
 
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2024) 52, 78-89  78
 

Received: October 2023, Accepted: December 2023 
Correspondence to: Dr S. Rehman, King Fahd  
University of Petroleum & Minerals-KFUPM,  
Dhahran, Saudi Arabia 
Email: srehman@kfupm.edu.sa 
doi: 10.5937/fme2401078N 
 

Hilal H. Nuha 
Associate-Professor 

School of Computing 
Telkom University  

Indonesia 
 

Adil Balghonaim 
Assistant-Professor 

King Fahd University of Petroleum & 
Minerals, Dhahran 

Saudi Arabia 
 

Rizka Reza Pahlevi 
Assistant-Professor 

School of Computing 
Telkom University  

Indonesia 
 

S. Rehman 
Research Engineer 

King Fahd University of Petroleum & 
Minerals, Dhahran 

Saudi Arabia 
 

M. Mohandes 
Professor 

King Fahd University of Petroleum & 
Minerals, Dhahran 

Saudi Arabia 

Vertical Wind Speed Extrapolation 
Using Statistical Approaches 
 
The wind power industry has experienced a significant increase and 
popularity in recent times, and the latest statistics indicate that this sector 
is still thriving. However, one of the essential steps in developing wind 
energy projects is finding suitable sites for wind farms, which involves 
understanding the nature of wind speed,  wind direction, terrain, and 
environmental impacts. To predict the wind energy production over the 
expected lifespan of a wind farm, vertical wind speed extrapolation to the 
hub height of the wind turbine is necessary. Therefore, this study presents 
a comprehensive evaluation of seven statistical approaches for vertical 
wind speed extrapolation, including Generalized Linear Models (GLM), 
Linear Regression (LR), Support Vector Machines (SVM), Generalized 
Additive Models (GAM), Gaussian Process Regression (GPR), Regression 
Tree (RT), and Ensemble Regression (ER). The accuracy of these methods 
is assessed using performance metrics such as Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), Normalized RMSE (NRMSE), 
Normalized MSE (NMSE), Mean Bias Error (MBE), Mean Absolute Error 
(MAE), Mean Percentage Error (MPE), Mean Absolute Percentage Error 
(MAPE), Symmetric Mean Absolute Percentage Error (SMAPE), and R-
squared (R2). The study concludes that, on average, GLM performs the 
best out of all seven statistical methods. 
 
Keywords: Vertical Wind Speed Extrapolation, Statistical Approaches, 
Regression, GLM, SVM 

 
1. INTRODUCTION 

 
Global wind power deployment has experienced an 
enormous surge due to its technological maturity, ease 
of maintenance, minimal human interaction, and 
commercial acceptance. In 2022, the global cumulative 
wind power installed capacity reached a record high of 
898.24 GW [1]. This significant growth was largely 
driven by policy deadlines in China and the United 
States, both pushing for cleaner and sustainable energy 
source utilization. With more and more countries 
committing to reducing their carbon footprints, wind 
power will likely play an incre–asingly important role in 
meeting global energy demands in the years to come. 

Wind speed (WS) and direction are the most fluc–
tuating meteorological parameters. These parameters 
change with time, location, and height of measure–ment. 
Therefore, thorough knowledge of wind speed variability 
is important in -identifying suitable site/s for wind farm 
development. Usually, the wind speed mea–surements are 
carried out at heights below the wind turbine hub height. 
So, vertical wind speed extra–polation to the wind turbine 
hub height is useful for estimating the wind energy 
production over the lifetime of a wind farm. By analyzing 
wind speed data over a long period of time, wind energy 
companies can better understand the wind resources at a 
given site and optimize the placement of turbines to 
maximize energy production. Figures 1 and 2 indicate 

that WS increases with height. 
Numerous methods have been used for the extra–

polation of WS to hub heights using measured values 
taken at more than one height. Newman and Klien [2] 
discovered that the power law does not perform 
effectively in unstable atmospheric conditions. To 
determine the local wind shear exponent (LWSE), WS 
measurements are needed at multiple heights. The 
LWSE is utilized to extrapolate the WS at higher 
heights. Although the LWSE proves to be the reliable 
option for WS extrapolation, it is a highly site-
dependent parameter. So, one requires LWSE for almost 
every site under consideration which is a cost and time-
intensive process.  Ayodele et al. [3] utilized WS data 
from 20 and 60 meters to calculate the LWSE, resulting 
in a more precise wind power assessment. Tizpar et al. 
[4] employed WS observations at 10, 30, and 40 meters 
to predict the LWSE, ensuring a dependable evaluation 
of wind power potential at the hub height. In a study 
conducted in Northern Cyprus, Solyali et al. [5] 
determined the LWSE by using WS at 50, 80, and 90 
meters to accurately estimate WS at the required hub 
height for precise wind power potential assessment. 

Boro et al. [6] investigated the characteristics of the 
vertical wind profile at Burkina Faso using wind data at 
10 m above ground level (AGL) and satellite data at 50 
m height in the atmosphere boundary. The authors used 
the standard power and the logarithmic laws to estimate 
WS data from 20 m to 50 m. Barantiev and Batchvarova 
[7] analyzed wind speed profile statistics from acoustic 
soundings at the black sea coastal site. The authors used 
seven years of remote sensing data covering from 30 m 
to 600 m heights with vertical resolution of 10 m. 

 
 
 



FME Transactions VOL. 52, No 1, 2024 ▪ 79
 

 

 
Figure 1. Windspeed statistics using boxplot 

 
Figure 2. Windspeed measured at 10, 20, 30, and 40 m 
using LiDAR 

Steinheuer and Friederichs [8] used multivariate 
extreme value theory to derive a conditional distribution 
for hourly peak WS as a function of height. For training 
the system, the authors used peak WS observations at 5 
vertical levels between 10 m and 250 m from the 
Hamburg weather mast. Sucevic and Djurisic [9] 
analyzed the atmospheric stability influence on wind 
speed profile and showed that the proposed method 
outperformed the classic logarithmic law. Studies on 
WS extrapolation with other methods can be found in 
[10-15]. 

