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Neural Networks for Effective 
Rotational Shaft Crack Localization 
 
Rotational shafts are pivotal components in industrial settings and are 
responsible for transmitting torque and rotational motion. Despite their 
significance, these shafts are susceptible to faults, particularly cracks, 
which can adversely affect the system's performance and safety. Hence, 
efficient crack detection and diagnosis ensure safety, reliability, and cost-
effectiveness. This research aims to develop an Artificial Neural Network 
(ANN) model that can effectively identify cracks occurring at different 
depths and locations in rotating shafts, which operate at varying rotational 
speeds. Vibration signals were obtained and subjected to preprocessing 
using a bandpass filter to isolate the shaft signals from other components. 
Subsequently, time-domain statistical features were extracted from the 
filtered signals. An optimal feature selection methodology was employed to 
rank the extracted features, and the highest-ranking features were chosen 
for training the ANN model. The findings of this research indicate that the 
developed model achieved a classification accuracy of 94.4%. 
 
Keywords: Artificial Neural Network, Crack Detection, ReliefF, Signal 
Processing, Vibration Analysis. 

 
 

1. INTRODUCTION  
 
Rotating shafts play a critical role as essential compo–
nents in various industries where alternating loads are 
encountered, such as power plants, generators, comp–
ressors, aircraft engines, and wind turbines. These shafts 
are subjected to continuous rotation and are responsible 
for transmitting torque and rotational motion within the 
respective machinery. However, despite their vital func–
tion, rotating shafts are prone to various types of failures 
throughout their operational lifespan. These failures 
include misalignment or unbalance during the insta–
llation process, as well as the development of cracks, 
erosion, and wear during regular operation. The occur-
rence of such faults can have detrimental consequences, 
leading to diminished performance, equipment failure, 
and imposing significant financial burdens for repair or 
replacement. Under extreme operating conditions and 
subjected to repeated loads, rotating shafts are 
susceptible to local plastic deformation, which can give 
rise to surface flaws. Over time, these initial flaws have 
the potential to propagate and develop into cracks. 
When the stress intensity factors at the crack front 
exceed the critical stress intensity factor, the crack may 
undergo rapid propagation. This phenomenon can 
ultimately lead to catastrophic fatigue crack failure, 
posing significant risks and potential dangers [1]. 
Despite their typical ductile nature, they can exhibit 
brittleness in fatigue fractures formed by cracks. 
Consequently, the early detection of cracks in rotor 

systems has become a matter of growing concern for 
engineers and researchers [2], [3]. Detecting and diag–
nosing shaft cracks in rotor systems is crucial to 
preventing catastrophic failures, maintaining equipment 
reliability, and protecting personnel safety. 

Currently, vibration-based fault detection is consi–
dered a practical and effective approach for diagnosing 
mechanical equipment [4]. According to research by 
Malla and Panigrahi [5], vibration-based condition 
monitoring has been found to be highly successful in 
detecting machine faults or failures, with the capability 
of identifying up to 90% of such issues. This is because 
each component within a system or device possesses a 
specific vibration signature closely associated with the 
machine's operating conditions. Rotating machines typi–
cally consist of multiple components, such as shafts, 
bearings, pumps, gears, and fans. Any damage or failure 
to these components leads to abnormal vibrations com–
pared to normal operational conditions. Complex vibra–
tion data is acquired from rotating machine components 
through signal processing techniques, which help 
resolve noise elimination, demodulation, and analysis 
issues and enhance technology for feature extraction 
when analyzing vibration signals from rotating machi–
nery. Features of monitored signals are extracted using 
signal processing techniques to eliminate redundant 
information and analyze the corresponding patterns in 
the time and frequency domains and nonlinear features 
[6], [7]. Features play a crucial role in fault detection in 
rotating machinery. Statistical features such as mean, 
standard deviation, skewness, and kurtosis are utilized 
to describe the overall features of the vibration signal, 
but they are limited in their ability to detect changes in 
the signal.  

