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The Influence of Temperature Gradient
on Thin Plates Bending

Within the theory of thermo-elasticity, the temperature field of thin plates
is commonly defined via two parameters: temperature in the mid-plane and
linear temperature gradient normal to the mid-plane. First, the paper
analytically proves the justification of that assumption in machine
structures. Then, in an analytical closed form, applying the integral
transformation method, the thin plate deflection caused by a constant
temperature gradient is defined. It is shown that, in that case, the plate
deflection does not depend on its thickness but only on the plate
dimensions in the mid-plane. Analytically defined values are compared to
corresponding values obtained by applying the thin plate finite element,
where the temperature field is described using the two mentioned
parameters. This finite element is defined and programmed within the
Komips program package. The influence of the temperature gradient on
the behavior of constructions mostly depends on the type of material. That
is why the behavior of some structural elements made of brass, steel, and
concrete is analyzed in this paper.

Keywords: temperature, temperature gradient, plate, deflection, stress,
finite element, steel, concrete

1. INTRODUCTION

A large number of machine structures, such as steam boi—
lers, heat exchangers, furnaces, chemical reactors, evapo—
rators, engine parts, etc., represent thermally loaded struc—
tures of complex geometry. In the design and analysis of
this type of structure, the finite element method is mai—nly
used today. Due to the complexity of the geometry, 2D and
3D finite elements are mostly used to create calcu—lation
models, which are assigned a thermo-mechanical load.

The analysis of stress due to pressure and thermal
loads in structures such as fire-tube boilers shows that
thermal stress is not of lower order compared to stress
due to pressure loads [1,2]. The effects of the surface
roughness of the friction facing the generated heat and
temperature fields are investigated in [3]. A finite element
model was developed to study the thermal be—havior of a
disc clutch system. The importance of rese—arch [4] is
given to the variation of temperature along the length of
the fins. The presented methodology in—volved 3D
rectangular fin modeling and the creation of surf elements
for applying the boundary conditions and source
temperature obtained in the state of thermal contours.

In some processes, such as the laser formation of
thin plates, the temperature gradient mechanism is very
important. Laser forming is a technique that forms sheet
metal by means of induced non-uniform thermal stress.
So, in paper [5], the temperature gradient mechanism is
studied to obtain the deformation of a plate in the laser
forming process. Thermal stress is significant in
welding processes, too, and in [6], a mathematical
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model was developed to predict the temperature distri—
bution and stress concentration at localized nodal points.
Thermal load acting on thin plates can provide their
bending, buckling, and curling. A theoretical model for
the nonlinear analysis of thin rectangular plates sub—
jected to mechanical load and to non-uniform thermal
gradients is discussed in [7], and several numerical
examples are presented. The influence of thermal gra—
dient is very significant in the analysis of structures with
low heat conduction coefficients, such as structures of
silicon materials or concrete. Thermoelastic vibrations
of functionally graded plates of silicon material
subjected to thermal load are shown in [8]. A finite
element model for unsteady phased thermal-stress
analysis of gravity dams made of a special concrete
mixture with low cement content is presented in [9].
Thin-walled plates and tubes were experimentally
investigated to obtain the effects of thermal loads, and
appropriate finite element models were developed [10].
Machine structures are mainly built of steel whose heat
conduction is comparatively high and amounts to approx.
50 W/mK. The objective of this paper is first to analy—
tically show that temperature distribution in thin-walled
structures is mainly linear across their thickness. Therefore,
for further analysis of thin-walled thermally loaded struc—
tures, the simplest way is to use a 2D finite element for a
thin plate, which has the possibility of assigning tempera—
ture in the mid-plane as well as tempe—rature gradient nor—
mal to the plate mid-plane. Such finite element was prog—
rammed within the KOMIPS package [11], and its veri—
fication is presented by applying analytical calculations.

2. TEMPERATURE DISTRIBUTION ACROSS THE
PLATE THICKNESS

A general differential equation of heat conduction for
uncoupled thermo-elasticity problems reads [12]
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where x is the coefficient of thermal intensity, A is the
heat conduction coefficient, V* is the Laplace operator,
and ¢ is the time.