Existing studies on WS extrapolation have shown a 
significant reliance on extensive site-dependent 
parameters, highlighting a critical gap in the field. 
Traditional models, especially in unstable atmospheric 
conditions, lack the versatility needed for diverse 
environmental scenarios. The reliance on the LWSE, 
while providing reliable results, necessitates detailed, 
site-specific measurements, leading to processes that are 
both time-consuming and costly. This issue is further 
compounded by the limitations in the range of heights at 
which WS data is collected in many studies, restricting 
the ability to efficiently interpolate and extrapolate WS 
across broader vertical spans. Additionally, the focus of 

many studies on specific methodological approaches, 
such as multivariate extreme value theory or 
atmospheric stability analysis, underscores the need for 
a more comprehensive model capable of integrating a 
wider array of factors affecting WS. This gap 
underscores the necessity for a more adaptable and less 
site-dependent approach in WS extrapolation research. 
This gap can be solved utilizing statistical methods that 
exploit the information provided by the available WS 
data measured at lower heights. These methods can 
model the statistical properties of the data that can be 
used to extrapolate WS at higher heights. 

This paper investigates the performance of seven 
different statistical approaches for vertical WS extra–
polation. The statistical approaches used include Gene–
ralized Linear Models (GLM), Linear Regression (LR), 
Support Vector Machines (SVM), Generalized Additive 
Models (GAM), Gaussian Process Regression (GPR), 
Regression Tree (RT), and Ensemble Regression (ER). 
To evaluate the accuracy of these methods, several per–
formance metrics are used, including Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), Nor–
malized RMSE (NRMSE), Normalized MSE (NMSE), 
Mean Absolute Error (MAE), Mean Bias Error (MBE), 
Mean Absolute Percentage Error (MAPE), Mean Per–
centage Error (MPE), Symmetric Mean Absolute Per–
centage Error (SMAPE), and coefficient of deter–
mination (R2). By examining the performance of these 
seven methods, it can be determined which approach 
provides the most accurate estimation of vertical WS 
extrapolation. 

The main scientific merit and contribution to the 
practice of engineering of this paper is as follows. This 
study presents the use of diverse statistical models like 
GLM, SVM, and GPR indicating a robust and inno–
vative approach to data analysis. This contributes to the 
scientific field by exploring and validating various 
methodologies for predictive modeling. In addition to 
that, the detailed assessment of performance metrics like 
MSE, RMSE, and MAE demonstrates a comprehensive 
approach to evaluating the accuracy and reliability of 
the models. This contributes to scientific rigor and helps 
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in establishing benchmarks for future studies. The 
application of these statistical methods in engineering 
can significantly improve predictive modeling, essential 
for planning, design, and operational decisions. For ins–
tance, in energy engineering, accurate WS extrapolation 
is vital for wind farm installation planning. 

The remainder of this paper is organized as follows. 
The Methodology section presents the approaches and 
the mathematical equations used in this paper. The 
experimental data collection section provides a brief 
description of the vertical wind speed profiler. The 
results section presents a comprehensive analysis of the 
performance of each algorithm, including a comparison 
of their accuracy metrics. Finally, the conclusion section 
summarizes the findings and highlights the significance 
of this study for wind energy applications. 

 
2. METHODOLOGY 

 
This section presents all statistical approaches used to 
perform vertical WS extrapolation and metrics to mea–
sure accuracy. 

 
2.1 Generalized Linear Model (GLM) 

 
The GLMs [16] are a broad class of statistical models 
that can handle a wide range of response variables, 
including binary, count, and continuous data. This paper 
uses a GLM with a quadratic model. It means that the 
GLM is fitted using a quadratic function of the predictor 
variables. Mathematically, a quadratic function has the 
form: 

2
0 1 1 2 2y x xβ β β= + +    (1) 

where y denotes the response variable, β0 is the bias, β1 
and β2 are the coefficients of the predictor variables x1 
and 2

2x , respectively. The predictor variable x2 is 
squared to introduce a nonlinear relationship between 
the response and the predictor variables. 

In this model, x1 is defined as a vector representing 
WS measurements at p heights (h1… hp). Specifically, 
x1 = {xh1,xh2,…,xhp}, where each element xhi corresponds 
to the wind speed measured at a different height. The 
term 2

2x  in the model is not a separate set of measu–
rements but rather the square of the vector x1. In the 
model, β1 and β2 are vectors of coefficients that corres–
pond to the predictor variables x1 and x2, respectively. 

This quadratic model is useful when the relationship 
between the response and predictor variables is 
nonlinear and can be approximated by a quadratic 
function. By fitting the quadratic model, the GLM can 
capture the curvature of the relationship between the 
response and predictor variables, which cannot be 
captured by a simple linear model.The coefficients, β0, 
β1 and β2 can be calculated as follows: 

( ) ( ) 10 1 2, , XX X yβ β β −′ ′=  (2) 

where X is the data input matrix, which is constructed 
by stacking the predictor variable x and its squared 
value x2, and y is the response variable. In this model, 
the matrix X consists of input vectors from N samples: 
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  (3) 

where xj(n) denotes the input vector j from sample n. 
 

2.2 Linear Regression (LR) 
 

The mathematical representation of a linear regression 
[17] model is given by the following equation: 

0 1 1 2 2 ... p py x x xβ β β β= + + + +   (4) 

where, y is the response variable and x1, x2,…, xp are the 
predictor variables. β0, β1, β2,…, βp are the coefficients or 
parameters to be estimated. The LR estimates the values 
of the coefficients β0, β1, β2,…, βp that best fit the data by 
minimizing the sum of squared residuals. The variables x1 
through xp represent wind speed measurements at 
sequential heights, starting from the first measurement 
height and going up to the p-th height. The value of p, 
which denotes the number of measurement heights 
included in the model, varies depending on the specific 
height at which the wind speed is being extrapolated. For 
example, consider a scenario where the goal is to 
extrapolate wind speed at a height of 50 meters. In this 
case, the model would use wind speed measurements 
from lower heights as inputs to predict the wind speed at 
the 50-meter level. If the available measurements are at 
heights of 10, 20, 30, and 40 meters, then these 
measurements correspond to x1, x2, x3 and x4 respectively, 
and therefore, p = 4. Each xi  in this sequence represents 
the wind speed recorded at the i-th height. 