On the other hand, frequency-domain features, 
including energy, power spectral density, and root mean 
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square, are derived from the Fourier transform of the 
signal and are highly sensitive to changes in the mecha–
nical system, including shifts in natural frequency, 
damping, and stiffness, which are often indicative of 
damage or failure. Time-domain features, such as the 
time signal and its derivatives, and statistical para–
meters, such as mean, variance, and peak-to-peak value, 
are useful for the early detection of faults. The choice of 
fault diagnosis features depends on the fault type and 
the application's specific needs. The application of 
appropriate features can significantly enhance the accu–
racy and reliability of fault diagnosis in rotating mac–
hinery. However, it is not possible to identify fault 
patterns by directly removing features. Hence, the 
utilization of these characteristics in machine learning 
and artificial intelligence techniques is necessary to 
enable the categorization of faults. In the diagnosis of 
rotating equipment, classifiers and statistical learning 
approaches have been widely used, such as Artificial 
Neural Networks (ANN) [8-11], K-Nearest Neighbor 
(k-NN)[12–14], Decision Tree (DT) [15-17], Support 
Vector Machine (SVM) [18-21], and other algorithms.  

Various studies have been conducted on rotating 
shaft fault diagnosis, providing valuable contributions 
and insights. Guan et al. [22] proposed two dynamic 
model variations to address shaft misalignment. Then, 
these models were subjected to both simulation and 
experimental evaluations. Bovsunovsky [23] presented a 
methodology that employs the principles of linear 
fracture mechanics to calculate the relative change in 
the compliance of a shaft caused by the presence of a 
crack. Huo et al. [24] presented a study that evaluated 
the performance and efficiency of crack fault detection 
through the utilization of wavelet packet decomposition 
(WPD) and empirical mode decomposition (EMD) in 
combination with multiscale entropy (MSE) for the 
diagnosis of rotating shaft faults. Gradzki et al. [25] 
proposed a novel signal-based methodology for detec–
ting cracks in rotors utilizing auto-correlation and power 
spectral density functions derived from the vibration 
signals acquired at the bearings of the rotating shaft. 
Jeon et al. [26] created a noncontact method for iden–
tifying fatigue cracks in rotating steel shafts using air-
coupled transducers. The method's efficacy was eva–
luated through experiments using ultrasonic data on real 
fatigue cracks on half-scale and full-scale steel shafts 
used in automobile assembly lines subjected to cyclic 
loading tests. Azeem et al. [27] employed a method of 
order analysis to detect misalignment and shaft cracks. 
The time-domain data obtained were transformed into 
spectra utilizing a Fast Fourier Transform (FFT), which 
was then used to conduct the order analysis in real-time. 
Sinou [28] studied the possible connections between 
nonlinear vibrations and the occurrences of higher-order 
antiresonances and structural modifications resulting 
from breathing cracks in rotor systems. In the context of 
using AI for fault classification, Jiang et al. [29] 
proposed a diagnostic method for faults in rotating 
machinery that employs the fusion of multi-sensor 
information, where all features are derived from 
vibration data in the time domain to form a fusion 
vector, and the SVM is utilized for classification. 
Rahmoune et al. [30] proposed a predictive control 

strategy for the high-pressure shaft speed of a gas 
turbine using ANN to monitor the vibratory behavior of 
the rotating machine. Yan et al. [31] presented a new 
algorithm for multi-sensor data fusion that utilizes the 
K-nearest neighbor classification method to identify im–
balance, misalignment, and rub-impact in rotating 
machinery. Umbrajkaar et al. [32] employed a combi–
nation of ANN and SVM for the classification and 
assessment of shaft misalignment under varying load 
conditions. Zhao et al. [30] presented a method of fault 
diagnosis that employs a multi-input convolutional 
neural network (MI-CNN) was presented by Zhao et al. 
[33] for the classification of shaft misalignment and 
cracks in rotor systems. Liu Zhao et al. [34] proposed a 
novel method for diagnosing unbalance, misalignment, 
and contact-rubbing in rotating shafts based on the use 
of a convolutional neural network (CNN), discrete 
wavelet transform (DWT), and singular value decom–
position (SVD). Seplveda and Sinha [35] proposed a 
smart vibration-based machine learning model (SVML) 
to diagnose rotor failures, including misalignment, shaft 
bow, looseness, and rubbing. Gangsar et al. [36] pro–
posed a new approach to improve the accuracy of 
diagnosing unbalanced faults in rotating machinery 
using an SVM in combination with both time and 
frequency domains. Lee et al. [37] proposed a strategy 
for detecting shaft misalignment defects in rotating 
machinery through the use of an SVM for fault 
recognition, which was based on the analysis of the 
values of the components of the power spectrum in the 
frequency domain classified by the principal component 
analysis (PCA). Rao [38] utilized a combination of 
ANN and wavelet transforms to detect irregularities, 
such as open cracks or grooves on a rotating stepped 
shaft with multiple discs. Zamorano et al. [39] created a 
technique for choosing the mother wavelet in the 
wavelet packet transform method to improve the 
detection of cracks in rotating elements through SVM. 