The temperature field is presented as 6=7-T, [°C,
K], where T, is the plate's temperature in its natural
state. The quantity of heat generated in a unit volume
and unit time is presented as W(x1 ,xz,x3,t) .

Observe part of the plate of thickness % as shown in
Fig. 1. Assume that the plate temperature changes only
in the direction of axis z and that the temperatures on
the upper and lower surfaces are constant. Since we are
interested here only in temperature change across the
plate thickness, let us choose boundary and initial
values in the form as follows:

0(z=0,1)=6,,
O(z=h,t)=0, )
0(z,t=0)=0, 0<z<h.

\ =0 6(z=0, )=6o

——

-

I T ——

z=h :=!'?_. =0

Figure 1. Plate of thickness h with constant temperatures
on the upper and lower surfaces

The problem of this type is often encountered in
engineering practice, and a corresponding differential
equation is of the form

2
(a——lﬁle(z,t): 0. 3)

In accordance with specified boundary and initial
conditions, Eq. (3) is analytically solved in the simplest
manner by applying the finite Fourier sine transfor—
mation of the form

h
0,(k,1)= I 0(zt)sinayzdz, oy =k—hﬁ . “
0

Since

dz*
(—1) " o(z = h)+6(z = 0)]— ao(k.t),
after applying this transformation, Eq. (4) has the form

16
o OpH (t)-a} 0, (n,t)—;aé?s(k,t)= 0, (5)

sinazdz =

where H(f) is the Heaviside function. Applying the
Laplace transformation defined by the expression
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0, (k.p)=[6(k.t)e " dr, (6)
0

the transformed function is obtained

* Ko 0,
(kaj +p)p

Inverse transformations must be applied to obtain the
analytical closed-form solution. Applying the inverse
Laplace transformation, the expression obtained is

2
0, (k.t)= 9—0[1 - emktJH(t), ®)

oy

so that the solution of a specified problem in the form of
infinite order reads

—Kot

l-e 'k

26) & [ J .

0(z,t)= W >~ 2 H(t)sinayz,0<z<h,
k=1 a

0..,=0, 0._,=0. ©9)

Let us perform the analysis of the expression (9).
Until a steady state is reached, the plate temperature
changes in accordance with the presented exponential
law. When the steady state is achieved, the expression

becomes

o

0(z,t)=26, SRYE 0<z<,
ok

0|z=0 = 90’ 9|z:h =0. (10)

Let us define analytically the temperature in the

plate mid-plane (z=h/2). The temperature can be shown
via a comparatively simple infinite-order

74
h 0 SIHT 200 0 (_1)1'*1
) —,t | =26, =— . 11
(2 tj Og‘l kr  ox g‘) 2i+1 (an

The obtained alternative order is convergent accor—
ding to the Leibniz criterion and corresponds to the
alternative order of the function arctg(x)

arctg(x)=§ﬂx2"+1 <1 (12)
= 2i+1 s

so that

h = SN 99, 0,
o 2.|=26 = aretg1=2 . (13
(2 ] OkZ::l kr T & 2 (13)

When a steady state is reached, the temperature in
the mid-plane equals half of the sum of the temperatures
on the upper and lower surfaces of the thin plate
[6(z=0)+6(z=h)]/2. Its change is linear.

A numerical example will be used to show it. Ob—
serve the plate with a thickness of /=100 mm, whose
lower surface temperature equals the environment
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temperature, and let the upper surface temperature be
higher by 8°C. The plate used is steel plate, while
corresponding characteristics necessary for calculations
are given in Table 1: thermal conductivity A, the coef—
ficient of thermal expansion a; material density p,
thermal diffusion coefficient x, and Poisson’s ratio v.