This process entails employing the ordinary least 
squares (OLS) technique, which requires the coeffi–
cients' values that minimize the total of the squared 
variances between the observed response variable and the 
model-predicted values. Similar to the GLM, standard LR 
coefficients can be calculated using equation 2 where the 
squared values are excluded from the data input matrix. 

 
2.3 Generalized additive model (GAM) 

 
The next statistical method is the generalized additive 
model (GAM) [18] which is specified as given below: 

( ) ( ) ( )( )1
1 1 2 2 ... pY g f X f X f Xα ε−= + + + + +   (5) 

where Y is the response variable, X1, X2, …, Xp are the 
predictor variables, α is the bias, g is the link function 
that maps the linear predictor to the response space, and 
f1, f2, …, fp are the smooth functions that capture the 
nonlinear relationship between the predictors and the 
response. The smooth function used in this paper is the 
logistic function as follows: 

( ) 1

1 x
f x

e−
=

+
   (6) 

2.4 Support vector machine (SVM) 
 

A support vector machine (SVM) [19] regression model 
predicts the response variable based on the values of 
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one or more predictor variables. The SVM algorithm 
finds a hyperplane that best separates the data into two 
classes. In regression, the SVM algorithm tries to find a 
hyperplane that best fits the data by minimizing the 
mean-squared error between the predicted and actual 
responses. Mathematically, the SVM regression model 
can be represented as: 

y w x b e′= + +    (7) 

where y, x, w, b and e denote the predicted response, the 
vector of predictor variables, the weight vector, the bias 
term, and the error term; respectively. Basically, SVM 
finds the best linear fit that separates data points of 
different predicted values, with a focus on maximizing 
the margin between data points and the decision 
boundary. Therefore, SVM is less sensitive to outliers 
compared to LR. However, SVMs can be computa–
tionally more intensive than LR. This can be a drawback 
for very large datasets or real-time processing. 

On the other hand, LR seeks to find a linear rela–
tionship between predictor variables and a conti–nuous 
response variable. It does this by minimizing the sum of 
the squares of the differences between observed and 
predicted values. LR is straightforward to imp–lement 
and interpret. It's well-suited for situations where the 
relationship between variables is expected to be linear. 
LR models are computationally efficient, making them 
suitable for large datasets or real-time analysis. However, 
LR can be significantly influenced by outliers in the data. 

 
2.5 Gaussian process regression (GPR) 
 
A Gaussian process regression (GPR) [20] model uses a 
Gaussian kernel function with an isotropic (spherical) 
covariance function. Mathematically, the GPR model 
can be described  as a set of input data X = [x1,x2,…,xN] 
and corresponding output data Y = [y1,y2,…,yN], where 
each xn is a d-dimensional vector, and each yi is a scalar. 
The GPR model aims to find a function f(x) that maps 
the inputs to the outputs with uncertainty quantified by a 
Gaussian distribution. Specifically, for a test input vec–
tor xq, the GPR model estimates the output as follows: 

( ) ( ) ( )q q qf x x xμ ε= +   (8) 

where μ(xq) is the mean function and ε(xq) is a random 
variable representing the residual error at xq. The mean 
function is defined as: 

( ) ( ) ( )( ) 12
0, ,q qx K x X K X X I Yμ σ

−′= +   (9) 

where K(xq,X) represents the covariance matrix where 
each component of the matrix is the value of kernel 
function k(x1,x2) that quantifies the similarity between xq 
and each input vector in X, σn is the noise standard 
deviation, I is the identity matrix, and Y is the vector of 
output data. If there is no strong prior knowledge about 
the data, μ(xq) can use a zero-mean function. The kernel 
function is defined as: 

( )
2

1 22
1 2 2
, exp

2
f

x x
k x x

l
σ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

  (10) 

where 2
fσ  is the signal variance,  is the length scale 

parameter, and ||x1 – x2|| is the Euclidean distance 
between the two input vectors. 

 
2.6 Regression Tree (RT) 

 
The regression tree (RT) [21] model is used for pre–
dicting a response variable based on aet of predictor 
variables. The RT for building the decision tree is based 
on the recursive partitioning of the predictor variables 
into smaller subspaces that are as homogeneous as pos–
sible with respect to the response variable. The RT 
algorithm works as explained below: 

1. The algorithm starts with the entire dataset and 
selects a predictor variable and a split point that opti–
mizes the splitting criterion. The splitting criterion is 
typically the reduction in the mean squared error (MSE) 
between the response variable and the predicted values 
for each subspace. 

2. The algorithm then divides the dataset into two 
smaller subsets based on the selected split point: one 
subset where the predictor variable is less than or equal 
to the split point and another subset where the predictor 
variable is greater than the split point. 

3. For each subset, the algorithm recursively repeats 
steps 1 and 2 until a stopping criterion is met. The stop–
ping criterion can be based on the maximum depth of 
the tree, the minimum number of observations in a leaf 
node, or the minimum reduction in MSE achieved by 
the split. 

4. At each leaf node of the tree, the response 
variable is predicted as the mean value of the response 
variable for all observations in the leaf node. 

Once the decision tree model has been created using 
the training data, it can be used to predict the response 
variable for new observations by traversing the tree 
from the root node to the appropriate leaf node based on 
the values of the predictor variables. The predicted 
response variable for a new observation is then the 
mean value of the response variable for all observations 
in the leaf node. 
 
