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Machine learning algorithms are used for building classifier models. The 
rule-based decision tree classifiers are popular ones. However, the 
performance of the decision tree classifier varies with hyperparameter 
tuning. The optimum hyperparameter values are obtained using either 
optimization algorithms or trial and error methods. The present study 
utilizes the MODLEM algorithm to overcome the drawbacks accounted for 
by decision tree algorithms. Eliminating hyperparameter tuning and 
producing results closer to standard decision tree algorithms makes 
MODLEM a robust classification algorithm. The robustness of the 
MODLEM algorithm is illustrated with the fault diagnosis case study. The 
case study is faults diagnosis of an automobile suspension system using 
vibration signals acquired at various fault conditions. 
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1. INTRODUCTION  
 

Machine learning algorithms are widely used to build 
classifiers. Amongst them, automation engineers are 
specifically interested in decision tree-based classifiers. 
Decision trees give simple (if-then rules) that can be 
easily implemented in real-time systems (Micro-
controllers/processors). Decision tree algorithms are 
relatively simple to use. However, one has to tune its 
hyperparameters for better performance. As parameter 
tuning is a tricky task, especially when the parameters 
are many, it is challenging for classifier designers. 
Hence, there is a need for the new algorithm to build a 
decision tree that does not require hyperparameter 
tuning. This paper illustrates the use of the MODLEM 
algorithm for building a decision tree that can be used 
for classification problems. 

To illustrate the capability of the MODLEM 
algorithm, a case study of the fault diagnosis of an 
automobile suspension system is taken up and presen–
ted. The fault diagnosis method involves acquiring raw 
signals, feature extraction, feature selection, and 
building a classifier model.  

Researchers propose many decision tree algorithms 
using rule-based classifiers to understand the classifi–
cation process [1]. As a result, plenty of rule-based 
algorithms are proposed, such as J48, and one R. JRip, 
PART, etc. [2,3]. Among these classifiers, the J48 
classifier is used in many applications due to its 
classification ability with the limited dataset and high 
classification accuracy. 

The J48 algorithm is used in various applications in 
the area of medical industries for disease identification 
due to the fact that generated tree is understandable by 

the user and it is easy to derive rules from it [4]; for the 
same reason, it uses rule-based classifier J48 for 
identifying heart diseases is proposed by the author in 
[5]. The ability to create understandable rules is made 
way to use rule-based classifiers in mechanical indus–
tries, particularly in the area of fault diagnosis using 
vibration signals. 

The authors, Subrata et al., proposed a method to 
identify faults in the gearbox (transmission device to 
increase torque) widely used in industries using the J48 
decision tree classifier with an accuracy of 92%[6]. A 
method of gear fault diagnosis is proposed in 
automobile applications by author Praveen et al., where 
the J48 algorithm can distinguish faults with an 
accuracy of 99.70%.  

The authors in  [7] used the decision tree algorithm 
model to detect faults in centrifugal pumps using vibra–
tion signals with an accuracy of 100%. Similarly, the 
J48 algorithm is used in many other applications 
[8,9,10].  

Based on the literature survey, the authors have 
identified the following research gap: limited numbers 
of research studies have been conducted on identifying 
faults in suspension components. The available research 
work has primarily focused on finding faults in specific 
components of the suspension system, such as the lower 
arm bush worn out, strut mount fault, and tie rod ball 
joint fault. However, these specific faults have received 
little attention. The existing research in this field has 
predominantly employed a data-driven approach using a 
vibrating platform to induce forced vibrations. Addi–
tionally, several studies have utilized standard 
algorithms to classify faults in rotary machinery like 
suspension systems. However, there needs to be more 
information regarding the tuning of hyperparameters in 
these algorithms. Moreover, these parameters will vary 
depending on the type of signal and the specific 
problem under consideration. 

The authors propose a robust rule-based classifier 
called the MODLEM to address these challenges. This 
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classifier aims to overcome the difficulties mentioned 
above associated with parameter tuning by providing a 
more effective approach for fault classification in 
suspension components. 

The MODLEM classifier is a Meta classifier that 
uses an understanding of dataset characteristics to 
improve the algorithm performance and uses this 
acquired knowledge to assist in selecting a learning 
algorithm based on the dataset's characteristics.  

