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Development of a SCARA Robot Arm 
for Palletizing Applications Based on 
Computer Vision 
 
This paper develops a computer vision system integrated with a SCARA 
robot arm to pick and place objects. A novel method to calculate the 3D 
coordinates of the objects from a camera is proposed. This method helps 
simplify the camera calibration process. It requires no knowledge of 
camera modeling and mathematical knowledge of coordinate 
transformations. The least square method will predate the Equation 
describing the relationship between pixel coordinates and 3D coordinates. 
An image processing algorithm is presented to detect objects by color or 
pixel intensity (thresholding method). The pixel coordinates of the objects 
are then converted to 3D coordinates. The inverse kinematic Equation is 
applied to find the joint angles of the SCARA robot. A palletizing 
application is implemented to test the accuracy of the proposed method. 
The kinematic Equation of the robot arm is presented to convert the 3D 
position of the objects to the robot joint angles. So, the robot moves exactly 
to the required positions by providing suitable rotational movements for 
each robot joint. The experiment results show that the robot can pick and 
place 27 boxes on the conveyor to the pallet with an average time of 2.8s 
per box. The positions of the boxes were determined with an average error 
of 0.5112mm and 0.6838mm in the X and Y directions, respectively. 
 
Keywords: SCARA robot, image processing, palletizing, computer vision, 
production line. 

 
 

1. INTRODUCTION 
 

In recent years, industrial robot arms have been widely 
used in many applications in the industry. Using the 
robot arm in an automatic production line has brought 
more benefits, such as increasing productivity and 
quality of the product, reducing the number of defective 
products, and reducing the waste of raw materials. 
Especially the integration of computer vision in the 
robot controller has helped increase the ability of robots 
and helped perform other tasks that required interaction 
with the environment. In the robotic vision system, the 
information in the surrounding environment is perceived 
by cameras [1-5]. A computer processes the vision data 
to provide useful information to the robot controller. As 
a result, the robot will complete the requests more 
accurately and efficiently [6-10]. 

In a grasping task in a production line, the vision 
system will detect objects in the image and estimate the 
3D position and orientation of objects so the robot can 
move exactly to the position of objects [11-13]. The 
performance of the grasping task depends on the 
accuracy and speed of the detection and estimation 
process. There have been many studies to develop 
algorithms for detecting objects in the image and 
calculating the 3D pose. Detecting an object in the 

image is a challenging task. Some challenges in a 
detecting task are familiar and complex stacking scenes, 
multi-objects, object-cluttered scenes, occlusions, and 
texture less objects, etc. [14-18]. The objects can be 
extracted by using their features such as color, intensity, 
size, shape, etc. These features are used in simple cases 
where the interested objects are very different compared 
to the background. In complex scenarios, machine 
learning or deep learning methods are applied [19-22].  

Accurate estimating of the 3D pose of the objects is 
required for the robot grasping tasks. In most pick-and-
place applications in a conventional industrial pro–
duction line, the 3D model of the interested objects must 
be known in advance. So, based on analyzing the shape 
or extracting the features of the object, the algorithms 
form equations to calculate the 3D coordinates for 
industrial robot arms to perform pick and place objects 
[23-25]. However, these methods are sensitive to 
illumination change and noise from the surrounding 
environment. If the 3D model of the objects is not 
known prior or there are many objects in the workspace 
to grasp, these approaches are also not applied. The 
problem of 6D pose estimation is mainly addressed by 
using depth data or RGB-D images [26-28]. These 
approaches can achieve high accuracy with a high-
quality depth map. However, the depth maps produced 
from a low-cost depth camera or from a binocular vision 
system commonly have low accuracy. In recent years, 
using RGB images from different viewpoints has 
received more attention. If only using a single RGB 
image for pose estimation, the results have low accuracy 
due to the scale, depth, and perspective ambiguities. 
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Combining multiple RGB images from different 
viewpoints helps enhance the performance of the 
estimation. With the machine learning paradigm beco–
ming popular, more and more research has been focused 
on applying the deep learning technique to deal with 
automatic object-grasping tasks.  