While examining the existing literature, it becomes 
apparent that the predominant focus of prior investi–
gations in this field has centered on fundamental signal 
analysis. However, a notable gap contributing to in–
consistent results and diminished accuracy in machine 
learning classifiers arises from the direct utilization of 
features extracted from signals without an intermediate 
preprocessing step. The absence of such preprocessing, 
involving techniques like noise reduction, filtering, or 
normalization, poses potential risks by introducing noise, 
distortions, or inconsistencies in the feature data. This 
directly impacts the performance and accuracy of 
machine learning classifiers. Thus, it is imperative to 
integrate suitable signal preprocessing techniques to mi–
tigate these limitations and enhance the overall effec–
tiveness of classifiers in analyzing and classifying vib–
ration signals. To address these challenges, we advocate 
for robust signal preprocessing, specifically employing a 
bandpass filter applied to collected data. This critical 
preprocessing step significantly contributes to classifier 
performance enhancement and is, therefore, a crucial 
aspect of our proposed methodology. Furthermore, we 
underscore the paramount importance of feature selec–
tion alongside signal preprocessing. Researchers must 
diligently identify the optimal feature combination that 
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captures and represents pertinent information within 
vibration signals, ultimately aiming for optimal results in 
terms of classification accuracy and overall performance. 

This paper introduces an innovative application of 
ANN for detecting cracks in rotating shafts, critical 
components in various industries. The developed ANN 
model can identify cracks at different depths and loca–
tions, contributing to enhanced equipment reliability, 
safety, and cost-effectiveness. The practical applications 
include proactive maintenance through early crack de–
tection, leading to improved equipment longevity. The 
automated capabilities of the ANN model offer a cost-
effective solution by reducing manual inspection efforts, 
saving time, and conserving resources.   

In this paper, the development of an ANN model for 
the identification of crack depth and locations in rotating 
shafts operating at various rotational speeds is presented. 
To accomplish this objective, a test rig was designed and 
fabricated to provide a suitable platform for experimental 
investigations. Cracks of varying depths and locations 
were simulated in the shafts using a wire electrical 
discharge machine (WEDM). A data acquisition system 
was developed by integrating a micro-electromechanical 
system (MEMS) with data acquisition hardware and 
LabVIEW software. To improve the accuracy of the 
analysis, Bessel bypass filters were employed to filter the 
acquired vibration signals effectively. This filtering 
process successfully isolated the shaft vibration signals of 
interest, elimi–nating any extraneous signals originating 
from other components. Statistical features were derived 
from the filtered time-domain signals and subsequently 
utilized in the ReliefF feature ranking method. This 
method allowed for the identification of the most 
informative features. Finally, an AI classification model 
based on ANN was developed, incorporating the top-

ranked features for the training of the model. 
The remainder of this paper is organized as 

follows Section 2 presents a comprehensive overview of 
the experimental procedures, encompassing details 
regarding the test rig, crack simulation, as well as the 
data acquisition system and signal processing 
techniques employed. The process of extracting and 
selecting relevant features using the ReliefF algorithm is 
examined in depth in Section 3. The classification 
model employed in this investigation is elaborated upon 
in Section 4. In Section 5, the obtained results are 
presented and analyzed. Finally, the conclusions drawn 
from this study are summarized in Section 6. 

 
 

2. EXPERIMENTAL STUDY 
 
This section provides details of the experimental test rig 
used to detect and diagnose cracks in a rotating shaft, 
crack fault simulation, and the data acquisition system, 
including hardware and software. 
 