Table 1. Material characteristics of carbon steel

A oy p K v
[W/mK] K" [kg/m’] [m%/s]
50.2 12-10° | 7.85-10° | 1.36-10° | 0.3

To illustrate the rate of establishing a steady state, in
accordance with Eq. (9), let us draw a corresponding
diagram of the temperature change over time across the
plate thickness. It can be seen from the diagram in Fig.
2 that after about 4 minutes, a linear distribution of
temperature is established across the plate thickness, so
in this case, it does not make any sense to consider a
dynamic problem.

——————
-

Temperature [oC]
(=) = ~ w - w o ~
\

20 70 120 170 220 270
Time 7 [s]

— —i=0— — z=hf4 ==== z=hf2------ z=3h/4 ——z=h

Figure 2. Temperature changes across plate thickness
depending on time

Further calculations will involve the observation of
the thin plate behavior as influenced by the linear tem—
perature gradient in the quasi-steady state.

3. THIN PLATE DEFORMATION INFLUENCED BY
LINEAR TEMPERATURE GRADIENT

Analytical calculations of thin plates commonly involve
introducing the assumption that temperature changes
linearly across the plate thickness. As shown in the
previous part of the paper, this assumption is completely
justifiable for the majority of thermally loaded machine
structures. Using the Cartesian coordinate system
presented in Fig. 3, the temperature field 9(x1,x2,x3,t)

can be described using values 7y and 7 as [12]
49(x1,x2,x3,t): To(xl,xz,t)—i- X32'1(x1,x2,t) (14)

where 7y [K, °C] is the mid-plane temperature, and 7
[K/m] represents the temperature gradient normal to the
mid-plane. The temperature in the mid-plane causes
only membrane stresses, which can be most readily
determined by applying the finite element method.
Here, only the influence of temperature gradient on the
thin plate bending will be analytically determined.

The differential equation that describes the dynamic
change of the plate deflection (displacement w in the
direction of axis x3) is shown by the expression [13]
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Lophd s
Dv;‘w+D(1+v)a,v12r1+phw—%v%w:o, (15)

where D is a common value of the plate bending stiffness

X2

Figure 3. Rectangular plate axbxh in Cartesian coordinate
system

In Eq. (15), the influence of mechanical loads (sur—
face or volume forces) is not taken into account. Since it
has been already explained that dynamic problems will
not be considered in this case, Eq. (15) is reduced to a
simple form

Viw+(1+v)a,z =0. (16)

Observe a free, supported plate of axbxh dimensions
displayed in Fig. 3 and, in accordance with boundary
conditions, apply a double finite Fourier transformation
(defined already by the expression (4)). Since

a

Jsinanxldxlz—cosa”xl =

0 Xn a (17)
_]—cosn;r_ 0, n=024,..

 a, _{2/%, n=135,..

nr mr
a, =— |a, =—|.
n m
a b

Eq. (16) is first reduced to the transformed expre—
ssion

4(1 + v)a,rl

wy(nm) = ———=
Ay (0 + )

(18)

and then applying inverse transformations, the solution
for plate deflection is obtained in the form of a double
infinite-order

i i sina, x;sina,, x,
2., 2y’
n=13,m=13, QpCp (Qyy + Q)

¢ = 16(1 -:;)atrl .

wlxp,xy)=C

(19)

The last expression indicates that at a constant tem—
perature gradient 7;, plate deflection does not depend on
its thickness but only on the dimensions in the mid-
plane.

Figure 4 shows the square plate deflection of
2mx2m dimensions calculated based on Eq. (19) along
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mid-lines x;=x,=1m for the gradient value 7; of
200°C/m. The analytically calculated value of the maxi—
mum displacement in the middle of the plate amounts to
0.92mm.

1

Deflection w [rmim]
= = o o
o kS = i

=

0 05 1 135 2

Plate dimension a [m]

Figure 4. Deflection of the square plate 2mx2m along
midlines for 7;=0.2°C/mm

The theory of thin plates yields expressions for
maximum stresses in the form [14]:

_ Eh | 0w d%w
Ollmax =+ 5 5 +v 3 +(1+V)(Zt2'1 ,
201-v*7)| oxg ox5

_ Eh *w 0w
= v + +(l+v)atz'1 (20

O22max =+
e 2(1- V2) 6x12 8x§
S *w
12max 2(1+V) 6x16x2 .

