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GARM: A Stochastic Evolution based 
Genetic Algorithm with Rewarding 
Mechanism for Wind Farm Layout 
Optimization 
 
Wind energy has emerged as a potential alternative to traditional energy 
sources for economical and clean power generation. One important aspect 
of wind energy generation is the layout design of the wind farm so as to 
harness maximum energy. Due to its inherent computational complexity, 
the wind farm layout design problem has traditionally been solved using 
nature-inspired algorithms. An important issue in nature-inspired 
algorithms is the termination condition, which governs the execution time 
of the algorithm. To optimize the execution time, appropriate termination 
conditions should be employed. This study proposes the concept of a 
rewarding mechanism to achieve optimization in termination conditions 
while maintaining the solution quality. The proposed rewarding mecha–
nism,adopted from the stochastic evolution algorithm, is incorporated into 
a genetic algorithm. The proposed genetic algorithm with the rewarding 
mechanism (GARM) is empirically tested using real data from a potential 
wind farm site with different rewarding iterations.  
 
Keywords: Wind farm layout design, Wind farm micrositing, Wind energy, 
Optimization, Stochastic Evolution, Artificial  Intelligence, Nature-inspired 
algorithms, Genetic Algorithms 

 
 
1. INTRODUCTION  

 
The last two decades have seen significant growth in the 
use of renewable sources of energy, particularly wind 
and solar energy. This growth is motivated by several 
factors to reduce the dependency on traditional sources 
of fuel as well as to tackle the issue of environmental 
pollution [1]. Furthermore, the impact of geo-political 
conflicts on wind power generation is almost non–
existent [2]. In addition, the least dependency on cross-
border logistics and transportation is a plus point in 
wind energy. This issue is a major consideration when it 
comes to fossil fuels [2]. The cost-effectiveness of wind 
energy in contrast to oil or gas-based energy generation 
is another major advantage of the former [2].  

Globally, wind power is considered a technolo–
gically matured and commercially accepted technology 
[3]. Wind farms cover up a large geographical area, and 
therefore, the land area needs to be efficiently utilized 
so as to generate maximum power. Several factors 

govern the maximum power generation. One of the 
most important factors is the layout of the wind farm, or 
in otherwords, the micrositing of the wind turbines. The 
optimal layout guarantees maximum energy harnessing 
by turbines such that wake effects, turbulence, and other 
similar disturbances are reduced (if not completely 
avoided) as much as possible. The performance of each 
individual wind turbine is considered pivotal. The 
importance of design, manufacturing, and verification 
testing for a turbine's performance is emphasized by 
Rašuo et al. in several studies [4-6]. Furthermore, Rašuo 
et al. [7] also identified that an efficient wind turbine 
system depends on harmonizing various pro–cesses 
such as design, manufacturing, materials, tech–nology, 
regulations & standards, and verification tes–ting. These 
processes need to be completely harmonized with each 
other, and failing to do so would result in reduced 
efficiency of the wind turbines. This would 
consequently reduce the overall power generation capa-
bility of the wind farm.      

