrosion, and high temperatures [117]. 

Another area is the repair and customizing of vehi–
cles. Especially for oldtimers and other rare vehicles, 
there is no high demand for spare parts; in consequence, 
original equipment manufacturer parts are lacking. The 
publication of [118] shows a Knowledge-Based Assis–
tance System for part preparation in additive repair on a 
wheel carrier. To increase the fatigue strength of the 
wheel carrier, particle-filled cavities are introduced in 
the area near the tie rod connection. The designer can 
select which evaluation criterion is prioritized, either 
volume cut-off or surfaces requiring support structures. 
As the authors show here, the component is not only 
replicated but its strength is also improved. In addition, 
new, modern materials specially tailored to the applic–
ation can be used for components from old vehicles.   
 
4.4 Tooling 
 
Tool manufacturing in conjunction with LPBF enables 
the production of wear-resistant and high-hardness 
components such as cutting, punching, and other tools 
or fixtures. Cutting tools with a steel base body benefit 
from this to a large extent, as the ultra-hard cutting 
materials, such as carbide, PCD, etc., are brazed or 
screwed on. This technology enables the use of intel–
ligent cooling strategies that are not possible in con–
ventional cutting production. This can be particularly 
advantageous for small tools where it is difficult to fit 
cooling channels into the limited space [119, 120]. 

Another approach is to improve cooling by intro–
ducing cooling channels in the back of the insert seats. 
This cools the internally cooled tool not only from above 
in the area of the rake face but also from the rear side in 
the area of the clearance face. Such a modification of the 
pocket of the insert, in combination with an optimized in–
sert, enables effective cooling and, thus, a longer tool life.  

Additively manufactured forming tools and hybrid 
welding fixtures enable resource savings, as mentioned in a 
research paper in collaboration with Ford [121]. Further–
more, stamping and forming tools can be lighter than con–
ventionally manufactured tools. This leads to improved 
handling and efficiency during the production process. 
These 3D-printed tools were tested by forming U-bends 
and trimming/cutting/blanking 2 mm thick hot-dip galva–
nized DP600. The approval criteria required 50.000 U-
bends without surface scratches and 100.000 trimming 
strokes with a maximum burr height of less than 0,2 mm 
(lower than 10 % of the sheet thickness). Tool life could be 
further improved with the use of Ni-based self-fluxing 
alloy coatings [122], as this can be applied to LPBF comp–
onents. With this coating, LPBF tools can also be used for 
hot forming, as the temperature resistance is improved 
[123]. Another application is mold making, e.g., for the 
production of plastic products, like explained in [124]. 

The core (inserts) of an injection mold is 3D-printed 
from 1.2709 steel, optimizing conformal cooling and 
compared to a conventionally manufactured core made 
from Uddeholm AM Corrax. Cooling and cycle time can 
be improved when the injection mold core is optimized. 
Another approach [125] is to coat AM plastic cores from 
small-batch production to increase service life. 

The study [126] demonstrates the rapid prototyping 
procedure of casting core production and compares it. 
The paper describes different approaches to the deve–
lopment of casting cores: direct, indirect, and direct 
production of molds, and the main factors in deciding 
on the application of this technology. 
 
4.5 Building smart components 
 
Smart components manufactured using the LPBF pro–
cess offer innovative functions and expanded possibi–
lities for AM. New applications can be realized by inte–
grating sensors and other electronic components. For 
example, components made of SS316 with embedded 
fiber optic sensors for temperature monitoring up to 
1000 °C were produced [127]. By integrating printed ele–
ctronics, such as strain gauges, additional functions can 
be introduced into additively manufactured components 
[128]. Intelligent components manufactured with LPBF 
find application in various fields. These include the space 
industry, where additively manufactured, optimized 
metallic components can be used for satellites [129]. 
However, when sensors are integrated during the LPBF 
process, then process downtimes usually occur [130]. 
This article highlights the increasing demand for sensor-
monitored components to minimize maintenance and 
proactively replace parts before failure. Comparing 
manual and automated sensor integration, automated 
methods are 32 times faster with improved part quality. 
Future challenges include implementing multi-material 
mechanisms and demonstrating the value of LPBF in 
comparison to conventional sensor integration [130]. In 
study [131] the integration of IoT, automatization, and AI 
to improve the reliability and scalability of AM processes 
for the mass production of smart materials was explored.  

Another approach deals with quality. The chosen 
material for this investigation was 316 L stainless steel, 
which has a range of applications, such as injection 
molds and continuous flow reactors. A temperature 
SAW sensor has been chosen for this process. To assess 
the internal integrity of the cover plate and the SAW 
sensor, three-dimensional non-destructive characteri–
zation was carried out using an X-ray computed tomo–
graphy (CT) scan [132]. 