2.7 Ensemble Regression (ER) 

 
The ensemble regression (ER) [22] is a training method 
for ensembling the RT. The method combines the 
predictions of multiple regression trees to produce a 
more accurate and robust model. Given a training set of 
input-output pairs {(x1,y1), (x2,y2), ,…, (xN,yN),}, where 
xn is a vector of input features and yn is the corres–
ponding output value, the ER algorithm proceeds as 
follows: 

a. Draw a bootstrap sample of the training data, 
i.e., randomly select n samples from the training 
set with replacement. 

b. Grow a regression tree on the bootstrap sample. 
At each node of the tree, select the feature and 
split point that minimize the mean squared error 
of the predictions. 

The ensemble's prediction for a new input vector x is 
the average of the predictions of each individual tree. In 
numerical experimentation, the number of trees in the 
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ensemble is set to 100. The tree depth is unlimited, 
which means that each tree is grown until all the leaves 
are pure or have fewer than 5 observations with mean 
squared error as the splitting criterion. The ER 
algorithm uses bagging and random feature subsampling 
to improve the generalization performance of the model 
and prevent overfitting.  

 
2.8 Models Summary 

 
All models used in this paper are summarized in Table 1. 
Table 1. Summary of ModelsMain Feature 

No Model Main Feature 
1 GLM  Handles a wide range of response variables 

including binary, count, and continuous 
data; can incorporate a quadratic function 
for non-linear relationships. 

2 LR Models the relationship between the 
response and predictor variables linearly; 
employs Ordinary Least Squares for 
parameter estimation. 

3 GAM  Captures non-linear relationships between 
predictors and response through smooth 
functions; highly flexible. 

4 SVM  Finds a hyperplane in a high-dimensional 
space that best fits the data; minimizes 
mean-squared error between predicted and 
actual responses. 

5 GPR  Utilizes Gaussian kernels with isotropic 
covariance; maps inputs to outputs with 
quantified uncertainty. 

6 RT  Builds decision trees based on recursive 
partitioning; nodes split based on mean 
squared error reduction criterion. 

7 ER  Combines multiple regression trees to 
create a more accurate and robust model; 
uses techniques like bagging to improve 
performance. 

 
2.9 Error Metrics 

 
This paper uses several metrics that are commonly used 
to evaluate the performance of each method.  

1. Mean Squared Error (MSE) [23] is a measure of 
the average squared difference between the predicted 
and actual values. It is obtained by calculating the mean 
of the squared differences between the predicted and 
actual values: 

( )21
1 ˆN

n nnMSE y y
N == −∑   (11) 

where N, yn, and ˆny  denote the number of observations, 
the actual value of the n-th observation, and the 
predicted value of the n-th observation, respectively. 

2. Root Mean Squared Error (RMSE) [23] is the 
square root of the MSE and is also a measure of the 
average difference between the predicted and actual 
values: 

RMSE MSE=    (12) 

Normalized RMSE (NRMSE) [23] is the RMSE 
divided by the range of the actual values. It is a measure 
of the relative error of the predictions: 

max min

RMSE
NRMSE

y y
=

−
  (13) 

where ymax and ymin are the maximum and minimum 
values of the actual values, respectively. 

4. Normalized MSE (NMSE) [25] is the MSE 
divided by the energy of the actual values. It is also a 
measure of the relative error of the predictions: 

2
1

N
nn

MSE
NSME

y=

=
∑

   (14) 

5. Mean Bias Error (MBE) [26] is the average 
difference between the predicted and actual values. It is 
a measure of the bias of the predictions: 

( )1
1 ˆN

n nnMBE y y
N == −∑   (15) 

6. Mean Absolute Error (MAE) [23] is the average 
absolute difference between the actual and predicted 
values. It is a measure of the magnitude of the errors: 

1
1 ˆN

n nnMAE y y
N == −∑   (16) 

7. Mean Percentage Error (MPE) [27] is the average 
percentage difference between the predicted and actual 
values. It provides the magnitude and direction of the 
errors: 

1
ˆ1
100%N n n

n
n

y y
MPE

N y=
−

= ×∑   (17) 

8. Mean Absolute Percentage Error (MAPE) [23] is 
the average absolute percentage difference between the 
actual and predicted values. 

1

ˆ1
100%N n n

n
n

y y
MAPE

N y=
−

= ×∑  (18) 

9. Symmetric Mean Absolute Percentage Error 
(SMAPE)  [23] is a symmetric version of the MAPE, 
which measures the average absolute percentage 
difference between the predicted and actual values but 
uses the average of the predicted and actual values in 
the denominator. This makes it less sensitive to outliers: 

( )
1

ˆ1
100%

1 ˆ
2

N n n
n

n n

y y
SMAPE

N y y
=

−
= ×

+
∑   (19) 

10. Coefficient of determination (R2) [23] is a 
measure of the goodness of fit of the regression model. 
It represents the proportion of the variance in the 
dependent variable that is explained by the independent 
variables. It is calculated as: 

( )
( )

2
2 1

2
1

ˆ
1

N
n nn

N
n nn

y y
R

y y

=

=

−
= −

−

∑
∑

  (20) 

where � is the average of the measured values. R2 
ranges between 0 and 1, with higher values indicating a 
better fit. 
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3. EXPERIMENTAL MEASUREMENT RESULTS 
 

WS measurements are often made up to 40 meters due 
to resource limitations and accordingly, estimation 
techniques are needed to obtain wind speed data at 
higher heights. Figures 1 and 2 show that WS increases 
with height. 

The dataset used in this research on WS estimation 
originates from Dhahran, Saudi Arabia, and consists of 
34,660 samples collected from June 20, 2015, to Feb–
ruary 29, 2016, with measurements taken every 10 mi–
nutes. The data includes WS measurements from heig–
hts ranging from 10 to 180 meters. It is divided into 
three subsets for the purpose of model training and 
evaluation: 70% (about 24,262 samples) for training, 
10% (around 3,466 samples) for validation, and 20% 
(approximately 6,932 samples) for testing. The research 
aims to estimate wind speeds at higher altitudes using 
measurements from lower heights, using an iterative 
estimation process where LiDAR-measured wind spe–
eds at lower heights (10-40 meters) are used as refe–
rence for training models, and the output is the esti–
mated wind speeds at higher altitudes, up to 180 meters. 
Although the dataset is specific to Dhahran and reflects 
its local atmospheric conditions, the methodologies and 

models developed could potentially be adapted for or 
compared with other locations, subject to similar data 
collection criteria and environmental conditions. 