2.1 Test Rig Design 

 
An experimental test setup was specifically designed and 
fabricated to evaluate shafts with a diameter of 20 mm 
and a length of 500 mm, as illustrated in Figure 1. This 
test rig consisted of a 0.75 kW three-phase electric motor, 
which was controlled by a Hyundai N700E variable 
frequency drive (VFD). In order to minimize 
misalignment, a flexible coupling was utilized to estab–
lish a connection between the shaft and the electric motor. 

The experimental setup included a rotating disk with 
a diameter of 200 mm, a thickness of 35 mm, and a 
weight of 8 kg, which served as the load attached to the 
shaft. To ensure the secure placement of the accel–
erometer, the top edge of the bearing housing was 
machined, drilled, and threaded. An ADXL335 three-
axis accelerometer [40] was then mounted on the top 
edge of the bearing housing using two M3 bolts, 
guaranteeing its stability throughout the test operation. 

 
2.2 Fault Simulation 
 
This research encompassed the examination of an intact 
shaft (Healthy) in addition to nine shafts exhibiting 
cracks at different depths and locations, as presented in 
Table 1. These shafts were made of C45 carbon steel 
and measured 500 mm in length and 20 mm in diameter. 
The cracks were artificially simulated using a wire 
electrical discharge machine (WEDM) with a wire 
diameter of 0.25 mm and a cutting edge positioned at a 
90-degree angle to the shaft's axis. Cracks were created 
at depths of 2 mm, 5 mm, and 8 mm, positioned at 
distances of 90 mm, 270 mm, and 410 mm from the 
edge of the shaft, respectively. Table 1 provides a 
comprehensive list of cases, while Figure 2-A visually 
depicts the shafts with simulated cracks. Additionally, 
Figure 2-B presents a side view showcasing the depths 
of the simulated cracks. 

The case name for each experimental scenario was 
represented as a ratio of the crack depth to the crack loca–
tion measured from the driven edge of the shaft. It is worth 
noting that the (Healthy) condition of the shaft, which was 
free of any cracks, was included as a reference point. 

 
Figure 1. Experimental Test Rig 
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Figure 4. LabVIEW Block Diagram 

 
Figure 5. Filtering Effect on Vibration Signal at 1800 rpm 

• Standard Deviation (STD) is a measure of the 
dispersion or spread of a distribution. It is calculated by 
taking the square root of the variance of a set of 
numbers. Standard deviation measures the amount of 
variation or dispersion in a data set and helps determine 
how close the values are to the mean or average value. 

 
N

2
i

i 1

1STD( ) (x )
N =

σ = −μ∑   (2) 

• Crest Factor (CF): is a measure of the peak-to-
average ratio of a waveform or signal. It is calculated by 
dividing the peak value of a signal by its RMS value. 
The crest factor is often used to assess the potential for 
audio and other signal distortion. 

maxV
Crest Factor (CF) 

RMS
=   (3) 

• Kurtosis (K): is a measure of the peakedness of a 
distribution. A distribution with a high kurtosis has a 
more peaked shape than a normal distribution, while a 
distribution with a low kurtosis has a flatter shape. 
 

 

N
4

i
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=
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∑
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• Skewness (Sk): is a measure of the asymmetry of a 
distribution. Skewness can be positive, negative, or 
zero. A distribution with positive skewness is skewed to 
the right, a distribution with negative skewness is 
skewed to the left, and a distribution with zero skewness 
is symmetrical. 

N
3

i
i 1

3

N (x )
Skewness(Sk) =

−μ

=
σ

∑
  (5) 

where xi is a signal for i = 1, 2,...,N. N is the number of 
data points, Vmax is the maximum value of (xi), μ is the 
signal value. 
 
3.1 ReliefF Ranking Algorithm 
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The presence of a large number of features can pose 
challenges in the classification process, making it 
difficult to identify appropriate characteristics for 
classification purposes. Incorporating an excessive 
number of features can lead to increased operational 
complexity, reduced processing speed, and compro–
mised classification accuracy, particularly when the 
available number of samples is limited [42]. In such 
scenarios, the utilization of feature selection or dimen–
sionality reduction methods becomes imperative to 
facilitate the classification process. Among these met–
hods, the ReliefF algorithm stands out as one of the 
most effective filtering feature selection techniques. 