The MODLEM classifier outperforms the other rule-
based classifiers because it can generate automated rules 
that are easy to understand. Hence, the author in [11] 
used the MODLEM algorithm to identify liver diseases. 
Similarly, the authors in [12] conducted a comparative 
study of various rule-based classifier algorithms. In their 
study, MODLEM produced the second-highest classifi–
cation accuracy. Hence, in the present study, the advan–
tage and robustness of the MODLEM classification 
algorithm for fault diagnosis of rotary machinery are 
illustrated by benchmarking with the J48 algorithm with 
accuracy and confusion matrix of fault diagnosis of 
various suspension component faults. As only a few 
studies were conducted in condition monitoring of 
vehicle suspension systems [13,14,15], this paper illus–
trates the robustness of the MODLEM algorithm over 
the J48 algorithm for fault diagnosis of automobile 
suspension systems. 

 
2. MODLEM ALGORITHM 

 

In rule-based classifiers, when the same attributes are 
used again to describe some other object, the problem of 
inconsistency in deriving the rule arises [15] shown in 
Figure 1.  

Stefanowski introduced the MODLEM (Modified 
Learning from Examples Module) algorithm to 
overcome the abovementioned drawback proposed by 
induct rules. It works through sequential covering and 
heuristically produces a small set of decision rules for 
every decision concept. Moreover, the rule can cover all 
the positive examples and omit the negative examples, 
as shown in Figure. 2. 

 
Figure 1. The function of rule-based classifiers and 
MODLEM 

The author used a relabeling filter and MODLEM 
algorithm to improve the classification accuracy with 
the dataset having an imbalance class (or minority class 

having less number of instances to learn from the data). 
Also, the author quoted that the advantage of the 
MODLEM classifier is that rules induced by the 
algorithm proved the best single classifier. Furthermore, 
it can handle various data properties and works with 
reasonable computational costs to generate rules. The 
algorithm can be used for two categories, one for 
descriptive analysis and another for predictive analysis. 
In the case of descriptive analysis, the algorithm desc–
ribes a relationship between an attribute and an object 
by determining their dependency level. In the predictive 
analysis, the algorithm performs based on experience 
learning to identify an object for the given rules for the 
attributes [16,17]. 

The main procedure for rule induction order is 
shown in steps as follows: 

 
Figure 2. Rule induction algorithm for knowledge 
acquisition 

The main procedure for rule induction order is 
shown in steps as follows: 

Step 1: Formulating the first rule by the optimum 
selection of primary conditions based on selected 
criteria 

Step 2: Store the rule 
Step 3: Remove all the examples which learned 

positively from the stored rule 
Step 4: Continue removing all the examples till all 

the decision concepts are identified  
Step 5: If some of the positive examples are 

uncovered, then repeat the step 1 to 4 sequentially for 
the succeeding decision concept 

In the MODLEM algorithm, the process of rule 
induction involves handling numerical attributes and 
generating elementary conditions for the rules. These 
conditions are represented as either (ar < vl) or (ar ≥ vl); 
in this, 'ar' denotes the attribute, and 'vl' denotes the 
value. While building a rule, if the same attribute (ar) is 
selected twice, then it may be deducted as (ar = 
[vl1,vl2]) that results from an intersection of two 
conditions (ar < vl2) and (ar ≥ vl1) such that vl1 < vl2. 
For nominal attributes, these conditions are (ar = va) or 
could be extended to the set of values. 
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 The algorithm for the MODLEM in given in Figure. 
3 (Stefanowski, 2007). 

 

 
Figure 3. MODLEM algorithm 

PROs 
1. Union of rules made it a best single classifier 
2.  Ability to handle various data properties, such 

as numerical attributes, without its pre-discretization. 
3.  Ability to work as an ensemble classifier. 
4.  Ability to handle an imbalanced data set and 

provides optimum classification accuracy. 
5.  No need to tune numerical hyperparameters 

like other rule-based classifiers. 
6. Consistent performance. 
7. Easy to understand the classification process 

from the rule 
8. Much more insights about the data set is possible 
Cons. 
1. Required additional computation time and 

resources compared to other rules-based classifiers 
2. Less popular among the researchers 

Hence, in order to test the performance of the 
MODLEM classifier, the following study was con–
ducted to benchmark the MODLEM classifier's perfor–
mance with the J48 algorithm. 