Substituting (19) in expressions (20) gives maxi—
mum stress values in the analytical form

ZZ(05 +V0£,2,,)SII](Z x;sing, x,

Ol1lmax= C2
ab n=lm=l1 epeam (an +am)

’

(a +v0(2)s1na xsing,, x
O 2max = C2 Z Z L 2

’

—lm—l epesm (an + am)

8Ehoy T & 3 o\ COS, X|COS, Xy

O12max =
ab n=lm=l1 (a +0!m)
C _Ehatrl
27 2(1-v) - @1

Based on expression (21), it is evident that the
highest normal stresses in a free-supported plate occur
on its edges. The expression for tangential stress indi—
cates that the stress equals zero for

nrx mm
cos——xjc0s——xp =0.
a b

Since n and m are whole odd numbers, tangential
stresses equal zero along the lines that halve the plate,

i.e., fOI‘
(.x =—, X J X1, Xy = —j
1 s AD s 1> A2 .

Therefore, fig. 5 depicts the distribution of tangential
stresses only for one-quarter of a considered square
plate.
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3.88E+01 ... 4.65E+01
3.10E+01 ... 3.88E+01

1.00E-03 ... 7.75E+00

Figure 5. Analytically determined the distribution of
tangential stresses

4. THE APPLICATION OF THE FINITE ELEMENT
METHOD

The thin plate finite element was defined within the
KOMIPS program package [11], and it was assigned the
temperature of the mid-plane and the temperature
gradient normal to the mid-plane. The temperature
gradient is assigned in the direction of the finite element
normal line. In order to compare the results obtained
analytically (19) and numerically by applying FEM, a
square plate was created of the same dimensions and
loading as in the previous case.

Figure 6 shows plate deformation, and in accordance
with the sign of the finite elements' normal line, a
gradient of 7;= - 0.2°C/mm (a normal goes down) was
assigned.

*Y YYYYYYYYYYYYYYYYYYY

POLLULDDDELLLLELTTTL

il

Figure 6. Direction of the finite elements normal line and
deformation of the square plate 2mx2m

The finite element method was used to calculate a
maximum deflection of 0.93 mm, which agrees well with
the analytically obtained value (the difference is 1%).

Stress was checked for the plate with four clamped
edges. Since, in that case, there is no displacement of
the plate points, the stress obtained by the finite element
method must agree with the theoretical stress from Eqgs.
(20). For the plate thickness of 100 mm and Modulus of
elasticity of 210 GPa, normal stress amounts to

|O'11| =|022| = C2 =36 MPa.

Since agreement between analytical and numerical
calculations has been proved, only numerical calcu—
lations (being faster and simpler) were used for further
analysis. The diagram in Fig. 7 shows the dependence
of maximum deflection on the square plate dimensions
in the mid-plane.

Figure 7 depicts the dependence of maximum def—
lection on plate thickness when the same temperature
difference of 10°C is provided between two plate
surfaces.

When the temperature difference between the plate's
upper and lower surfaces is constant, only the tempera—
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ture gradient changes with the factor /™' so that the line
from Fig. 8 corresponds to the hyperbole.

= r w
oo ow b A

Deflection [rmm]

=
o e

0 05 1 15 2 25 3 3.5 4

Plate dimension [m]

Figure 7. Square plate maximum deflection depending on
its dimension a for 7;=0.2°C/mm
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Figure 8. Square plate maximum deflection a=b=2m de-
pending on its thickness for a temperature difference of
10°C

5. TEMPERATURE GRADIENT DEPENDING ON
THE MATERIAL OF THIN PLATE ELEMENTS

Observe the plate of dimensions Imx1mx100mm with
clamped edges. Also, observe the cylinder of medium
diameter d=1m, length /=3m, and thickness 6=100mm,
also with clamped edges, shown in Fig. 9. Elements of
plate and cylinder are loaded with the same temperature
gradient of 200°C/m.