In computational terms, the wind farm layout opti–
mization (WFLO) problem is classified as an NP-hard 
problem, as proven by several studies [8-10]. This 
means that simple approaches, such as linear search 
algorithms, cannot solve the WFLO problem. This turns 
researchers’ attention towards algorithms that are 
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inspired by natural phenomena and work in an iterative 
manner, such as the evolutionary computation (EC) 
algorithms or swarm intelligence (SI) algorithms. Some 
well-known algorithms from the said domains applied 
to the WFLOproblem include genetic algorithms (GA), 
differential evolution (DE), particle swarm optimization 
(PSO), ant colony optimization (ACO), and cuckoo 
search (CS), among others. These nature-inspired algo–
rithms (NIAs) have proven their effectiveness in solving 
several variants of the WFLO problem. However, in 
contrast to linear search algorithms, a major drawback 
of EC and SI approachesis their high computational 
time requirement. EC and SI algorithms take a fair 
amount of time for execution to reach a quasi-optimal or 
optimal solution. From the computational point of view, 
the execution time should be optimized. That is, the 
algorithm should only execute appropriately within the 
required iterations. High execution time would result in 
higher energy consumption and processorover-utili–
zation, which causes hardware stress. Moreover, since 
the processor is busy executing the code, a new 
processing task cannot be assigned to the processor, 
resulting in the wastage of computing resources.  
     Optimization of the number of iterations to achieve 
computational efficiency is a crucial issue. This con–
cerns the fact that the number of iterations should be set 
at a value where over-utilizationor under-utilization of 
the execution time is not violated. Over-utilization of 
the algorithm time refers to a situation where the 
algorithm continues execution even after the best (or 
optimal) solution is obtained, thus resulting ina wastage 
of computational resources. Underutilization concerns 
the scenario where the algorithm stops prematurely be–
fore reaching an optimal solution. Therefore, a mecha–
nism is required capable of defining just the right 
number of iterations.  
      A study by Goreishi et al. [11] revealed that over 25 
different stopping conditions have been proposed in the 
literature on NIAs. However, concerning the WFLO 
problem, only a few have been used. Table 1 shows a 
historical chronology of several studies that utilized 
NIAs for the WFLO problems. It is evident from the 
table that over 70% of the studies used a fixed number 
of iterations(FNI) as the termination criterion. A major 
concern with FNI is that it is a user-defined parameter, 
and finding the most appropriate value of  FNI is done 
by trial and error. This causes a waste of computational 
time and effort. Furthermore, like FNI, other termi–
nation criteria reported in the literature are based on the 
same fundamental principle; they require a stopping 
condition to be defined a priori by the user. Once the 
stopping condition is reached, the execution terminates.  
     Motivated by the above discussion, this study 
proposes a hybrid genetic algorithm. The contributions 
of the study are enumerated as follows: 
1)  Agenetic algorithm with a rewarding mechanism 
(GARM) that incorporates characteristics of the stoc–
hastic evolution (StocE) algorithm is proposed. More 
specifically, the rewarding mechanism from the StocE 
algorithm is embedded into the genetic algorithm. This 
rewarding mechanism allows GA to add reward 
iterations when an improvement is observed in the 
quality of the solution. 

2) The proposed GARM is empirically tested with 
different rewarding iterations, using real data from a 
potential wind farm site.   
3) A performance measure, termed the percentage of 
wasted iterations (PWI), is developed to evaluate the 
computational effort with different rewarding iterations.  
     The rest of the paper is organized as follows. The 
problem model is given in Section 2. The proposed 
GARM algorithm is explained in Section 3. Results and 
discussion are presented in Section 4. The paper ends 
with a conclusion and future work in Section 5.  
 
2. WAKE AND OPTIMIZATION MODELS 
 
Traditionally, the WFLO problem is modeled as a dis–
crete optimization problem, and the current study also 
assumes a discrete model. The complexity of the 

problem is 
2
2c , where C is the number of cells in the x-

axis (or y-axis). For example, if the wind farm's 
physical area (which is squared shape) is divided into a 
10×10 grid, then the total number of possible configu–

rations for the layout will be 
2102  (or 2100). Figure 1 

shows an example layout of a 10×10 grid. The grid is 
divided into 100 equal-sized cells, each representing a 
potential location for turbine placement. If the grid size 
increases, the possible layouts will also increase. For 
example, for a grid size of 15×15, the possible number 
of layouts will be 2225. However, most studies on the 
WFLO problem assumed a 10×10 configuration and the 
same is used in the current study. The configuration is 
shown in Figure 1, with the turbine locations at the front 
(facing the wind) marked as 1 to 10, while the back of 
the farm has locations from 91 to 100.    