Although the deep learning method can deal with the 
problem of pose estimation well, it requires the training 
process before being applied in the real application. 
This is time-consuming and costly. A large amount of 
data needs to be collected, and a powerful computer is 
required to train the neural networks. 

In this paper, we propose a simple method to 
calculate the 3D position of the objects on the conveyor. 
This method helps simplify the camera calibration 
process. It requires no knowledge of camera modeling 
and mathematical knowledge of coordinate transfor–
mations. The “transform equation” describing the relati–
onship between pixel coordinates and 3D coordinates 
will be predefined by the least square method. Then, 
when an object is detected in the image, the pixel 
centroid is extracted and converted to the 3D space by 
using the “transform equation”. The proposed method is 
applied in a palletizing task to grasp boxes moving on 
the conveyor and place them on a pallet. A 4-DOF 
SCARA robot is used to pick and place boxes. The 
kinematics Equation of the robot is presented for work–
space analysis and finding the joint angles. The objects 
moved on a conveyor are detected by color or their 
intensity using a simple image processing algorithm.  

The reminders of this paper are as follows: The 
kinematics Equation of the SCARA robot arm is 
presented in Section 2. The forward kinematics is used 
to analyze the workspace. Section 3 presents the com–
puter vision system. The image processing algorithm is 
developed for detecting objects, and a novel method is 
proposed to calculate the 3D position of the objects. A 
palletizing task is conducted in the Experiment Section. 
The robot picks the boxes on a conveyor and stacks 
them on a pallet. Finally, Section 5 is the Conclusion. 

 
2. KINEMATIC EQUATION OF SCARA ROBOT 
 
This section presents the forward kinematic and inverse 
kinematic problems of the 4-DOF SCARA robot. If we 
want to calculate the position and orientation of the end-
effector from the joint angles, we need the forward 
kinematic equations. In contrast, the inverse kinematics 
problem is used to determine the joint angles if we 
know the position and orientation of the end-effector. 
The robot workspace can also be analyzed from the 
kinematic equations. Figure 1 shows the kinetic diagram 
of the robot arm. The robot consists of a translation 
motion and three rotation motions. The motion in the Z 
direction is an independent degree of freedom. So, we 
only consider the relationship of the rotation angles with 
the X and Y coordinates. In Figure 1, the lengths of 
links are l1, l2 and l3, respectively. The joint angles are 
θ1, θ2 and θ3. The pose of the end-effector is p = (xp, yp, 
θp). From the geometrical relationship, we have: 

   1 1 2 1 2 3 1 2 3cos cos cospx d l l l             (1a) 

 

 
Figure 1. Schematic of the 4-DOF SCARA robot arm 

   1 1 2 1 2 3 1 2 3sin sin sinpy l l l             (1b) 

1 2 3p         (1c) 

Equation (1) is the forward kinematic Equation of 
the SCARA robot arm. Once there is a specific length of 
links, for each value of the joint angles, the pose of the 
end-effector is the only one. 

To obtain the inverse kinematic Equation, we solve 
Equation (1) to find the joint angles θ1, θ2, and θ3. 
Substitute angle θp from Equation (1c) into Equation 
(1a) and (1b): 

 1 1 2 1 2 3cos cos cosp pl l x d l a           (2a) 

 1 1 2 1 2 3sin sin sinp pl l y l b          (2b) 

Square both sides of Equation (2) and add together 
to get: 

2 2 2 2
1 2 1 2 22 cosl l l l a b      (3) 

From equation (2), the angle θ2 can be determined 
by: 

2 2 2 2
1 2

2
1 2

arccos
2

a b l l
l l


   
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  (4) 

After having the angle θ2, expand equation (2a) 
obtain: 