The estimation process involves training the models 
using measured WSs at lower heights as input and at 
higher heights as desired output. Subsequently, the 
proposed statistical estimation methods are trained using 
both actual and estimated wind speed values at lower 
heights to estimate wind speeds at the next level. This 
process is iterated until wind speeds at 180 meters, 
utilizing actual data from 10-40 meters and estimated 
data from 50-170 meters, are obtained. 

As shown in Table 2, the GLM model performs 
well, with low values for the MSE, RMSE, NRMSE, 
and NMSE. However, as the height increases, the errors 
tend to increase as well, as indicated by the increasing 
values for these metrics. All of the above error values 
keep on increasing, slightly, as the height increases. The 
MBE values show slight under-prediction of WSs at 
most of the heights while positive bias is observed at 
160 to 180 meters levels. The MAE, MPE, MAPE, and 
SMAPE all increase as the height increases, indicating 
larger errors for higher heights due to being away from 
the measured values of WSs at 10 to 40-meter heights. 

Table 2 GLM Performance 

Heights 50 60 70 80 90 100 110 120 130 140 150 160 170 180 
MSE 0.041 0.149 0.251 0.408 0.585 0.81 1.01 1.25 1.46 1.71 1.93 2.19 2.36 2.58 
RMSE 0.202 0.386 0.501 0.639 0.765 0.90 1.00 1.12 1.21 1.31 1.38 1.48 1.53 1.60 
NRMSE 0.023 0.042 0.052 0.065 0.070 0.07 0.08 0.08 0.09 0.10 0.10 0.11 0.11 0.12 
NMSE 0.001 0.003 0.005 0.007 0.009 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 
MBE 0.003 -0.05 -0.05 -0.08 -0.08 -0.11 -0.09 -0.10 -0.07 -0.05 -0.02 0.00 0.06 0.10 
MAE 0.154 0.301 0.393 0.504 0.603 0.71 0.79 0.88 0.94 1.02 1.09 1.17 1.22 1.28 
MPE 0.120 0.850 0.748 0.977 0.920 1.04 0.75 0.59 0.15 -0.19 -0.72 -1.18 -1.80 -2.35 
MAPE 2.530 4.602 5.667 6.869 7.781 8.73 9.32 9.97 10.41 10.92 11.34 11.81 12.14 12.54 
SMAPE 2.530 4.631 5.694 6.917 7.831 8.80 9.37 10.00 10.41 10.88 11.24 11.67 11.92 12.25 

Table 3. LR Performance 

Heights 50 60 70 80 90 100 110 120 130 140 150 160 170 180 
MSE 0.049 0.182 0.312 0.500 0.715 0.994 1.232 1.521 1.77 2.07 2.31 2.61 2.79 3.02 
RMSE 0.222 0.426 0.559 0.707 0.846 0.997 1.110 1.233 1.33 1.43 1.52 1.61 1.67 1.74 
NRMSE 0.025 0.046 0.058 0.071 0.078 0.083 0.090 0.098 0.10 0.11 0.11 0.12 0.12 0.13 
NMSE 0.001 0.004 0.006 0.008 0.011 0.014 0.016 0.018 0.02 0.02 0.02 0.02 0.02 0.02 
MBE 0.002 -0.05 -0.05 -0.10 -0.13 -0.18 -0.20 -0.240 -0.25 -0.27 -0.28 -0.29 -0.27 -0.26 
MAE 0.165 0.325 0.430 0.550 0.659 0.779 0.866 0.962 1.03 1.11 1.18 1.25 1.30 1.36 
MPE 0.155 0.924 0.938 1.370 1.586 2.033 2.094 2.306 2.24 2.26 2.09 1.97 1.67 1.39 
MAPE 2.676 4.899 6.108 7.382 8.383 9.413 10.04 10.727 11.16 11.65 11.99 12.38 12.60 12.86 
SMAPE 2.676 4.927 6.140 7.450 8.478 9.564 10.21 10.933 11.37 11.88 12.20 12.59 12.77 13.01 

Table 4. GAM Performance 

Heights  50 60 70 80 90 100 110 120 130 140 150 160 170 180 
MSE 0.060 0.167 0.301 0.519 0.751 1.061 1.349 1.671 1.935 2.260 2.507 2.848 3.080 3.342 
RMSE 0.244 0.409 0.548 0.721 0.866 1.030 1.161 1.293 1.391 1.503 1.583 1.688 1.755 1.828 
NRMSE 0.028 0.044 0.057 0.073 0.079 0.086 0.094 0.103 0.110 0.117 0.122 0.128 0.133 0.137 
NMSE 0.001 0.004 0.006 0.009 0.012 0.015 0.017 0.020 0.022 0.024 0.025 0.027 0.028 0.029 
MBE 0.056 -0.01 -0.02 -0.04 -0.08 -0.13 -0.14 -0.193 -0.20 -0.23 -0.24 -0.26 -0.26 -0.26 
MAE 0.183 0.316 0.425 0.562 0.676 0.804 0.907 1.015 1.090 1.176 1.239 1.320 1.377 1.441 
MPE -0.54 0.607 0.789 1.083 1.477 1.893 1.924 2.235 2.179 2.289 2.210 2.215 2.091 2.030 
MAPE 2.968 4.842 6.102 7.596 8.657 9.787 10.59 11.406 11.84 12.36 12.67 13.12 13.40 13.74 
SMAPE 2.953 4.868 6.146 7.673 8.773 9.961 10.77 11.642 12.08 12.64 12.95 13.41 13.68 14.03 
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Table 5. SVM Performance 