Studies have proposed various wake-effect models. 
The present study adopted the wake effect model used by 
Ju and Liu [24], which was based on Jansen's wake 
model. Assume that N turbines are to be placed in the 
wind farm. The prevailing wind direction is assumed uni-
directional (as shown in Figure 1) and has a speed of v0. 
Furthermore, the prevailing wind is at an angle to the 
front of the farm. In the current study,  = 0o prevailing 
wind (Figure 1). As such, turbines directly facing the 
wind (in the first row) are under no-wake effect. 
Therefore, wind speed remains unaffected at these 
turbines. Turbines that are affected by the wake encounter 
a wind speed of vi (i =1, 2, ... N) and vi <v0. The value of vi 

depends on whether a turbine is affected by a single wake 
or multiple wakes. If a turbine is affected by the wake of 
a single turbine, the mathematical representation to 
calculate this wake effect is given by the following 
equation: 

2

, 0
2

1
3

j
i j

j

R
v v

r

        
   

   (1) 

where vi,j represents wind speed at wind turbine i under 
the wake effect of turbine j, and Rjdenotes the rotor 
radius of wind turbine j. Furthermore, rjis the wake 
radius and is represented as follows: 

,j i j jr d R     (2) 
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Table 1. Summary of previous studies.

Reference  Year  Algorithm(s)  Stopping condition 
Mosetti et al. [9] 1994 Genetic Algorithms Fixed number of iterations 
Grady et al. [10] 2005 Genetic Algorithms  Fixed number of iterations 
Huang [12] 2009 Genetic Algorithms  Fixed number of iterations 
Emami and Noghreh [13] 2010 Genetic Algorithms  Fixed number of iterations 
Gonzalez et. al. [14] 2010 Genetic Algorithms Not specified 
Kusiak and Song[15] 2010 Genetic Algorithms  Fixed number of iterations 
Rašuo et al. [16][17] 2010 Differential Evolution Fixed number of iterations 
Eroğlu and Seçkiner [18] 2013 Ant colony optimization  Fixed number of iterations 
Wang et al. [19] 2015 Genetic Algorithms  Fixed number of iterations  
Rehman et al. [20] 2016 Cuckoo Search Fixed number of iterations 

Afanasyeva et al. [21] 2018 Cuckoo Search,  Genetic Algorithms 
Fixed number of iterations, 
minimum rate of change of cost value 

Chahrouni et al. [22] 2019 Genetic algorithms  Fixed number of iterations 
Wang [23] 2019 Genetic algorithms  Fixed number of iterations 
Ju and Liu [24] 2019 Genetic Algorithms Fixed number of iterations 
Gao et al. [25] 2020 Genetic algorithms  Not specified 

Wu et al. [26] 2020 

Particle Swarm Optimization, 
Augmented Particle Swarm 
Optimization Fixed number of iterations 

Rehman et al. [27] 2020 Particle Swarm Optimization Fixed number of iterations 

Shin et al. [28] 2021 
Evolutionary Algorithm, Particle 
Swarm Optimization  Not specified 

Aggarwal et al.  [29] 2021 

Biogeography-based optimization, 
Genetic algorithms, Particle Swarm 
Optimization, Ant Colony 
optimization 

Fixed number of iterations or 
the performance criterion is satisfied 
(criteria not mentioned) 

Al Shereiqi [30] 2021 Genetic algorithms  

Fixed number of iterations or 
fitness value below the threshold 
for a number of consecutive steps 

Kirchner-Bossi [31] 2021 Genetic algorithms, Hybrid GA Not specified 
Afour et al. [32] 2022 Genetic Algorithm Fixed number of iterations 
Guoqing et al. [33] 2022 Genetic Algorithm Not specified 
Khan [5] 2022 Simulated Evolution Fixed number of iterations 
Huang et al. [34] 2023 Evolutionary Algorithm Max number of fitness evaluation 

 
In (2), α denotes the entrainment factor while 

di,represents the downstream distance. 
       In the case where turbine i is affected by multiple 
wakes, the following equation is employed to calculate 
the wake as follows: 

2
,

0
0

1 1
i j

i j j

v
v v
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   (3) 

The objective function in this study is adopted from 
Ju and Liu [24]. The function requires maximization of 
the efficiency of the wind power generation and is given 
by the following equation. 
 
Maximize 

 /current totalEfficiency P P   (4) 

where Pcurrent denotes the total power generated by 
turbines under the wake effect in the current layout, and 
Ptotal is the ideal total power generated by all turbines 
without the impact of any wake. A detailed discussion 
of the optimization model can be found in the study by 
Ju and Liu [24]. 