Table 1: Data set description 

S.No 
Drive 
Speed 

Load 
condition 

Fault 
condition 

Total no. of  
signals 

1 

780 rpm 
(≈ 

60kmph)

No load 
GOOD, 

LABWO,  
LABJF, 
STWO, 
STED, 
TRBJF, 
STMF,  
 WLP 

800 (100 
signals/condition)

2 200 psi 
800 (100 

signals/condition)

3 400 psi 
800 (100 

signals/condition)

 

3. EXPERIMENTAL DESCRIPTION 
 

The experiment is conducted to identify the fault at the 
earliest to prevent further damage, which is necessary to 
maintain the safety and reliability of the vehicle since 
the suspension is used to maintain uniform contact 
between wheels with the road surface [18,19].  

The experiment was carried out on test setup, and 
the vibrational signals were acquired, simulating the 
suspension's real-time working at different load 
conditions. The experimental test setup used in the 
studies to acquire data is shown in Figure. 4a. The test 
setup consists of suspension system components (strut, 
lower arm, knuckle, tie rod wheel, and loading system). 
A piezoelectric sensor was deployed on the lower arm 
to measure the vibration signals.  

The vibration signals were acquired with a sampling 
frequency of 20 kHz using a data acquisition system 
(National Instruments) and LabVIEW software. The 
acquired signals for each fault condition are portrayed in 
Figure. 4b. The collected data consist of eight states of 
the suspension system, namely, Good, lower arm bush 
worn out (Labwo) [20], strut mount fault (Stmf), lower 
arm ball joint fault (LABJF)[21], strut worn out (Stwo) 
[22], strut external damage (Sted), tie rod ball joint fault 
(Trbjf) [23] and low wheel pressure (Wlp) [24]. The 
image of the faulty components considered for the study 
is given in Figure 5.  

A detailed data set description is given in Table 1. 
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Figure 4a. Suspension fault experimental test rig 

Figure 4b. Time domain plots of vibration signals. 

 

Figure 5. a- Sted, b-Stmf, c- Labwo, 5d-Trbj, e-Labjf, f-Wlp 
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Figure 6: Statistical Feature selected for No-load condition(J48) 

 
Figure 7. Histogram Feature selected for No-load condition(J48) 

4. FEATURE EXTRACTION 
 

The feature extraction was done to extract useful 
information by recognizing the pattern from the raw 
signal. In fault diagnosis studies, statistical features, 
histogram features, and discrete wavelet transform 
features ARMA features are widely used features by 
researchers [25–28]. For the current study, statistical 
and histogram features were considered. Statistical and 
histogram features can be used to deduct the unique 
pattern from the signals. In the case of statistical feature 
extraction, the following features are extracted from the 
signal using Microsoft statistical toolbox. They are sum, 
mean, median, mode, maximum, range, skewness, 
kurtosis, minimum, standard error, sample variance, and 
standard deviation[28,29]. 

Observing the time domain plot of all the fault 
signals implies that the acceleration amplitude values 
vary from class to class. Histogram plots can bring out 
such variations in amplitude and pattern in the vibration 
signals of various conditions. The bins of the histograms 
can be chosen such that the amplitude differences of 
vibration signals form a unique pattern for a particular 
condition.  

 
 Figure 8. Feature extraction and selection process  

5. DIMENSIONALITY REDUCTION 
 
Feature selection is a crucial step in the classification 
process as it involves removing irrelevant features that 
have no impact on the classification outcome, thereby 
reducing computational load. This process is also 
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known as dimensionality reduction. Figure 5 illustrates 
the feature engineering process, which encompasses 
feature extraction and selection. During the feature 
engineering process, the J48 algorithm's decision tree 
was utilized to identify significant features [30-33]. The 
decision tree consists of multiple nodes that follow a 
top-to-bottom flow. The topmost node is known as the 
root node, and branching occurs until a leaf node (class) 
is reached. Figure 6 and Figure 7 depict sample decision 
trees generated by the J48 algorithm. 

 
6. FAULT CLASSIFICATION USING J48 AND 

MODLEM CLASSIFIER 
 
In this section, the performance of the MODLEM clas–
sification algorithm at various load conditions was ben–
chmarked with the J48 algorithm to verify the advantage 
of MODLEM in the fault diagnosis process. For that, the 
selected statistical features and histogram features were 
used in the classification processes, and the performance 
measure, namely, classification accu–racy and confusion 
matrix, is considered. The hyper–para–meter setting for 
the J48 algorithm and MODLEM at the time of the fault 
classification process is described in Table 2. 