Heights  50 60 70 80 90 100 110 120 130 140 150 160 170 180 
MSE 0.033 0.130 0.222 0.369 0.541 0.776 1.005 1.304 1.635 2.059 2.548 3.156 3.80 4.59 
RMSE 0.183 0.360 0.471 0.608 0.735 0.881 1.002 1.142 1.279 1.435 1.596 1.777 1.951 2.144 
NRMSE 0.021 0.039 0.049 0.061 0.067 0.073 0.082 0.091 0.102 0.112 0.123 0.135 0.147 0.161 
NMSE 0.001 0.003 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.022 0.026 0.030 0.035 0.040 
MBE 0.014 -.018 0.020 0.044 0.104 0.160 0.268 0.375 0.524 0.672 0.851 1.031 1.245 1.460 
MAE 0.141 0.283 0.373 0.485 0.588 0.703 0.802 0.917 1.033 1.169 1.318 1.484 1.641 1.814 
MPE -0.25 0.024 -.778 -1.41 -2.44 -3.39 -4.84 -6.222 -7.96 -9.62 -11.5 -13.4 -15.5 -17.5 
MAPE 2.364 4.386 5.554 6.911 8.037 9.228 10.26 11.432 12.59 13.91 15.38 16.95 18.48 20.11 
SMAPE 2.355 4.377 5.491 6.783 7.803 8.876 9.738 10.709 11.63 12.70 13.86 15.10 16.25 17.47 

 
The results in Table 3 suggest that the accuracy of the 

LR method of wind speed estimation decreases as the 
height increases more rapidly than in the case of the GLM 
method. The lowest RMSE and MAE values are observed 
at 50 m, with the error increasing as the height increases. 
The MBE values are close to zero at the lower heights but 
become increasingly negatively biased higher heights, 
indicating a systematic underestimation of wind speed. The 
MPE and MAPE values show that the percentage errors 
increase with height, with MAPE values ranging from 
2.7% at 50 m to 12.9% at 180 m. The SMAPE values also 
show a similar trend as MAPE, indi–cating that the errors 
are symmetric for the different heights.  

From Table 4, it can be noticed that the GAM 
accuracy of the model decreases as the height increases, 
with the highest errors being seen at 180m. The model 
tends to underestimate the values, as indicated by the 
negative MBE values. The MAPE and SMAPE values 
at 180 m are 13.74% and 14.03 %, respectively. 

The performance of the SVM technique is sum–
marized in Table 5. In this case, the MBE values show 
that the model tends to slightly overestimate the wind 
speed at lower heights (50m, 70m) and underestimate it 
at higher heights (110m and above). The MAE also inc–
reases with height, indicating that the model is less 
accurate at higher heights. The MPE shows that the 
model tends to underestimate the wind speed at higher 
heights, with a maximum underestimation of around 
17.5% at 180m. The MAPE and SMAPE also show 
similar trends, with larger errors at higher heights. 
Overall, this analysis shows that the SVM model is not 
very accurate at predicting WSs at higher heights, and 
its performance decreases as the height increases. 
Therefore, it may not be suitable for extrapolating wind 
speeds to heights beyond 100-110m. 

In Table 6, the GPR performance for vertical wind 
speed extrapolation appears to be reasonable. The RMSE 
values range from 0.344 m/s to 1.753 m/s, which indi–
cates that the model's predictions are generally within 1-2 
m/s of the actual wind speed values. The NRMSE values 

are also relatively low, ranging from 0.039 to 0.132, 
which suggests that the model's predictions are relatively 
accurate and reliable across different heights. However, 
it's worth noting that the MPE and MAPE values are 
relatively high, ranging from 1.045% to 13.922%. This 
suggests that the model's predictions may be biased to–
wards over- or under-estimating the wind speed at certain 
heights. Additionally, the MBE values are negative for 
most of the heights, which indicates that the model tends 
to underestimate the wind speed. In summary, while the 
GPR model appears to perform reasonably well, further 
investigation is needed to understand why the model may 
be biased in certain ways and whether there are ways to 
improve its accuracy and reliability. 

The values of the performance measures in Table 7 
provide insights into the accuracy of the RT approach. 
For instance, the MAE is less than 2 at all the heights. 
However, the MAPE and SMAPE are greater than 10% 
at most of the heights, which suggests that the 
percentage error can be quite high for some heights. 
While the regression tree appears to have some accuracy 
in predicting heights, the relatively high values of 
MAPE and SMAPE suggest that the model may not be 
suitable for all applications, especially those where high 
accuracy is critical. 

The results of ER method, Table 8, show that the 
model's performance decreases as the height increases, 
with higher values observed for all error metrics at the 
highest height of 180 meters. However, the errors 
remain relatively small, with an RMSE of less than 2 
meters per second at all heights. The model's MAE 
ranges from 0.157 m/s to 1.442 m/s, indicating that the 
predicted values are generally within 1-2 m/s of the 
actual values. The MAPE ranges from 2.606% to 
13.795%, indicating that the model's predictions are 
within 14% of the actual values on average. The results 
indicate that the ensemble regression model appears to 
be a viable method for extrapolating vertical wind speed 
at various heights. 

 
Table 6. GPR Performance 

Heights  50 60 70 80 90 100 110 120 130 140 150 160 170 180 
MSE 0.118 0.345 0.600 0.981 1.298 1.706 1.969 2.269 2.443 2.654 2.764 2.928 2.965 3.073 
RMSE 0.344 0.587 0.774 0.990 1.139 1.306 1.403 1.506 1.563 1.629 1.663 1.711 1.722 1.753 
NRMSE 0.039 0.063 0.081 0.100 0.104 0.109 0.114 0.120 0.124 0.127 0.128 0.130 0.130 0.132 
NMSE 0.003 0.007 0.011 0.017 0.020 0.024 0.025 0.027 0.028 0.028 0.028 0.028 0.027 0.027 
MBE -.246 -0.43 -0.56 -0.70 -0.78 -0.86 -0.88 -0.882 -0.84 -0.79 -0.69 -0.59 -0.44 -0.29 
MAE 0.282 0.481 0.634 0.806 0.923 1.051 1.126 1.208 1.256 1.311 1.348 1.391 1.412 1.444 
MPE 3.769 6.072 7.414 8.679 9.121 9.504 9.212 8.798 7.946 6.997 5.717 4.367 2.728 1.045 
MAPE 4.696 7.304 9.016 10.74 11.66 12.60 12.97 13.379 13.46 13.61 13.63 13.73 13.76 13.92 
SMAPE 4.836 7.662 9.563 11.52 12.57 13.66 14.05 14.469 14.48 14.53 14.40 14.34 14.15 14.08 
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Table 7.  RT Performance 