 1 2 2 1 2 2 1cos cos sin sinl l l a       (5) 

Denote: 
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  (6) 

Equation (5) is converted to: 

 1cosr a       (7) 

So, the value of the angle θ1 is: 
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1 arccos
a
r

     
 

  (8) 

Finally, the value of the angle θ3 can be calculated 
from Equation (1c): 

3 1 2p         (9) 

To analyze the workspace of the robot, from equ–
ation (1), we have: 

 2 2 2 2 2
1 2 3 1 2 22 cosp px d y l l l l l         (10) 

The right-hand side of Equation (10) reaches its ma–
ximum value when the cosine of the angles is one, so: 

   
2 22

1 2 3p px d y l l l       (11) 

So, the maximum reaching distance of the robot is l1 
+ l2 + l3.  

In the case the joint angles are limited by the 
physical constraints, the workspace of the robot is also 
limited.  

To find the exact workspace, we use MATLAB to 
draw the workspace. Each joint angle is divided into 36 
values. Three joints will create 363 = 46656 points of 
the end-effector in the workspace.  

A program is written in MATLAB to calculate the 
3D position of the end-effector from the joint angles by 
using Equation (1).  

All 3D points are drawn on a graph to show the 
robot's workspace. With the robot's parameters in Table 
1, the result is shown in Figure 2. 

 
Figure 2. The robot’s workspace 

Table 1. The robot parameters 

Parameter Value 
Distance d 100mm 
The first link’s length 260mm 
The second link’s length 240mm 
The third link’s length 60mm 
The first joint angle -900 to 900

The second joint angle -1100 to 1100

The third joint angle -1200 to 1200

 
3. COMPUTER VISION SYSTEM 

 
The computer vision system helps the robot detect 
objects and calculate the position of objects. This paper 
presents an image processing algorithm to detect objects 
according to their color or apply a thresholding method. 
Then, a simple method is proposed to calculate the 3D 
coordinates of the objects. The 3D coordinate is 
transformed to the robot joint angles using inverse 
kinematics, and the robot moves to the objects.  

 
3.1 Image processing algorithm 

 
There are many techniques that can be applied to detect 
an object. It depends on the outstanding features of the 
object compared to the background or other objects. In 
this section, we present two methods to detect objects 
by using the color feature and the thresholding methods. 

In the color method, objects are assumed to have a 
different color compared to the background color. The 
RGB image of the objects is converted to the HSV 
image for color classification. The HSV color space is 
commonly used for detecting an object by color. An 
image in the HSV color space is represented by three 
channels: Hue, Saturation, and Value. Each color in the 
HSV space corresponds to a specific range of H, S, and 
V. So, to detect an object with a specific color, we apply 
a threshold for each channel as follows: 

       
     
     

H H

S S

V V

dst l small I hsv I high I

small I hsv I high I

small I hsv I high I

   

  

 

  (12) 

where hsv(I) is the source image in the HSV space, 
dst(I) is the destination image, [small(I)H, high(I)H] is 
the threshold of Hue, [small(I)S, high(I)S] is the 
threshold of Saturation, [small(I)V, high(I)V]is the 
threshold of value. 

To transform from an RGB space to an HSV space, 
we use the following Equation: 

 max , , / 255V R G B   (13) 

 
 

min , ,
1 0
max , ,

0 0

R G B
if M

S R G B

if M


  
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  (14) 

If G ≥ B: 

1
2 2 2

2cos

B G
R

H
R G B RG GB BR




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
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(16)

If G ≥ B: 

1
2 2 2

2360 cos

B G
R

H
R G B RG GB BR






 
    

 (17) 

In the thresholding method, the interested objects are 
assumed to have different pixel intensities than other 
objects. So, when applying a threshold on the image, the 
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objects are distinguished from the background. The 
main issue is how to determine an exact threshold. 
There are many techniques to determine the thresholds. 
Among them, the Otsu method is the most popular 
method due to its high responsiveness to environmental 
changes. In the Otsu method, the threshold T is 
determined by minimizing the within-class variance 