Table 2 Parameters of two classifiers 

Classifier Hyperparameter  Range/Value 
J48 Batch size 100  

C-confidence 
factor 

varied from 0 to 1 in steps 
of 0.1 (shown in Figure 8) 

M- minimum 
number of object 

varied from 5 to 100 in 
step of 5 (shown in Figure 

9) 
MODLEM Classification 

strategy 
m estimate 

Conditional 
measure  

conditional entropy 

Rules type   lower approximation of 
certain rules 

 
Figure 9 and Figure 10 display the plots drawn between 

the confidence factor and J48 classifier perfor–mance. 
From the plots, one can observe that the op–timum 
confidence factor for each load condition varies. From 
Figure 8, the optimum confidence factor for sta–tistical 
features is 0.1, 0.1, & 0.2 for no load, half load, and full 
load conditions, respectively. Similarly, for histogram 
features, the confidence factor of 0.1 produce maximum 
classifier performance in all three load conditions.  

 
Figure 9. Parameter tuning of a confidence factor for 
statistical features  

 
Figure 10. Parameter tuning of a confidence factor for 
histogram features 

Figure 11 and Figure 12 illustrate the rela–tionship 
between a minimum number of objects and classifier 
performance. From these plots, one can un–derstand that 
the minimum number of objects required considering for 
rule-making for all load conditions is five for both 
statistical and histogram features, respectively. 

 
Figure 11. parameter tuning of minimum no. of the object 
for Statistical Features  

 
Figure 12. Parameter tuning of minimum no. of objects for 
histogram features  

7. RESULT AND DISCUSSION 

Verification of classification Performance of the 
MODLEM at different load conditions  

The performance measure discussed here is classi–
fication accuracy from Figure.12. One can observe that 
the accuracy of MODLEM is significantly higher 
compared to the J48 algorithm in all load conditions. 
Also, the improved performance can be seen even in 
different data sets of histogram features. Similarly, the 
second performance measure, the confusion matrix, is 
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used in many applications to know the actual 
classification happened. The row-wise element in the 
confusion matrix indicates the actual class, and column-
wise indicates the predicted class, as shown in Table 3. 

 
Figure. 13: Comparison of results of J48 and MODLEM 
classifier with statistical features 

 
Figure. 14: Comparison of results of J48 and MODLEM 
classifier with histogram features 

From Figures 13 and 14, one can understand that the 
MODLEM algorithm has higher classification accuracy 
compared to J48 in both cases of statistical and 
histogram features. Also, from the confusion matrix 
given in Tables 3 and 4, the classification capability of 
the MODLEM is similar to that of the J48 algorithm. 

Table 5 provides a breakdown of the class-wise 
accuracy of the MODLEM algorithm, representing the 
performance of the MODLEM classifier in terms of true 
positive rate (TP), false positive rate (FP), precision (Pr), 
recall, and F-measure. TP measures the proportion of 
instances correctly classified as "good," while FP repre–
sents mistakenly classified instances. In an ideal classi–
fier, TP should be close to one, and FP should be zero. 

From Table 5, the average TP value is greater than 
0.8. Hence, the rule-based classifier will be best suitable 
for this type of specific problem. Precision (Pr) refers to 
the probability of correctly classifying retrieved instan–
ces for a specific class[32]. t is calculated as the ratio of 
true positive (TP) to the sum of true positive and false 
positive instances (TP+FP). Precision is also known as 
the positive predictive value and serves as a measure of 
accuracy or quality. 

Recall, also known as sensitivity, represents the 
ability of the classifier to correctly classify instances 
(TP) out of the total number of instances (TP+FN). 
False-negative (FN) instances are considered type 2 
errors, indicating cases where the classifier misclassifies 
the actual category. The F-measure is defined as the 
harmonic mean of both recall and precision. It can be 
seen as an approximate average of recall and precision. 
When recall and precision values are close, the F-
measure is generally the square of the geometric mean 
divided by the arithmetic mean. The f-measure is 

expressed as 
 
 
recall precision

recall precision
2





 