 
5. CONCLUSION & OUTLOOK 
 
This article titled "Optimization Potentials of Laser 
Powder Bed Fusion: A Conceptual Approach" explores 
the integration of artificial intelligence and automa–
tization approaches into LPBF technology. The study 
outlines the potential benefits and challenges of this 
manufacturing process and focuses on the complete 
process chain from engineering to quality management 
to optimize the LPBF process. Therefore, the most 
significant publications are considered. 
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One of the main challenges in LPBF is achieving high 
component and material quality, which requires precise 
control over laser power, scan speed, and layer thickness. 
The main focus for further research should be on in-situ 
quality and adaptive control but in combination with 
multi-laser applications. In fact, multi-laser applications 
have the greatest economic potential, attracting the 
interest of influential big companies. In addition, various 
multi-material approaches are summarized to show the 
potential of tailored material properties.  

The aim is also to optimize the CAx process chain 
and improve the efficiency, quality, and reliability of 
LPBF processes. Digital twins are highlighted as a 
means to bridge the physical and digital worlds in AM, 
offering the potential for improved fabrication and 
environmental impact evaluation. There is further 
potential here in research and development for integ–
rated CAD/CAM systems in the LPBF area and the 
closed-loop approach to connect more machines to 
manufacturer-independent programs and make them 
open for customer-specific and research applications 
through integrated interfaces. 

Automatization plays a crucial role in enhancing 
LPBF processes. Robotics, AI technologies, and auto–
mated process planning can optimize fine scheduling, 
build plans, process parameters, and support structures. 
Further attention in the area of automatization should be 
paid to automated gripping and clamping systems and 
interchangeable substrate units. Here, the maximum 
potential for efficiency, economy, and improvement of 
the environmental footprint of manufacturing exists. 

The seamless data exchange in the complete LPBF 
processes enables new dimensions of process planning. 
However, the integration of special LPBF functions in 
the ERP system is only slightly developed. This subject 
area must be developed by large ERP system manu–
facturers in cooperation with machine manufacturers in 
order to make it interesting for widespread use.  

Furthermore, the use of 3D scanners in the LPBF 
process is explained, as they are increasingly used as 
measuring instruments in quality control. They enable 
reverse engineering and process quality monitoring. 
High accuracy, based on laser triangulation, makes them 
faster and easier to use than conventional coordinate 
measuring machines. Further research in the area of the 
stages model in the CAD system in relation to LPBF 
components and the automatization of in-situ scanners 
for product control will fully exploit the potential of a 
closed process loop. 

In addition, further research should address automatic 
defect assessment and decision-making for the repair, 
further processing, or recycling of LPBF components. 
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NOMENCLATURE 

AM Additive Manufacturing 
LPBF Laser Powder Bed Fusion 
AI Artificial Intelligence 
ML Machine Learning 
DL Deep Learning 
CNN Convolution Neural Network 
SPH Smoothed Particle Hydrodynamics 
SLM Selective Laser Melting 
DEM Discrete Element Method 
FVM Finite Volume Method 
NSGA-II Non-dominated sorting genetic algorithm 
MOPSO Multi-objective swarm optimizer 
ROI Region of Interest 
LWIR Long wave Infrared 
ILCT Inter-layer Cooling Time 
CMOS Complem. Metal Oxide Semiconductor 
TOT Time over Threshold 
RL Reinforcement Learning 
SPC Statistical Process Control 
DRL Deep Reinforcement Learning 
FPGA Field-programmable Gate Arrays 
NPU Neural Processor Unit 
CCD Charged Couple Device 
MBD Model-Based Definition 
PMI Product Manufacturing Information 
PLM Product Lifecycle Management 
ROI Return on Invest 
AGV Automated Guided Vehicle 
UWB Ultrawideband 
CT Computer Tomography 
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ПОТЕНЦИЈАЛИ ЗА ОПТИМИЗАЦИЈУ 

ПРOЦEСA ЛАСЕРСКE ФУЗИЈE ПРАХА У 
КОМОРИ: КОНЦЕПТУАЛНИ ПРИСТУП 

 
Ј. Ф. Струтз, И. Самарџић, К. Шимуновић 

 
Адитивна производња (additive manufacturing, АМ), 
тaчније ласерскa фузијa праха у комори (laser 
powder bed fusion, ЛПБФ), постаје све важнија за 
производњу сложених компоненти. Упркос сталним 
побољшањима, проблеми са оптимизацијом пара–
метара процеса, приступима са више материјала, 
ЦАx (computer aided) ланцем, прилагодбом за ауто–
матизовану масовну производњу, аутоматизованим 

планирањем процеса и контролом квалитета, и даље 
постoje. До сада, упркос растућем интересовању, oва 
технологија још није направила знaчajaн скок у 
свакодневну и широку употребу. Употреба вештачке 
интелигенције нуди могућности за решавање мно–
гих од ових проблема и побољшање ЛПБФ техно–
логије. У овом раду, ове теме су обрађене да би 
читаоцу дале холистички преглед потенцијала за 
оптимизацију. Појединачне теме нису само објаш–
њене и подржане примерима производа из разли–
читих индустрија, већ су и оцењене у смислу испла–
тивости и побољшања квалитета. Проценом потен–
цијала, ограничења и препорука, ствара се оквир за 
даље истраживање и практичну примену опти–
мизацијских приступа. 
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