 2
w t : 

     2 2 2
1 1 2 2
2min

w

w
t

w t t w t

T

  



 


 (18) 

Or maximize the between-class variance  2
b t : 

        22
1 2 1 2

2max

b

b
t

w t w t t t

T

  



 


 (19) 

where w1(t), w2(t) are the probabilities of the two classes 
divided by a threshold, σ1, σ2 are the variance, and μ1, μ2 

are the mean of each class.  
After applying the HSV threshold or Otsu threshold, 

the objects are extracted from the background. How–
ever, the image still contains some small noisy objects 
or some small holes in the objects' region. So, the 
morphological operators are applied to deal with these 
issues. The closing operator is applied to fill the hole in 
the objects and to delete the small objects, the opening 
operator is applied. A dilation followed by an erosion 
establishes the opening operator. An erosion followed 
by a dilation establishes the closing operator. In the case 
of small objects that are not completely deleted, an area 
threshold is applied to exclude them. In the algorithm, 
we do not need to process objects with an area smaller 
than a predetermined threshold. 
 
3.2 Calculating the 3D position of the objects 
 
To calculate the 3D position of objects from their pixel 
coordinates, it needs to use the intrinsic and extrinsic 
parameters obtained from the calibration process. In 
addition, the geometric model of objects is also requ–
ired. When projected into two-dimensional image space, 
three-dimensional information has lost information 
about depth. Therefore, one more constraint is required 
to reconstruct 3D coordinates from 2D image coor-
dinates. In this paper, we propose a simple method to 
calculate the 3D position of objects from 2D image 
points. The objects are placed on the conveyor, so the Z 
coordinate of the objects is assumed to be known in 
advance. We use quadratic equations to represent the 
relationship between 3D coordinates in the X and Y axis 
with pixel coordinates as follows: 

2 2
1 2 3 4 5 6pX a u a v a uv a u a v a        (20a) 

2 2
1 2 3 4 5 6pY b u b v b uv b u b v b        (20b) 

where ai, bi are constant coefficients that need to be 

determined. To find the coefficients , we collect n 

points (Xpi, Ypi, Zpi) with the pixel coordinates (ui, vi). 
The Equation (20a) written for n points is: 

2 2
1 1 1 1 1 3 1 1 4 1 5 1 6

2 2
2 1 2 2 2 3 2 2 4 2 5 2 6

2 2
1 2 3 4 5 6

...

...

p

p

pn n n n n n n

X a u a v a u v a u a v a

X a u a v a u v a u a v a

X a u a v a u v a u a v a




      

      




      

  (21) 

Rewritten in the matrix form: 

2 2 1
1 1 1 1 1 1 1

22 22 2 2 2 2 2 2
3

4

5
2 2

6

1

1
... ...
... ...

1

p

p

pn n n n n n n

aX u v u v u v
a

X u v u v u v
a

a

a
X u v u v u v a

                                       

  (22) 

Equation (21) has six unknown values, so it needs at 
least six image points to accomplish six equations. 
However, the extracted pixels are distorted due to noise, 
so using only six will give inaccurate results. For 
accurate and general results, we must extract more than 
six points, and Equation (22) is solved by using the least 
squares method (LSM). Denote: 

 1 2 3 4 5 6

2 2
11 1 1 1 1 1

2 2 12 2 2 2 2 2

2 2

1

1
, ......

......

1

T
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M X
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

   
   
   
       
   
   
     

  (23) 

Equation (21) becomes: 

X MA    (24) 

According to the least square method, the solution of 
Equation (24) is: 

  1T TA M M M Y


   (25) 

Similarly, the coefficients bi are determined by: 

  1T TB M M M Y


   (26) 

where Y is the vector of the Y-coordinates: 

1

2

...