The Relief algorithm was first introduced by Kira in 
1992 as a solution for two-class classification problems 
[43]. This algorithm assigns weights to features according 
to their correlation with the class labels and selects those 
features whose weights exceed a specified threshold. The 
correlation is measured based on the features' ability to 
differentiate between samples in close proximity. The 
Relief algorithm has gained popularity due to its simplicity, 
efficiency, and satisfactory results. However, a notable 
limitation of the Relief algorithm is its capability to handle 
only two-class classification problems. To address this 
limitation, Kononenko pro–posed the ReliefF algorithm in 
1994 [44], which extends the functionality of the Relief 
algorithm to handle multiclass classification problems. 

In the context of multiclass classification problems, 
the ReliefF algorithm adopts a process where a sample 
Ri is randomly selected from the training dataset with 
class labels represented as C = {c1, c2, …, cl}. 
Subsequently, the algorithm identifies the k nearest 
neighbors of sample Ri that share the same class label 
(referred to as near Hits) and assigns them labels Hj(c) 
(where j = 1, 2, …, k). Additionally, the algorithm 
identifies the k nearest neighbors of Ri that belong to 
other classes (known as near Misses), denoted as Mj(c) 
(where j = 1, 2, …, k). These steps are repeated m times 
as part of the algorithm's execution [45]. The assigned 
weight of feature A is adjusted as follows: 

(i 1) i k i i
j 1

k
c class(R) ( j 1) i i

(A,R , H )
W (A) W (A)

p(c) (A, R , M (c))
1 p(class(R))

diff
mk

diff

mk

+
=

∉ =

= −

⎡ ⎤
⎢ ⎥
⎣ ⎦−

+
∑

∑

∑
 (6) 

where m is the iteration number, and diff(A, R1, R2) 
represents the disparity between samples R1 and R2 in 
feature A. If A is continuous, the difference can be 
defined as: 

 1 2
1 2

R [A] R [A]
diff (A, R ,R )

max(A) min(A)
−

=
−

 (7) 

If A is discrete, then the diff can be defined as: 

 2
1 2

2

0    ;    R1[A]=R [A]
diff (A, R ,R )

1    ;    R1[A] R [A]
⎧

= ⎨ ≠⎩
 (8) 

4. CLASSIFICATION MODEL 
 
Artificial Neural Networks are computer structures ins–
pired by the functioning of neurons in the human brain. 

The first ANN was created by the psychologist Frank 
Rosenblatt in 1958. [46]. An ANN is made up of a 
network of connected neurons that are stacked in layers. 
ANN typically comprises an input layer, an output 
layer, and at least one hidden layer. The number of input 
and output variables necessary to characterize the 
problem and its type determines the number of neurons 
in the input and output layers, while the trial-and-error 
approach decides the number of hidden layers and 
neurons between each layer. As illustrated in Figure 6, 
each neuron in a layer (except the input layer) adds the 
input value to the corresponding weight to generate a 
single threshold value. The single-value threshold is 
combined with a bias to obtain a net value (Net). 
Finally, an activation function is applied to the net value 
to provide an output value. A supervised learning 
technique compares the input and output values and 
then uses a backpropagation algorithm to train the ANN 
model by altering the weights between each neuron in 
the various layers [47]. Due to its superior performance, 
ANN has been used in many applications, including 
pattern identification, fault prediction and classification, 
voice recognition, handwritten and printed text 
recognition, and detection of heart disease and cancer 
detection [48-52]. 