 
3. PROPOSED GENETIC ALGORITHM WITH RE–

WARDING MECHANISM 

The genetic algorithm [35] is the first and most estab–
lished NIA designed to solve NP-hard optimization 
problems. The algorithm uses a set of solutions called 
population, which evolves into better solutions through 
an iterative process. This evolution is characterized by 
two operations, known as crossoverand mutation. The 
purpose of crossover is to pass on the characteristics 
present in the current population to the next generation, 
resulting in new offspring. Furthermore, mutation intro–
duces new characteristics in the offspring generated 
during the crossover phase. Cumulatively, crossover 
and mutation carry out the exploitation and exploration, 
respectively, through an iterative process. 

As mentioned earlier, the iterative process in the 
conventional GA is carried out using the iteration count, 
which is a user-defined value. However, this requires 
the algorithm to be user-dependent, thus instigating a 
forced termination. Furthermore, if the number of 
iterations is defined as less than what is required to 
converge, then the optimal solution is not guaranteed. In 
contrast, if the number of iterations is more than what is 
required, then the execution results in a waste of 
computational resources. 

In order to control the number of wasted iterations, 
the rewarding mechanism, which is a characteristic and 
a unique feature of the stochastic evolution algorithm, 
has been incorporated in GARM. Stochastic evolution 
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(StocE) [36] is a non-deterministic iterative algorithm 
inspired by the behavior of biological processes. In 
contrast to many other iterative algorithms that operate 
on a population of solutions, there are only a few evo–
lutionary algorithms, such as StocE [36] and Simulated 
Evolution [37-39], that maintain a single solution thro–
ughout their execution.  

 
Figure 1. The wind farm layout is divided into a 10x10 grid  

      The single solution inStocE is perturbed iteratively to 
improve the quality of the solution, thus leading to an op–
timal or quasi-optimal solution. The classical StocE algo–
rithm has two distinctive features: the compound move and 
the rewarding mechanism [36,40]. In the compound move, 
multiple perturbations are carried out to the single solution 
per iteration. This is equivalent to carrying out multiple 
mutations fora single chromosome in GA. The size of the 
compound move (i.e., the number of pertur–bations) 
maintains a balance between exploration and exploitation. 
A very big compound move would lead the algorithm 
towards randomization (which is not desired) as well as an 
increase in the runtime. In contrast, a small compound 
move may result in the StocE algorithm getting trapped in 

local optima, which is also undesired. Therefore, the size 
of the compound move should be set carefully.   
       The rewarding mechanism, which is the focus of the 
current study, allows the StocE algorithm to extend its 
execution time, thus enabling the algorithm to tra–verse 
the search space more extensively, hoping to result in 
better solutions. The rewarding mechanism allows the 
algorithm to be rewarded with extra iterations whenever 
an improvement is observed in the quality of the solution. 
In the context of the underlying study, this improvement 
is measured through the objective function presented in 
(4). The rewarding mechanism is incorporated in the 
GARM, where additional iteration sare added to the 
genetic algorithm whenever an impro–vement is 
observed in the fitness value (i.e., the objective function). 

Figure 2 shows a pseudo-code ofGARM. The algo–
rithm starts with initialization (line 1), generating a set 
of chromosomes (wind farm layouts). The user defines 
the size of this set, i.e., the population size. Each 
generated layout is evaluated for quality using (4) (see 
line 2). Furthermore, other variables and parameters are 
also defined, as shown in lines 3 to 6. Following this, 
the number of iterations, ρ, is initialized to 1, as shown 
in line 7. That is, the algorithm stops after a single 
iteration. The rationale behind this is that if GARM 
observes an improvement after the first iteration, then 
reward iterations will be awarded to the algorithm, 
leading to further execution.  