...

p

p

pn

Y

Y

Y

Y

 
 
 
 
 
 
 
  

   (27) 
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3.3 The novelty of the proposed methodology 
 

Calibration is an important step in the computer vision 
field. Camera parameters need to be specified to cal–
culate the 3D coordinates of the objects. This requires a 
certain amount of camera knowledge (camera model, 
intrinsic and extrinsic parameters, camera distortion, 
etc.), knowledge of geometry, methods to convert 
coordinate systems, matrices, vectors, etc. Therefore, 
calibration is a time-consuming and labor-intensive job. 
The normal calibration method will use a checkerboard. 
Images of the checkerboard in different positions and 
poses are collected, and software or program is used to 
process images and calibrate the camera. The calibration 
process will return the internal and external parameters 
of the camera. The user will use these parameters 
together with the camera's model to calculate the 
object's 3D coordinates. In this paper, to simplify the 
process of calibrating and estimating 3D coordinates, 
the “transform equation” describing the relationship 
between pixel coordinates and 3D coordinates will be 
predefined by the least square method. Then, when an 

object is detected in the image, the pixel centroid is 
extracted and converted to the 3D space by using the 
“transform equation”. The proposed method simply uses 
an image of the checkerboard and extracts the 2D 
coordinates of the checkers. Equations describing the 
relationship between the 2D and 3D coordinates are 
easy to calculate by the least squares method without 
using any other program or software. 
 
4. RESULTS AND DISCUSSION 
 
3.4 Experiment setup 
 
Figure 3 shows the experimental setup of a palletizing 
system. The system consists of a SCARA robot arm to 
pick up the paper boxes on the conveyor to stack them 
on a pallet. A camera is used to detect boxes when they 
move to the end of the conveyor. The size of the pallet 
is 150 mm x 180 mm. The pallet will contain twenty-
seven boxes stacked on three floors. Each floor has nine 
boxes sorted into three columns and three rows. The 
size of each box is 50x60x10mm.  

 

 
Figure 3. The experiment robot system 
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Stepper motors drive the SCARA robot arm. The 
stepper motors are controlled with a micro-step of 6400 
pulse/revolution. The maximum holding torque of the 
stepper motor is 2Nm. They can rotate at a maximum 
speed of 3600/s. The robot arm is connected to a screw 
mechanism to translate in the Z-direction. At the robot's 
end-effector is mounted a vacuum suction cup to grasp 
the boxes. The robot arm is controlled by PLC Delta 
DVP28SV11T2. This PLC has four outputs that can 
create high-frequency pulses for controlling stepper 
motors or servo motors.  

The camera is fixed above the conveyor to capture 
images of the boxes. It is a certain distance from the 
conveyor belt to ensure that it can capture the complete 
image of the boxes. The obtained images have a 
resolution of 640x480 pixels. The camera is connected 
to a computer by a USB port. The image processing 
algorithm is written in Python programming language 
with the support of the OpenCV library. 
 
3.5 Results 
 
According to the required task, the robot arm must 
move to different positions to grasp boxes on the pallet. 
Each position of the boxes corresponds to different 
configurations of the robot. We need to calculate the 
robot's joint angles for each configuration by using the 
inverse kinematic Equation presented in Section 2. 
Table 2 shows the joint angles of the robot with nine 
positions of the boxes on the pallet. 

Table 2. The robot joint angles 

Cell  X, Y coordinates Joint angle 
(θ1, θ2, θ3) 

1 (350, -200) (6.64,-113.167, 106.52) 
2 (350, -140) (21.25, -123.84, 102.59) 
3 (350, -80) (37.84, -131.50,  93.66) 
4 (400, -200) (8.35,  -90.51, 82.16) 
5 (400, -140) (21.47, -99.92, 78.45) 
6 (400, -80) (34.60, -106.14, 71.54) 
7 (450, -200) (0.38, -57.58, 57.20) 
8 (450, -140) (12.77, -68.12, 55.36) 
9 (450, -80) (23.93, -74.52, 50.60) 