 
Figure 6. Artificial Neural Networks 

 

4.1 Neural Network Mathematical Expression 
 
The mathematical expression of an ANN model entails 
a sequential arrangement of interconnected compu–
tational units referred to as neurons, which are struc–
tured in layers. These neurons receive input, undergo 
computational operations, and generate an output. The 
network's input is represented by xi(n), the hidden layer 
output is represented by f, and the neural network's 
output is represented by yi(n). The weights connecting 
the input layer to the hidden layer and the hidden layer 
to the output layer are represented by wij and wjk, 
respectively. The output vector of the hidden layer can 
be calculated using the following equation:  

 N
j ij i j(i 1)f Q [ (w x (n) B )]   ,   j = 1,2,...,D== +∑  (9) 

where Bj is the threshold of neurons in the hidden layer, 
N is the number of inputs, D represents the number of 
neurons in the hidden layer, and Q is the hyperbolic acti–
vation function in the hidden layer. Which is given by: 

 
x x

x x
e etanh
e e

−

−
−

=
+

 (10) 
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While the time index n has been omitted for simplicity, 
the output of the final output layer can be calculated as: 

D
i k jk k(i 1)y (n) Q [ (w f B )]   ,   k = 1,2,...,D== +∑  (11) 

where Bk is the threshold for the neuron of the output 
layer, and E is the number of neurons in the output 
layer. The output of the ANN may then be expressed as: 

 
N

D jk j ij i j(i 1)i k (i 1)
k

(w Q [ (w x (n) B )]
y (n) Q [

+ B )]                               
=

=

⎡ ⎤+⎢ ⎥⎣ ⎦= ∑∑ (12) 

4.2 Neural Network Model Design 
 
Orange Data Mining Software [53] was utilized in this 
research to design the ANN model, whose data pro–
cessing flows are presented in Figure 7. The 
development of the ANN model involved an iterative 
process of experimentation and parameter tuning, en–
compassing various aspects such as the number of 
layers, neurons, solver, and activation function. Initially, 
a preliminary version of the ANN model was created 
with a single hidden layer and default parameter values. 
This initial model was then trained and evaluated to 
assess its classification accuracy. Subsequent iterations 
involved making several adjustments to enhance the 
performance of the ANN model. After multiple itera–
tions, an optimal configuration was determined, which 
comprised four hidden layers, with 60, 40, 40, and 40 
neurons allocated to each respective layer. Detailed 
information regarding the classifier's characteristics can 
be found in Table 3. 
Table 3. ANN model properties. 

Number of hidden layers 4 
Neurons in the input layer 15 
Neurons in the first hidden layer 60 
Neurons in the second hidden layer 40 
Neurons in the third hidden layer 40 
Neurons in the fourth hidden layer 40 
Neurons in the output layer 10 
Activation function RELU 
Solver Adam 
Regularization (α) 0.0001 
Maximum number of iterations 400 
 
5. RESULTS AND DISCUSSION 
 
This research employed an ANN approach to identify 
and diagnose the depth and location of cracks in rotating 

shafts operating at three different rotational speeds 
(1200, 1800, and 2400 rpm). 

The experiment involved the investigation of an intact 
shaft alongside nine shafts with cracks at various depths 
and locations, as outlined in Table 1. The vibration data 
collected from the shafts were filtered and analyzed. 
Subsequently, five statistical features were extracted, and 
the ReliefF ranking algorithm was employed to designate 
the highest-ranked feature from each axis. 

The ANN model received a dataset consisting of 
2400 samples for each case, resulting in the formation 
of a matrix containing 24000 samples across 15 fea–
tures. The data sampler allocated 80% of these samples 
for training the ANN model, with the remaining 20% 
reserved for testing the model.  

The cases were examined under two distinct sce–
narios, denoted as S1 and S2. In Scenario S1, a total of 
fifteen features were obtained by extracting five time-
domain features from the filtered vibration data 
associated with each accelerometer axis. These fifteen 
features were subsequently employed as input variables 
for the ANN model. In Scenario S2, the ReliefF ranking 
method was implemented on the feature set extracted 
from Scenario S1. This approach aimed to reduce the 
input feature dimensionality of the ANN model from 
fifteen to three. This reduction was accomplished by 
selecting the top-ranked features for each accelerometer 
axis based on their ReliefF scores. 

The application of the ReliefF ranking method in 
this research demonstrated that the three highest-ranked 
features extracted were the root mean square values of 
the X, Y, and Z axes. Furthermore, the findings indi–
cated that the filtering procedure resulted in the mean 
value becoming uniformly zero, leading to the RMS and 
STD features possessing identical values and, conse–
quently, equivalent rankings. As a result, only the RMS 
feature was selected for further analysis. Figure 8 
depicts the ranking and selection process of the 
extracted features. 