The main iterative process of GARM is carried out 
between lines 8 and 17. The ‘while’ loop at line 8 would 
carry out the selection, crossover, and mutation operati–ons 
until no more iterations are left for execution. The core of 
the rewarding mechanism is reflected in lines 13 to 16. In 
line 13, the best solution in the current iteration, Fi_best, is 
compared with the overall best solution, Fo_best, found so 
far. If Fi_best  >Fo_best, then the best solution in the current 
iteration is designated as the overall best solution (line 14), 
and the reward iterations are added to the iteration count 
(line 15), thus increasing the number of iterations leading 
to further execution. In case Fi_best Fo_best, the iterations 
count is decreased by an iteration (line 16), and the 
population is updated to carry out the next iteration. Once 
no more iterations are left, the algorithm terminates. 

Algorithm GARM 
1. Generate initial population with layouts 
2. Evaluate the fitness of the initial population 
3. Define ρ as the number of iterations  
4. Define Fo_best as the fitness of the overall best solution 
5. Define Fi_best as the fitness of the best solution in the current iteration 
6. Define R as the number of iterations to be rewarded. 
7. ρ= 1 
8. while (ρ> 0) { 
9. Select Parents 
10. Perform Crossover 
11. Perform Mutation 
12. Evaluate the fitness of each solution in current iteration 
13. If Fi_best >Fo_best 
14. Si_best >So_best   // Iteration best solution becomes overall best solution 
15. ρ = ρ+ R  // Add reward iterations to iteration count 
16. Else  ρ = ρ– 1       // Reduce iteration count 
17. Replace the current population for the next generation 
18. } 

 Figure 2. Pseudo-code of GARM 
 
 



 

FME Transactions VOL. 51, No 4, 2023 ▪ 579
 

 

As stated earlier, the purpose of the present study is 
to evaluate the impact of different numbers of rewarding 
iterations in order to maximize layout efficiency while 
reducing the number of extra (rather wasted) iterations. 
With this objective, results are analyzed in several 
dimensions. The first analysis is focused on the impact 
of different rewarding iteration values on efficiency. 
This is followed by analyzing the number of extra itera–
tions generated for each of the five rewarding iteration 
values. Details of these analyses are given below. 
 
4. RESULTS AND DISCUSSION 
 
Simulations were carried out using real data from a 
potential site of Turaif, located in the northern region of 
Saudi Arabia. The site has an elevation of 827 meters 
above the mean sea level with an average wind speed of 
6.94 m/s [41]. Thus, a single-speed, single-direction 
scenario is assumed. Furthermore, the following para–
meter setup was used for the genetic algorithm: popu–
lation size = 30, crossover rate = 0.6, and mutation rate 
= 0.1. Other parameters used in the simulations included 
a grid size of 10 x 10 and a number of turbines = 20. 
Empirical results were obtained while assuming a re–
ward of 5, 10, 15, 20, and 25 iterations. Furthermore, a 
GE 1.5sle turbine was used in the simulations. Table 2 
summarizes the turbine specifications and other rele–
vant information.  

Table 2. Specifications of the turbine used in the study 

Turbine GE 1.5sle turbine 
Hub Height 80 m 
Rotor Diameter 77 m 
Cut-in Speed 3.5 m/s 
Cut-out Speed 25 m/s 
Rated Speed 12 m/s 
Rated Power 1.5 MW 

 
To analyze the results of iterative heuristics, 30 

independent runs are carried out for each value of 
rewarding iterations. The best output value (in terms of 
efficiency as given by (4)) for each run is taken, and the 
average best value of the 30 runs is reported, along with 
the standard deviation of the 30 runs. All runs are 
started with the same seed solutions. 
 
4.1 Effect of Reward Iterations on Efficiency 

 
The effect of five reward iterations is analyzed con–
cerning the corresponding average efficiency (i.e., an 
average of 30 runs). Table 3 provides the average, 
maxi–mum, and minimum efficiency with respect to the 
different rewards, along with the standard deviation. 
From this table, it is observed that reward R = 5 gives 
the worst average efficiency while R values of 15, 20, 
and 25 have almost the same level of average efficiency. 
However, among these three rewarding mechanisms, R 
= 20 and R =25 have almost the same standard deviation 
(0.0075 and 0.0076), as shown in the last column of 
Table 3. As such, both of these rewarding values are 
equally good. The plots in Figure 3 further elaborate on 
the trends, where it is observed that as the number of 
rewarding iterations increased, the average, maximum, 

and minimum efficiencies also increased. This rate of 
increase is faster for small rewards (from R = 5 to R = 
15). However, for larger reward values of R = 20 and R 
= 25, not much improvement is observed in the effi–
ciency. However, in order to differentiate further bet-
ween the impact of  R = 20 and R = 25, further analysis 
is required, which is presented in the next section. 