Figure 9. A numerical computational model of cylinder
supports (boundary conditions)

Observe the plate and cylinder are made whole of
one of three materials: reinforced concrete, carbon steel,
and brass (CuZn30). Material characteristics used in
calculations are given in Table 2.

Firstly, observe the method and speed of heating of
plates when the temperature difference between the
upper and lower sides is set to 20[1. In the diagrams in
Fig. 10, the mid-plane temperature change for a
concrete and brass plate is shown. The diagrams were
obtained on the basis of analytical calculations using
equation (9).
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Table 2. Material characteristics

Material Concrete | Carbon steel | Brass
Elasticity Modulus
E [GPa] 30 210 100
Poisson s\foefﬁment 0.2 03 037
Thermal conductivity
A [W/mK] 1.51 50.2 105.8
Specific heat
C [J/keK] 840 470 377
Material de}nsny 2500 7800 3600
p [kg/m’]
Coefficient of thermal
expansion 12107 12107 1.910°
o [K"]
Concrete
10
9
g
£ -
£
£
F
1
0
0 1000 2000 3000 4000 5000 6000
Time [s]
Brass
12 P—
8 —
2 7 ~
g g /
‘E 3 /’/
Y
B 2 /
N
0
0 20 40 60 80 100 120
Time [s]

Figure 10. The mid-plane temperature change for a
concrete and brass plate

A stationary temperature field in a concrete plate is
established in about 100 minutes, in a steel plate in
about 4 minutes, and in a brass plate in only about 2
minutes.

Since the displacements of the plate with clamped
edges, loaded in this way, are equal to zero, the exp—
ression for theoretical stress based on equation (21) is

Eha 71
|O-11max|:|o-22max|:2(1—_tv)’ 12=0, (22)
which gives a stress of 4.5 MPa for the concrete plate,
36 MPa for the steel plate, and 30.2 MPa for the brass
plate. The von Mises stress og.q, by the plane stress
theory is defined by the following equation

2, 2 2
Ocqv = \/O'x1 toL —0y 0y, +3Tx1x2 , (23)

so the value of the equivalent stress in this load case is
equal to the maximum values of the normal stress.
Calculations performed using the finite element method
give exactly the same stress values. The same stress
values are obtained for the cylinder shown in Figure 9.
If the plate is only freely supported (Figure 11), its
deformations occur in a way that the maximum
displacements of the midpoint (obtained using the finite
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element method) are: fmax  (concrete)=0.2 mm,
fmax(steel)= 0.23 mm, f.x (brass)= 0.4 mm.

If the temperature in the middle plate plane of 6,=50
[1 is added to the calculation, the strain and stress values
are obtained by the finite element method and given in
Table 3.

Tabela 3. Maximum deflections and equivalent stresses

Material frnax Compressive stress Eqv. Stress
in plate mid-plane [MPa]

Concrete | 0.211 mm 22.5 MPa 29.7+31.2

Steel 0.286 mm 180 MPa 239 +248

Brass 0.382 mm 151 MPa 201 + 208

Using the finite element method, equivalent stresses
are calculated using the Maxwell-Huber—-Hencky—von
Mises criterion. Stress distribution, as well as
deformation, is the same in all the plates made of
different materials and is given in Fig 11.

Shear stress
distribution

Normal stress

Deflecti o
ctlection distribution

Figure 11. Deformation. Normal stress distribution and
shear stress distribution in a thin plate model

The finite element method calculation of a cylinder
with clamped edges loaded only with a linear
temperature gradient for all three materials shows a
curling tendency. For a temperature gradient of 200 C
/m, the displacements are small, and the appearance of
the deformed cylinder is given in Fig. 12.

——

. >

Brass Steel Concrete

Figure 12. Deformation of a cylinder loaded only with a
linear temperature gradient

6. SOLVING PRACTICAL ENGINEERING PROBLEM
USING FINITE ELEMENT

Previous considerations are significant for solving
geometrically more complex problems when the finite
element method has to be used. Problem-solving
commences by defining the temperatures on the plate
element's upper and lower surfaces.