Heights  50 60 70 80 90 100 110 120 130 140 150 160 170 180 
MSE 0.046 0.168 0.298 0.505 0.755 1.086 1.399 1.775 2.121 2.525 2.874 3.284 3.590 3.951 
RMSE 0.213 0.410 0.546 0.711 0.869 1.042 1.183 1.332 1.456 1.589 1.695 1.812 1.895 1.988 
NRMSE 0.024 0.044 0.057 0.072 0.080 0.087 0.096 0.106 0.116 0.124 0.131 0.137 0.143 0.149 
NMSE 0.001 0.004 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.029 0.031 0.033 0.035 
MBE 0.007 -0.04 -0.04 -0.07 -0.09 -0.14 -0.16 -0.193 -0.21 -0.24 -0.25 -0.26 -0.26 -0.25 
MAE 0.163 0.320 0.428 0.562 0.687 0.825 0.941 1.063 1.163 1.269 1.354 1.447 1.516 1.590 
MPE 0.085 0.878 0.837 1.217 1.380 1.852 1.928 2.205 2.259 2.407 2.383 2.403 2.222 2.044 
MAPE 2.708 4.921 6.183 7.640 8.842 10.10 11.05 12.007 12.70 13.41 13.92 14.47 14.84 15.24 
SMAPE 2.709 4.960 6.232 7.733 8.970 10.29 11.27 12.287 13.00 13.75 14.27 14.83 15.18 15.56 

Table 8. ER Performance 

Heights  50 60 70 80 90 100 110 120 130 140 150 160 170 180 
MSE 0.042 0.157 0.277 0.457 0.670 0.947 1.203 1.518 1.801 2.145 2.452 2.821 3.091 3.401 
RMSE 0.204 0.396 0.527 0.676 0.819 0.973 1.097 1.232 1.342 1.465 1.566 1.680 1.758 1.844 
NRMSE 0.023 0.043 0.055 0.068 0.075 0.081 0.089 0.098 0.107 0.114 0.121 0.127 0.133 0.139 
NMSE 0.001 0.003 0.005 0.008 0.010 0.013 0.016 0.018 0.020 0.023 0.025 0.027 0.028 0.030 
MBE 0.001 -.040 -.033 -0.06 -0.07 -0.10 -0.10 -0.127 -0.13 -0.14 -0.14 -0.16 -0.15 -0.15 
MAE 0.157 0.308 0.411 0.531 0.642 0.762 0.857 0.962 1.045 1.139 1.220 1.308 1.374 1.442 
MPE 0.158 0.805 0.665 0.887 0.888 1.157 1.085 1.200 1.056 1.063 0.935 0.902 0.701 0.609 
MAPE 2.606 4.723 5.934 7.237 8.296 9.361 10.08 10.879 11.42 12.04 12.52 13.05 13.42 13.79 
SMAPE 2.608 4.752 5.962 7.287 8.354 9.456 10.18 11.000 11.53 12.16 12.63 13.15 13.49 13.86 
 

A satisfactory model would ideally have low errors in 
terms of both RMSE and MAE. While keeping RMSE or 
MAE below 2 m/s for WSs below 16 m/s might seem 
adequate in some contexts, this threshold can be considered 
high for power generation purposes. Relative differences in 
the range of 10-20% might be acceptable in some meteo–
rological or navigational applications. However, for wind 
energy generation, where accurate power predictions are 
necessary, these levels of relative error could be prob–
lematic. As mentioned, due to the cubic relationship bet–
ween WS and power output, even a 10% error (equivalent 
to MAPE) in WS estimation can lead to much larger errors 
in power estimation. If power estimation errors are limited 
to 30 % or more than ap ≥ 70% of accuracy, then the WS 
estimation error threshold can be modeled as follows. 

( )1WSa MAPE= −    (21) 

where aWS is the WS accuracy. To achieve ap ≥ 70%, 
aWS is governed by the following:  

3~ 0.7p WSa a ≥    (22) 

( ) ( )3 30.7 1 0.7 1WSa MAPE MAPE≥ − ≥ −   (23) 
0.1121MAPE<    (24) 

Therefore, to achieve less than 30% of accuracy, the 
MAPE must be less than 11.21 %. 

The correlation coefficient between the measured and 
estimated WS values is compared through scatter 
diagrams and the resulting R2 values are summarized 
inTable 9for all methods (GLM, LR, GAM, SVM, GPR, 
ER, and RT) used to extrapolate WS at different heig–

hts. It can be noticed that all the models have high R2 
values up to a height of 70 meters, indicating good 
estimates of WS. With further height increase, the R2 
value keeps on decreasing progressively. Among the 
models, at lower heights (50, 60, and 70 m), SVM has 
the highest R2 values followed by GLM and ER 
methods. However, for heights 80 to 180 m, GLM 
achieved the highest R2 values. On the other hand, GPR 
has the lowest R2 values for most of the heights, indica–
ting that it is the least accurate model for estimating the 
WS. However, even GPR has an R2 value above 50% 
for all the heights, which means that it is still able to 
capture some of the variation in the data. 

Figure 3 shows the scatter plots of all methods at 
different heights, specifically at heights of 50m, 120m, 
and 180m, representing low, medium, and maximum 
heights, respectively. Upon examination of the scatter 
plots, it becomes apparent that as the height of the mea–
surement increases, the accuracy of the predictions tends 
to deteriorate, as evidenced by the widespread between 
the measured and estimated values and lower R2 values. 
Despite this general trend, there are still some notable 
differences between the different methods. At lower 
heights, GLM and SVM seem to perform in a similar 
fashion, with both models producing relatively accurate 
estimates. However, at higher heights, GLM outperforms 
SVM, as the latter tends to overestimate the WS in these 
scenarios. This trend is confirmed in Figure 4 where 
estimated WS using GLM, SVM, and GPR methods are 
compared with the actual WS at different heights (50 m 
and 180 m). It can be noticed that despite having good 
estimation at 50 m, SVM performs poorly at 180 m. 