Table 3. Effect of different rewarding iterations on the 
average, maximum, and minimum efficiency 

Reward 
Average 
efficiency 

Max 
efficiency 

Min 
efficiency 

Std. 
dev. 

5 0.7533  0.7712 0.7326 0.0092 
10 0.7677 0.7985 0.7425 0.0123 
15 0.7830 0.8053 0.7618 0.0097 
20 0.7876 0.8121 0.7745 0.0075 
25 0.7874 0.8028 0.7744 0.0076 

 
4.2 Effect of Reward Iterations on Computational 

Effort 
 

Another dimension to evaluate the impact of the dif–
ferent reward iterations is in terms of computational 
effort. This effort is measured in terms of the percentage 
of wasted iterations, as follows: 

100
TI IBS

PWI
TI


    (5) 

 

Figure 3. Efficiency versus the rewarded iterations. 

In the above equation, the term TI defines the total 
number of iterations for which a run is executed. The 
term IBS identifies the iteration of the best solution 
during the run. This best solution is measured as 
efficiency given by (4). The difference in TI and IBS 
shows the number of extra iterations executed after the 
best solution is found. This difference highlights the 
number of wasted iterations. Finally,PWI denotes the 
percentage of wasted iterations.  

The rationale behind measuring PWI is that further 
iterations are unnecessary once the best solution is 
achieved, as they add redundancy to the computational 
effort. As such, the additional iterations beyond the ite–
ration at which the best solution is obtained should be 
reduced as much as possible (if not completely alle–
viated). Therefore, a low value of PWI is desirable since 
it indicates that the simulation run should be terminated 
as soon as the best solution is found. Conversely, a high 
value of PWI shows unnecessary computational effort. 
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Table 4 provides the summary of results for the five 
reward values investigated. The table shows the maxi–
mum, minimum, and average number of various metrics 
over 30 runs. These include the total iterations (TI) exe–
cuted, the iteration in which the best solution (in terms 
of efficiency) was found (i.e., IBS), the difference 
between TI and IBS, and the corresponding PWI values. 
It is observed from the tables that for small values of R, 
the value of PWI is high, whereas for higher values of 
R, small PWI values are observed. More specifically, 
the average values of PWI for R = 5, 10, and 15 are 
49.55, 46.67, and 43.82, respectively. As the values of R 
are increased to 20 and 25, the corresponding PWI 
values are found to be 39.19 and 38.41, respectively. 
This trend indicates that increasing the reward results in 
more efficient use of the computational resources as 
desired. That is, when R = 5, almost half of the 
iterations (49.55 %) were wasted, whereas, withR = 25, 
the wasted iterations were considerably reduced to 
38.41 %, which is a reduction of almost 11% compared 
to that of R = 5.   

Another observation from Table 4is that for smaller 
values of R, the reduction in PWI is at a higher rate, but 
for small to large values of R, the reduction is at a much 
higher rate. However, for higher values of R, the 
reduction in PWI is slow. That is, between R = 5 to R = 
10, the reduction in average PWI is 2.88% (i.e., 49.55 to 
46.67), while from R = 10 to R = 15, the reduction is 
2.85%. Furthermore, from R = 15 to R = 20, the dif–
ference in average PWI is 4.63%. However, between R 
= 20 and R = 25, the change in average PWI is only 0.78 
%. Overall, the results suggest that a change in 
rewarding iterations for smaller R values can notably 
impact the computational effort. However, when the 
rewarding iterations are increased beyond a certain 
point (in the case of R = 20 to R = 25), the impact on 
computational effort is almost negligible. 