At first, observe a flat plate and define heat flux
based on the expression for heat transmittance through
flat walls. Let the steel plate be of thickness #=d=100
mm and let the air of the temperature of 7,=120°C and
velocity of approx. 20 m/s flow over its upper surface,
and air of the temperature 7,,=20°C and of the same
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velocity flow over its lower surface. Heat transfer coef—
ficients obtained based on an empirical formula amount
to a;=a,=45W/m’K. Heat flow is calculated using the
expression (24) [15]

Teo-T
29__“f177f2 24
P[W/m~] T 5 1 24)

o A a)

and amounts to 2153W/m”. In that case, the plate's
upper surface temperature is 72.15°C, and of the lower
surface, 67.85°C. The mid-plane temperature is 7=
70°C, whereas the temperature gradient normal to the
mid-plane is 7;=43°C/m.

For metal structures that have high thermal con—
ductivity 4 (steel, aluminum, copper, and their alloys),
the temperature gradient 7; has a comparatively small
value so that it can be neglected in some calculations.
For all structural parts built of non-metals, the
temperature gradient is very high, and it is mandatory to
introduce it in calculations.

If the material of the observed plate were rein—
forced concrete or quartz glass, for the same boundary
conditions, the mid-plane temperature would amount to
70°C and the linear gradient to approx. 600°C/m, while
for the plate made of plaster, brick, or concrete, the
gradient would be approx. 800°C/m.

In order to more clearly show the importance of the
material characteristics of the construction on its
behavior under the influence of temperature, observe the
already described cylinder whose inner and outer
diameters are d,=0.95 m and d,=1.05 m. Let the air at a
temperature of 7,=100°C and at a speed of v,=15 m/s
flow inside the cylinder. Let the air at the temperature
T,=20°C and at the speed of v/=2m/s flow at the outer
side of the cylinder. Heat transfer coefficients o, and o
can be determined using empirical formulas, and for this
case, their values are ,=40 W/m’K and ,=26 W/m’K.
The heat flux ¢ [W/m] is calculated based on the
equation (25) from the literature [15]

~ T, -T,
= 1 d, 1 25)
+—In—"+
d,ma, 27k dg dgmog

The temperatures of the inner and outer sides of the
cylinder T, and 7 are calculated and given in Table 4.

Table 4. Characteristics cylinder temperatures

Material Concrete Steel Brass
Inner side 78.08°C 67.1°C 66.8°C
temperature 7,
Outer side 50.51°C 65.75°C 66.2°C
temperature 7
Middle plane 64.3°C 66.44°C 66.5°C
temperature 7,
Linear temperature 276°C/m 13.8°C /m 6°C/m
gradient 7,

When considering the temperature gradient included
in the numerical finite element method calculation, one
should take care of the normal direction of the surface
element. Since in the shown model, the normal of the
surface element goes outwards, 7; is considered with a
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minus sign. In this numerical example, the edges of the
cylinder are freely supported (in all three directions), as
shown in Fig. 13. The deformation field has the same
shape for all considered materials and is given in Fig.
13, as well as the corresponding values of the maximum
displacements.

Concrete Steel Brass
finax =0.5mm Jfinax =0.5mm frnax =0.9mm

Figure 13. Deformation of the cylinder under the thermal
loading

Figure 14 shows the equivalent stress distribution
field as well as von Misses stress values for all three
cases. It is clear that the stresses are the highest at the
places of structure supports.