Table 9. All Methods R2 Values  

Heights  50 60 70 80 90 100 110 120 130 140 150 160 170 180 
GLM 98.72 95.66 93.17 89.67 86.10 81.79 78.58 74.91 72.16 69.02 66.86 64.31 62.94 61.19 
LR 98.46 94.81 91.86 88.02 84.06 79.47 75.97 72.08 69.04 65.68 63.31 60.61 59.07 57.20 
GAM 98.60 95.83 93.09 89.19 85.23 80.49 76.78 72.80 70.09 66.84 64.77 62.00 60.47 58.71 
SVM 98.87 95.84 93.26 89.51 85.66 80.98 77.45 73.41 70.44 67.09 64.76 62.05 60.53 58.64 
GPR 98.06 94.77 91.14 85.93 81.26 75.72 71.59 67.20 64.22 61.05 59.10 56.92 55.82 54.47 
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RT 98.57 95.22 92.34 88.23 84.00 79.07 75.26 71.13 68.00 64.59 62.21 59.51 57.86 55.80 
ER 98.67 95.47 92.70 88.95 85.01 80.42 76.76 72.67 69.50 65.93 63.30 60.32 58.38 56.16 

 

(a) Actual WS Scatter Plot (b) GLM Extrapolated WS Scatter Plot 

(c) LR Extrapolated WS Scatter Plot (d) GAM Extrapolated WS Scatter Plot 

(e) SVM Extrapolated WS Scatter Plot (f) GPR Extrapolated WS Scatter Plot 

(g) ER Extrapolated WS Scatter Plot (h) RT Extrapolated WS Scatter Plot 

Figure 3. WS extrapolation scatter plots at different heights (50, 120, and 180 m) 
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Figure 4. Extrapolated WS compared with the actual WS at (a) 50 m and (b) 180 m 
 

4. CONCLUSION 
  

This study aimed to evaluate the performance of seven 
statistical approaches for vertical wind speed extra–
polation, including GLM, LR, SVM, GAM, GPR, RT, and 
ER. The results showed that the GLM, ER, and RT models 
appeared to provide reasonable accuracy in estimating the 
WSs across different heights. However, the accuracy of 
other models, such as SVM and GAM, tended to decrease 
as the height increased. Additionally, some models showed 
bias towards over- or under-estimating wind speeds at 
certain heights, as indicated by the MPE and MBE values. 
GLM arguably performed well at higher heights even as it 
is the only method that achieved more than 60% R2 value 
at 180 m.To enhance the performance of the tested models, 
the study suggests exploring these statistical models in 
combination with global optimization methods like Particle 
Swarm Optimization (PSO) and Genetic Algorithms (GA). 
Future steps in this research domain could include applying 
the models to more diverse datasets, enhancing model 
robustness, and developing capabilities for real-time 
predictions, expanding the applicability and reliability of 
the models in various practical scenarios. 

Computer program 

All scripts are written using Matlab and can be accessed 
here https://github.com/hilalnuha/WSstatistics. 
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Acronyms and abbreviations 

ER Ensemble Regression 
GAM Generalized Additive Models 
GLM Generalized Linear Models 
GPR Gaussian Process Regression 
LR Linear Regression 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MBE Mean Bias Error 
MPE Mean Percentage Error 
MSE Mean Squared Error 
NMSE Normalized MSE 
NRMSE Normalized RMSE 
R2 R-squared 
RMSE Root Mean Squared Error 
RT Regression Tree 
SMAPE Symmetric Mean Absolute Percentage Error 
SVM Support Vector Machines 
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ЕКСТРАПОЛАЦИЈА ВЕРТИКАЛНЕ БРЗИНЕ 
ВЕТРА КОРИШЋЕЊЕМ СТАТИСТИЧКИХ 

ПРИСТУПА 
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Х.Х. Нуха, А. Балгонаим, Р.Р. Пахлеви,  
С. Рехман, М. Мохандес 

 
Ветроелектрана је у последње време доживела 
значајан пораст и популарност, а најновије 
статистике указују да овај сектор и даље напредује. 
Међутим, један од суштинских корака у развоју 
пројеката енергије ветра је проналажење 
одговарајућих локација за ветроелектране, што 
укључује разумевање природе брзине ветра, правца 
ветра, терена и утицаја на животну средину. Да би 
се предвидела производња енергије ветра током 
очекиваног животног века ветроелектране, 
неопходна је вертикална екстраполација брзине 
ветра на висину чворишта ветротурбине. Стога, ова 
студија представља свеобухватну процену седам 
статистичких приступа за вертикалну екстрапола–

цију брзине ветра, укључујући генерализоване 
линеарне моделе (ГЛМ), линеарну регресију (ЛР), 
машине за векторе подршке (СВМ), генерализоване 
адитивне моделе (ГАМ), регресију Гаусовог процеса 
( ГПР), стабло регресије (РТ) и регресија ансамбла 
(ЕР). Тачност ових метода се процењује 
коришћењем метрика перформанси као што су 
средња квадратна грешка (МСЕ), средња средња 
квадратна грешка (РМСЕ), нормализована РМСЕ 
(НРМСЕ), нормализована МСЕ (НМСЕ), средња 
грешка пристрасности (МБЕ), средња апсолутна 
грешка ( МАЕ), средња процентуална грешка 
(МПЕ), средња апсолутна процентуална грешка 
(МАПЕ), симетрична средња апсолутна грешка у 
процентима (СМАПЕ) и Р-квадрат (Р2). Студија 
закључује да, у просеку, ГЛМ ради најбоље од свих 
седам статистичких метода. 

 