Figure 4 illustrates the stability of the five rewarding 
iterations for 30 runs in terms of the variation of PWI 
values (note that the average PWI values for different 

rewarding iterations are shown in Table 4). As can be 
seen from Figures 4(a), (b), and (c),  the PWI values 
have a significant variation for R = 5, 10, and 15, 
respectively, showing a somewhat unstable behavior in 
terms of algorithm convergence. However, for higher 
rewarding iterations (R = 20 and R = 25), the graphs in 
Figures 4(d) and (e) show a stable behavior. The above 
trends indicate that GARM has relatively less variation 
in PWI for higher rewarding iterations compared to 
smaller values. In other words, for higher values of R, 
the algorithm has more or less the same behavior in all 
runs when it comes to finding the difference between 
the total number of iterations and the iteration at which 
the best solution was found. 
 
5. DISCUSSION 

 
The results in Sections (4.1) and (4.2) highlighted 
several important trends. On one hand, when it comes to 
evaluating the performance in terms of efficiency, hig–
her values of R are desirable. On the other hand, higher 
values of Ralso resulted in more effective use of com–
putational effort. From the engineering point of view, 
the WFLO problem requires the efficiency to be inc–
reased (which in turn favors more power generation).  

From the computational point of view, the objective is 
to reduce the computational effort. This computa–tional 
effort is reduced when the difference between the total 
runtime (in terms of the number of iterations) and the 
time at which the best solution was obtained is mi–
nimized. It should also be noted that for small values of 
R, the iteration at which the best solution was obtained 
with respect to the total number of iterations is computa-
tionally effective. However, this computational effecti–
veness is negated due to low-efficiency solutions, as ob–
served in Table 2. In order to get a solution that is effe–
ctive both in computational as well as engineering di–
mensions, a solution is desired that gives the best tradeoff 
of both dimensions. From the results, both R = 20 and R 
= 25 satisfy this requirement over other values of R. 

Table 4. Effect of rewarding iterations on different metrics (on averages of 30 runs) 

No. of  reward 
iterations 

Metric Maximum Minimum Average 

  Total Iterations (TI) 32 7 18 ± 6.07 
5 Best solution  in iteration (IBS) 21 2 9.43 ± 4.85 

  
Difference between best and total 

iterations 16 4 8.57 ± 2.99 
  PWI 75 27.27 49.55 ± 13.86 
  Total Iterations (TI) 79 22 50.9 ± 14.97 

10 Best solution  in iteration (IBS) 56 6 28 ± 13.68 

  
Difference between best and total 

iterations 45 10 22.9 ± 9.08 
  PWI 81.25 22.22 46.67 ± 17.01 
  Total Iterations (TI) 113 62  90.7 ± 15.38 

15 Best solution  in iteration (IBS) 74 17 50.9 ± 11.28 

  
Difference between best and total 

iterations 61 19 39.77 ± 10.6 
  PWI 72.58 24.68 43.82 ± 9.73 
  Total Iterations (TI) 136 114 125.3 ± 6.35 

20 Best solution  in iteration (IBS) 87 65  76.3 ± 6.35 

  
Difference between best and total 

iterations 49 49  49 ± 0 
  PWI 42.98 36.03  39.19 ± 1.96 
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  Total Iterations (TI) 148 114 128.1 ± 9.22 
25 Best solution  in iteration (IBS) 99 65 79.13 ± 9.21 

  
Difference between best and total 

iterations 49 48 48.97 ± 0.18 
  PWI 42.98 33.11 38.41 ± 2.71 

 
6. CONCLUSION 

 
The non-polynomial complexity of the wind farm layout 
design (WLFO) problem solicits an efficient approach in 
terms of quality of solution and execution time. Pre–vious 
studies have shown that genetic algorithms effec–tively 
solve both aspects. Yet, like any other iterative nature-
inspired algorithm, the genetic algorithm still has room for 
improvement. One area of improvement is to reduce the 
computational effort of the algorithm. This can be done by 
reducing the number of iterations once the optimal solution 
is obtained. In this paper, we pro–posed a modified genetic 
algorithm that is inspired by the rewarding mechanism of 
the stochastic evolution al–gorithm. The modified GA with 
the rewarding mecha–nism is tested using real data with 
respect to the solution quality and computational effort. 
Results indicated that for the five values of rewarding 
iterations tested, the higher number of rewarding iterations 
is more favorable than the lower number of rewarding 
iterations. Furthermore, a high number of rewarding 
iterations demonstrated a more stable behavior in terms of 
algorithm convergence compared to the low number of 
rewarding iterations.  