Table 3. J48 classifier confusion matrix at No-load 
condition  

a1 a2 a3 a4 a5 a6 a7 a8 Class 
99 0 0 0 0 0 0 1 a1 = GOOD 
0 88 4 0 2 3 0 3 a2 = LABJF 
0 6 86 2 1 1 4 0 a3 = LABWO 
0 0 6 89 2 0 3 0 a4= STED 
0 0 4 3 92 0 1 0 a5 = STMF 
0 1 0 0 0 99 0 0 a6 = STWO 
0 0 0 2 0 0 98 0 a7 = TRBJF  
0 4 1 0 0 0 0 95 a8 = WLP 

Table 4. MODLEM classifier confusion matrix at No-load 
condition 

a1 a2 a3 a4 a5 a6 a7 a8 Class 
99 0 0 0 0 0 0 1 a1 = GOOD 
0 93 1 0 2 2 0 2 a2 = LABJF 
0 6 82 6 4 0 2 0 a3 = LABWO 
0 0 2 91 2 0 5 0 a4= STED 
0 2 2 1 94 1 0 0 a5 = STMF 
0 0 0 0 0 100 0 0 a6 = STWO 
0 0 0 2 1 0 97 0 a7 = TRBJF  
1 3 0 0 0 0 0 96 a8 = WLP 
 

8. CONCLUSION  
 
This study proposes the use of the MODLEM classifier 
to identify rules for classifier design. A comparative 
study was conducted using a dataset acquired from a 
specially designed suspension test setup, aiming to 
classify multiple faults in suspensions. The results dem–
onstrate that the MODLEM algorithm outperforms the 
J48 algorithm, which required parameter tuning for each 
dataset. In the current case study, the MODLEM algo–
rithm achieves an average classification accuracy of 
91.42% for statistical features and 84.67% for histogram 
features when classifying faults. Furthermore, the expe–
riment highlights the applicability of the MODLEM 
classifier in various industrial applications due to its 
robust performance compared to standard tree-based 
classifiers used for fault identification in rotary mac–
hinery based on vibration signals. 

Table 5: Class-wise accuracy of MODLEM classifier under different loads 

Feature t pe Load condition TP Rate FP Rate Precision Recall F-measure ROC 
Statistical features No load 0.94 0.009 0.94 0.94 0.939 0.96 

200PSI 0.92 0.011 0.92 0.92 0.92 0.95 
400PSI 0.88 0.017 0.88 0.88 0.88 0.93 

Histogram 
features 

No load 0.89 0.015 0.89 0.89 0.89 0.94 
200PSI 0.86 0.020 0.86 0.86 0.86 0.92 
400PSI 0.78 0.031 0.77 0.78 0.77 0.87 
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NOMENCLATURE 
 

ARMA Auto-regressive moving average 
MODLEM Modified learning from examples module 
LABJF lower arm ball joint fault 
Pr Precision 
Sted Strut external damage 
Trbjf Tie rod ball joint fault 
TP True positive rate 
FP False positive rate 
TN True negative rate 
FN False negative rate 
Stwo Strut worn out 
Labwo Lower arm bush worn out 
Wlp Wheel low pressure 
Stmf Strut mount fault 
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 РОБУСТАН АЛГОРИТАМ ЗА УЧЕЊЕ 

ПРАВИЛА ЗА КЛАСИФИКАЦИЈУ – СТУДИЈА 
СЛУЧАЈА ДИЈАГНОЗЕ ГРЕШКЕ 

 
П.А. Балаџи, В. Сугумаран 

 
Алгоритми машинског учења се користе за 
изградњу модела класификатора. Класификатори 
стабла одлучивања засновани на правилима су 
популарни. Међутим, перформансе класификатора 
стабла одлучивања варирају са подешавањем хипер–
параметара. Оптималне вредности хиперпараметара 
се добијају коришћењем алгоритама оптимизације 
или метода покушаја и грешака. Ова студија 
користи МОДЛЕМ алгоритам да би се превазишли 
недостаци алгоритама стабла одлучивања. Елими–
нисање подешавања хиперпараметара и стварање 
резултата ближих стандардним алгоритмима стабла 
одлучивања чини МОДЛЕМ робусним класифи–
кационим алгоритмом. Робусност МОДЛЕМ алго–
ритма је илустрована студијом случаја дијагнозе 
грешке. Студија случаја је дијагностика кварова 
система овјеса аутомобила помоћу сигнала вибра–
ција добијених у различитим условима квара. 

 

 

 