 

 
Figure 4. The trajectory of the robot 

In a pick-and-place operation, the motion of the 
robot consists of several phases, as shown in Figure 4. 
First, the robot moves from the “Home position” to the 
approach position Ai of the box on the conveyor. Then, 

the robot moves in a vertical line to the grasping 
position, Bi, which is determined by the computer 
vision system. At this position, the box is attached to the 
robot's gripper. The box is lifted upwards in a straight 
line to position Ai before moving to point Ci along a 
curve. Finally, the box is moved to the point Di on the 
pallet in a straight line and is dropped on the pallet. To 
grasp another box, the robot will move from position Di 
to the box position Bi+i; the robot will move backward 
from point Di to point Ci, from point Ci to point Ai+1, 
and from Ai+1 to Bi+1. The process is repeated until the 
robot has completed grasping 27 boxes and stacks them 
on the pallet. The points Ai and Bi are determined by the 
computer vision system, and the points Ci, Di will 
change depending on the position of the boxes on the 
pallet. Moving according to the path in Figure 4 helps 
the robot avoid colliding with other objects. 

 
Figure 5. Calibration plate 

To calculate the 3D position of the boxes on the 
conveyor, we must determine the coefficients in Equa–
tion (20). A calibration plate with 40 circles is used. The 
plate is placed on the conveyor; the camera takes the 
image of the plate. The circles are detected, and their 
centroids are extracted, as shown in Figure 5. Using 
Equation (25) and Equation (26), the coefficients are 
determined as follows: 

64

55

45

3

7.5174 101.0969 10

2.8691 102.1504 10

1.2220 102.64423 10

0.8254 3.82020 10
0.0202 0.8711
119.8452 389.6859

A B









      
    
  
       

  
     

      

  

These coefficients are used to calculate the 3D 
coordinates of the boxes as the conveyor transports 
them to the camera's field of view. Table 3 shows the 
performance of the proposed method. The positions of 
the objects were determined with an average error of 
0.5112mm and 0.6838 mm in the X and Y directions, 
respectively. When objects are far from the image's 
centroid, the error will be larger than that of objects in 
the image's centroid. The maximum error is 2.19mm 
and 1.82mm in the X and Y directions, respectively. 
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Figure 6 shows the results of detecting the objects 
by applying the HSV threshold. The thresholds of Hue, 
Saturation, and Value are determined by changing them 
until we get a full shape of the object in the binary 
image. If we want to detect many objects with different 
colors, we can apply different thresholds to each color 
in turn. In Figure 6, three objects with three colors (red, 
yellow, and green) are detected. Figure 7 shows the 
result of applying the Otsu threshold. The resulting 
image also has a noisy object due to the lighting 
conditions. However, this is only a small object which 
can be eliminated using an area threshold. 

 
(a) original image 

 
(b) resulting image 

Figure 6. The HSV threshold method result 

 
(a) original image 

 
(b) resulting image 

Figure 7. The Otsu threshold method result 

After detecting the object and calculating the 3D 
coordinates using the abovementioned methods, the 
object's position is sent to the robot. The robot performs 
the process of picking and dropping the object from the 
conveyor to the pallet according to the trajectory, as 
shown in Figure 5. The whole process of picking up the 
product takes about 2.8 seconds, including image 
processing time. 

Table 3. The performance of the estimation method 

 X coordinate Y coordinate 
Average error 2.19mm 1.8203 mm 
Maximum error 0.5112mm 0.6838mm 
Standard Deviation 0.3923mm 0.4324mm 

CONCLUSION 

This study has developed a SCARA robot system for a 
palletizing application based on computer vision. The 
kinematic problem of the robot 4-DOFSCARA arm is 
analyzed to determine the robot's workspace. As a 
result, it is possible to place pallets within the robot's 
operating area. The inverse kinematics problem helps to 
calculate the value of the robot's joint angles from the 
3D position of the gripper.  