The evaluation of a fault diagnosis system's per–
formance can be accomplished by employing various 
performance indicators, including Classification Accu–
racy (CA), F1-Score, Precision (P), Recall (R), and 
Specificity [54]. These indicators offer a comprehensive 
system performance assessment by considering multiple 
aspects of the diagnosis process. The calculation of 
these performance indicators can be carried out using 
the following equations: 

 P N

P N P N

T T
CA

T T F F
+

=
+ + +

 (13) 

 
Figure 7. Data Processing Flow of ANN Model in Orange Data Mining 
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Furthermore, the findings underscore the potential 
for ongoing exploration and refinement of feature 
selection methods, coupled with the integration of 
sophisticated machine learning algorithms. The proposal 
to explore diverse sensor modalities and employ data 
fusion techniques in conjunction with filtered vibration 
signals represents an additional avenue for enriching the 
comprehensiveness of crack detection assessments. 

Fundamentally, this study not only contributes to the 
understanding of crack detection in rotating machinery 
but also sets a standard for engineers and researchers 
seeking to improve proactive maintenance strategies and 
operational efficiency. The showcased advancements 
create opportunities for subsequent investigations, 
laying the foundation for ongoing innovation in the field 
of reliability within rotating machinery. 

In conclusion, the developed ANN model holds 
significant practical implications across industries. Its 
application promises enhanced equipment reliability 
through proactive maintenance, contributing to 
improved safety and optimized performance. The 
model's adaptability and automated crack detection 
capabilities offer cost-effective solutions by reducing 
manual inspection efforts, saving time, and conserving 
resources. Ultimately, this research provides a valuable 
tool for pre-emptive maintenance, ensuring the 
longevity and efficiency of rotating machinery in 
diverse industrial contexts. 

NOMENCLATURE 

A  Feature in the ReliefF algorithm 
Bj  Threshold of neurons in the hidden layer 
Bk  Threshold of neurons in the output layer 
C  Set of class labels {c1, c2, …, cl} 
D  Number of neurons in the hidden layer 
E  Number of neurons in the output layer 
FN  False negative values 
FP  False positive values 
Hj(c) Labels of k nearest neighbors with the same  

class label 
Mj(c)   Labels of k nearest neighbors with other class 

labels 
N  Number of data points 
Q  Hyperbolic activation function in the hidden 

layer 
Ri  Randomly selected sample from the training 

dataset 
RMS Root mean square 
Sk  Skewness 
Vmax Maximum value of (xi) 
diff(A, R1, R2) Disparity between samples R1 and R2 

in feature A 
f  Hidden layer output 
k  Number of nearest neighbors 
m  Iteration number in the ReliefF algorithm 
μ  Signal value 
TN  True negative values 
TP  True positive values 
wjk  Weights connecting hidden layer to output 

layer 
wij  Weights connecting input layer to hidden layer 
xi  Neural network's input 

yi  Neural network's output 
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ВРАТИЛА 

 
С.М. Шакир, А.А. Џабер 

 
Ротациона вратила су кључне компоненте у 
индустријским окружењима и одговорне су за 
пренос обртног момента и ротационог кретања. 
Упркос свом значају, ове осовине су подложне 
кваровима, посебно напрслинама, које могу 
негативно утицати на перформансе и безбедност 
система. Стога, ефикасно откривање и дијагностика 
пукотина осигуравају сигурност, поузданост и 
економичност. Ово истраживање има за циљ да 
развије модел вештачке неуронске мреже (АНН) 
који може ефикасно да идентификује пукотине које 
се јављају на различитим дубинама и на различитим 
локацијама у ротирајућим вратилима, које раде при 
различитим брзинама ротације. Сигнали вибрације 
су добијени и подвргнути претходној обради ко–
ришћењем пропусног филтера да би се изоловали 
сигнали осовине од других компоненти. Након тога, 
статистичке карактеристике временског домена су 
издвојене из филтрираних сигнала. Оптимална 
методологија одабира карактеристика је коришћена 
за рангирање издвојених карактеристика, а карак–
теристике највишег ранга су изабране за обуку 
модела АНН. Налази овог истраживања указују да је 
развијени модел постигао тачност класификације од 
94,4%. 