Concrete [MPa]

1.91E+01 ... 2.29E+01
1.53E+01 ... 1.91E+07

Steel [MPa]

Brass [MPa]

1.14E+02 ... 1.37E+02
9.13E+01 ... 1.14E+02

0.00E+00 ... 3.82E+00 0.00E+00 ... 2.28E+01

Figure 14. Equivalent stress distribution field in considered
cylinder model

When analyzing the calculated stress field, one
should be very careful due to the different charac—
teristics of the considered materials. Depending on the
method of production, the tensile strength of brass
ranges from the usual 150 MPa and even up to 440
MPa, while the tensile strength of structural steels is
from 340 MPa to 850 MPa. That is why these materials
can withstand thermal loads very well. Reinforced
concrete has completely different characteristics. The
standardized compressive strength of reinforced conc—
rete ranges from 10 to 60 MPa, while the tensile stren—
gth is only about 10% of the compressive strength. Due
to the small value of thermal conductivity A, the tempe—
rature gradient 7; is very significant here. As it causes
bending, tensile stresses also appear, and the allowable
value of tensile stress is below 6 MPa. Based on
equation (22), the concrete can withstand the maximum
temperature difference between the two sides of the
plate in an amount of about 27°C.
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7. CONCLUSION

The paper analytically proves the justification of the
assumption that the temperature field of thin plate
elements is defined through mid-plate temperature and
linear temperature gradient normal to the mid-plane. In
an analytical closed form, applying the method of
integral transformations, the thin plane deflection was
determined to be caused by the constant temperature
gradient. It is shown that the deflection does not depend
on the plate thickness but only on the dimensions in the
mid-plane. Also, the corresponding stress field was
analytically determined. The same problem was solved
numerically, applying the thin plate finite element,
where the temperature field is described using tempe—
rature in the middle plane and appropriate temperature
gradient. The agreement of obtained results confirmed
the usage of this finite element. The paper also presents
the dependence of the plate deflection on its thickness at
constant temperature differences between the upper and
lower plate surfaces. Since temperature gradient depen—
ds most on the type of material, it is shown that its
influence is of great importance for non-metal parts of
machines and building structures. The temperature gra—
dient can be neglected in most calculations for struc—
tures made of materials with high thermal conductivity.
But for non-metallic constructions, especially concrete
ones, the temperature gradient is extremely important
and must be taken into account in the calculation.

ACKNOWLEDGMENT

The results presented are the results of the research on
Projects TR35040 and TR35011, supported by the
Ministry of Science, Technological Development and
Innovation of the Republic of Serbia, contract no. 451-
03-47/2023-01/200105 from 03.02.2023.

REFERENCES

[1] Gacéesa, B., Maneski, T., Milosevi¢c-Miti¢, V.,
Nestorovi¢ M., Petrovi¢, A.: Influence of furnace
tube shape on thermal strain of fire-tube boilers,
Thermal Science, Vol. 18, Suppl. 1, pp. S39-S47,
2014.

[2] Raji¢, M., Bani¢, M., Zivkovié, D., Tomi¢é, M.,
Manci¢, M.: Construction optimization of hot water
fire-tube boiler using thermomechanical finite
element analysis, Thermal Science, Vol. 22, Suppl.
5, pp- S1511-S1523,2018.

[3] Abdullah, O., Schlattmann, J., Lytkin, M.: Effect of
surface roughness on the thermoelastic behaviour of
friction clutches, FME Transactions Vol. 43, pp.
241-248, 2015.

[4] Hemanth, J., Yogesh, K.B.: Finite element analysis
(FEA) and thermal gradient of a solid rectangular
fin with embossing’s for aerospace applications,
Advances in Aerospace Science and Technology,
Vol. 3, pp. 49-60, 2018.

[5] Shi, Y., Shen, H., Yao, Z., Hu, J,; Temperature
gradient mechanism in laser forming of thin plates,
Optics&Laser Technology, Vol 39, pp. 858-863,
2007.

FME Transactions



[6] Kiran, B., Mishra, K., Singh, Y.R., Nagaraju, D.:
Structural and thermal analysis of Butt Joint
GTAW of similar and dissimilar material with
distinct groove angles through simulation and
mathematical modeling, FME Transactions, Vol.
48, pp. 667-680, 2020.

[71 Khazaeinejad P., Usmani A.S., Laghrouche O,:
Temperature-dependent nonlinear behaviour of thin
rectangular plates exposed to through-depth thermal
gradients, Composite structures, Vol.132, pp. 652-
664, 2015.