To ensure the flexibility of the robot system, a com–
puter vision system is integrated to determine the 
object's position on the conveyor. Converting from pixel 
coordinates to 3D coordinates requires the calibration 
process to know the camera parameters and the frame 
relationship between the camera and the robot. This 
requires camera modeling and mathematical knowledge. 
In this paper, we use quadratic equations to represent 
the relationship between 3D coordinates in the X and Y 
axis with pixel coordinates. This is a simple method 
with low computational cost and does not require any 
knowledge of camera modeling and geometric relati–
onships. 

An experimental robot system was built to verify the 
proposed algorithm. The robot grasps twenty-seven 
boxes and stacks them on the pallet. Experimental 
results show that the positions of the boxes are 
determined correctly. The system takes about 2.8s to 
finish picking up a box. The positions of the objects 
were determined with an average error of 0.5112mm 
and 0.6838mm in the X and Y directions, respectively. 
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The maximum error is 2.19mm and 1.82mm in the X 
and Y directions, respectively 

.In future works, the robot system will be applied in 
a real production line to evaluate more detail on the 
effectiveness. The accuracy and processing time are also 
improved to meet the requirements of the real 
applications. The camera with higher resolution and 
speed will be replaced; a more powerful computer will 
be used to increase the processing time. 
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NOMENCLATURE 

xp X coordinate of the robot end-effector 
yp Y coordinate of the robot end-effector 
θp orientation of the robot end-effector 
θ1 The first joint angle 
θ2 The second joint angle 
θ3 The third joint angle 
S The saturation value 
H The Hue value 
V The value 
u, v The pixel coordinates 
2
w  The within-class variance 

2
b  The between-class variance  

Abbreviations 

c cosine 
s sine 

SCARA 
Selective compliance assembly robot 
arm 

PLC Programable Logic Controller 
DOF Degree of Freedom 
2D Two dimensional 
3D Three dimensional 
LSM Least Squares Method 
HSV Hue, Saturation, Value 
RGB Red, Green, Blue 

 

 
 

РАЗВОЈ СЦАРА РОБОТСКЕ РУКЕ ЗА 
АПЛИКАЦИЈЕ ЗА ПАЛЕТИЗАЦИЈУ 

ЗАСНОВАНЕ НА КОМПЈУТЕРСКОМ ВИДУ 
 

Х.В. Нгујен, В.Д. Конг, Ф.К. Трунг 
 

Овај рад развија систем компјутерског вида 
интегрисан са СЦАРА роботском руком за бирање и 
постављање објеката. Предложена је нова метода за 
израчунавање 3Д координата објеката помоћу 
камере. Овај метод помаже да се поједностави 
процес калибрације камере. Не захтева познавање 
моделирања камере и математичко знање о 
трансформацијама координата. Метода најмањег 
квадрата претходиће једначини која описује однос 
између координата пиксела и 3Д координата. 
Представљен је алгоритам за обраду слике да 
детектује објекте по интензитету боје или пиксела 
(метода прага). Координате пиксела објеката се 
затим конвертују у 3Д координате. Инверзна 
кинематичка једначина се примењује за 
проналажење зглобних углова СЦАРА робота. 
Примењује се апликација за палетизацију да би се 
тестирала тачност предложене методе. 
Представљена је кинематичка једначина руке робота 
за претварање 3Д положаја објеката у углове зглоба 
робота. Дакле, робот се помера тачно у тражене 
позиције обезбеђујући одговарајуће ротационе 
покрете за сваки зглоб робота. Резултати 
експеримента показују да робот може покупити и 
поставити 27 кутија на транспортер до палете са 
просечним временом од 2,8с по кутији. Положаји 
кутија су одређени са просечном грешком од 
0,5112мм и 0,6838мм у Кс и И смеру, респективно. 

 