 
(a) 

 
    (b)  

 
                                (c) 

 
(d) 

 
(e) 

Figure 4. Percentage of extract iterations for different 
reward iterations (a) Reward = 5 (b) Reward = 10 (c) Reward 
= 15 (d) Reward = 20 and (e) Reward = 25. 

The present study has the potential to expand in 
several dimensions, as itemized below. 
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 The comprehensive impact of the rewarding 
mechanism can be investigated with several 
other similar algorithms, such as swarm intel–
ligence and other evolutionary computation 
algorithms.  

 More real data from several potential sites can 
be used to lead to more concrete conclusions.  

 Several rewarding mechanisms can be deve–
loped to improve the algorithm's performance 
further. Particularly, a dynamic, rewarding 
mechanism can be developed that adjusts the 
rewarding iterations according to the 
algorithm's performance 

 A variety of numerical experiments with more 
sets of rewarding iterations can be tried. 
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NOMENCLATURE 

vt,j Wind speed at turbine i under the wake of 
turbine j 

v0 Mean wind speed (prevailing wind) 
vi 
RRj 

Wind speed at turbine i 
Rotor radius of turbine j 

rj Wake radius 
α Entrainment factor 
di,j Distance downstream from turbine j to 

turbine i (i.e., distance between the current 
turbine and the turbine creating wake 
effect on it) 

 The angle of prevailing wind to the front 
of the farm 

N Total number of turbines 
C Number of cells in the layout grid 
Pcurrent 

Pideal 

ρ 
Fo_best 
Fi_best 
Si_best 
So_best 
GA 
GARM 
 
StocE 
PWI 
TI 
IBS 

Total power generated by turbines 
Ideal power generated by turbines 
Number of iterations in GARM 
Fitness of overall best solution 
Fitness of best solution (current iteration) 
Iteration best solution 
Overall best solution 
Genetic algorithms 
Genetic algorithm with the rewarding 
mechanism 
Stochastic Evolution algorithm 
Biogeography based optimization 
Percentage of wasted iterations 
Total iterations 
Iteration at which the best solution is 
found 

 

 
ГАРМ: ГЕНЕТСКИ АЛГОРИТАМ ЗАСНОВАН 

НА СТОХАСТИЧКОЈ ЕВОЛУЦИЈИ СА 
МЕХАНИЗМОМ НАГРАЂИВАЊА ЗА 

ОПТИМИЗАЦИЈУ РАСПОРЕДА ВЕТРОПАРКА 
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Енергија ветра се појавила као потенцијална 
алтернатива традиционалним изворима енергије за 



 

FME Transactions VOL. 51, No 4, 2023 ▪ 584
 

економичну и чисту производњу електричне енер–
гије. Један важан аспект производње енергије ветра 
је дизајн ветропарка како би се искористила мак–
симална енергија. Због своје инхерентне рачунске 
сложености, проблем дизајна ветропарка традици–
онално се решава коришћењем алгоритама инспи–
рисаних природом. Важно питање у алгоритмима 
инспирисаним природом је услов завршетка, који 
регулише време извршења алгоритма. Да би се 
оптимизирало време извршења, требало би при–

менити одговарајуће услове раскида. Ова студија 
предлаже концепт механизма награђивања за пос–
тизање оптимизације у условима завршетка уз одр–
жавање квалитета решења. Предложени механизам 
награђивања, усвојен из алгоритма стохастичке ево–
луције, уграђен је у генетски алгоритам. Предло–
жени генетски алгоритам са механизмом награ–
ђивања (ГАРМ) је емпиријски тестиран коришће–
њем стварних података са потенцијалне локације 
ветропарка са различитим итерацијама награђивања. 

 

 