[8] Allam, M., Tayel I.: Thermal effects on transverse
vibrations of non-homogeneous rectangular thin
plate subjected to a known temperature distribution,
Transactions of Canadian Society for Mechanical
Engineering, Vol. 44, No. 3, 2020.

[9] Kuzmanovi¢, M., Savié¢, Lj., Mladenovi¢c N.:
Thermal-stress behaviour of RCC gravity dams,
FME Transactions, Vol. 43, pp. 30-34, 2015.

[10]1Xu, J., Yuan, H.: Estimate of temperature gradients
of thin-walled structures under thermomechanical
fatique loading, American Institute of Aeronautics
and Astronautics, Vol. 60, No. 9, 2022.

[11]Maneski, T.: Computer modeling and structure
analysis, Faculty of Mech. Eng., University of
Belgrade, 2000.

[12]Cukié, R., Naerlovi¢-Veljkovié, N., Sumarac, D.:
Thermoelasticity, Faculty of Mech. Eng,
University of Belgrade, 1993. (in Serbian)

[13]Milosevi¢-Miti¢, V.. Temperature and stress fields
in thin metallic partially fixed plate induced by
harmonic electromagnetic wave, FME Transactions
Vol. 31, pp. 49-54, 2003.

FME Transactions

[14]Milosevic-Miti¢, V.: Magneto-thermo-elastic ben-
ding of thin plates, Zaduzbina Andrejevic
Publications, Belgrade 1999. (in Serbian)

[15]Vasiljevic B., Banjac M.; Handbook of
thermodynamics, Faculty of Mech. Eng., University
of Belgrade, 2017. (in Serbian)

YTULHAJ TEMIIEPATYPCKOI TPAJIMJEHTA
HA CABUJAIBE TAHKHUX IIVIOYA

B. MusiomieBuh-Mutuh, A. IlerpoBuh,
H. Auhenuh, M. JoBanouh

VY OKBHpY TEOpHj€ TEPMOENACTUYHOCTH YOOHUajeHo je
Ja ce MoJbe TeMIepaType TaHKHX Iulo4ya Je(HHUIIe
NPEKO TEMIIEpPaType y CpPEAlO0] PaBHU M JIMHEAPHOT
rpajgujeHTa TeMIepaType yIpaBHO Ha CPeAmy paBaH. Y
pany je IpBO aHANM-THYKU NOKA3aHA ONPaBAAHOCT TE
MPETIOCTaBKE Y MAIIMHCKMM KOHCTPYKLHjaMma. 3aTuM
jé y 3aTBOpe-HOM aHAIUTHYKOM OOJHUKY, HIPUMEHOM
METOJle MHTETPAHUX TpaHcopmamnuja, oapeher yrud
TaHKe IDI0Ye KOj W3a3WBa KOHCTAHTaH TPAaIWjeHT
temrnepatype. IlokazaHo je na y TOM ciy4dajy yruo
IUI04Ye HE 3aBUCH O HeHe ae0ipbmHe Beh camMo on
JMMEH3Mja Y CPellb0j paBHU. AHAJIMTHUKU ojpeheHe
BpenHOCTH ymopeheHe cy ca oaroBapajyhum BpemaHO-
cTHMa J00MjeHUM TIPUMEHOM oJroBapajyher koHa-qyHOT
esleMeHTa TaHke 1uode. OBaj KOHAUYHM eneMe-HT nedu—
HHCaH je W HCOPOrPaMHUpaH y OKBHPY MPOTrPAMCKOT
nakera Komurc. YTHLaj TeMnepaTy-pckor rpaadjeHTa
Ha TOHAIake KOHCTPYKIIMja HajBUIIE 3aBUCH OJ BPCTE
MaTepHjala, Ia je y paay aHaIW3UpaHO MOHAIIamke He—
KX KOHCTPYKTHBHHUX €JIEMEHATa O]l MECHHIa, YeJIHKa U
OeToHa.
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