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Investigations on MIT and Lyapunov 
Rule-Based Modified MRAC for Non-
interacting and Interacting Two-Tank 
Coupled Systems 
 
The adaptive control method is a technique that measures the dynamic 
characteristics of the plant automatically and continuously to make a 
comparison with its required output. It utilizes the difference between plant 
output and reference output to compute adaptable system parameters to 
maintain optimal performance regardless of the system variations. The 
behavior of the adaptation rule is significantly affected by the adaptation 
gain value. This paper describes the design of MIT (Massachusetts 
Institute of Technology) and Lyapunov rule-based modified Model 
Reference Adaptative Controller (MRAC) to stabilize a non-interacting 
and interacting two-tank process system. Investigation of variation in 
adaptation gain has also been done. Initially, a traditional MIT and 
Lyapunov rule-based MRAC is designed to stabilize the non-interacting 
and interacting tow-tank coupled system and it is found that both the 
systems are stable only for a few values of adaptation gain. To overcome 
this problem the modified MRAC is planned to stabilise and improve the 
response of the system. The modified MRAC scheme is just the PD 
(Proportional Derivative) controller superimposed on the MRAC control 
method. Now with the modified MRAC, the systems have been stabilized 
and their response has been improved for the wide range of adaptation 
gains. The comparative analysis of traditional and modified MRAC has 
also been presented. The performance analysis in terms of rise time, 
settling time, and peak overshoot has been carried out by comparing the 
results obtained for all the mentioned rules with the variations in the 
adaptation gain, on the MATLAB/Simulink platform. The obtained results 
present encouraging outcomes. 
 
Keywords: Adaptive Control, MRAC, Adaptation gain, MIT Rule, 
Lyapunov Rule, Non-interacting Tow-Tank Coupled System, Interacting 
Tow-Tank Coupled System. 

 
 

1. INTRODUCTION 
 

The primary goal of process control [1], which is a 
subfield of both chemical engineering and control 
engineering, is to maintain a predetermined range for a 
given quantity or parameter. The oil and petrochemical 
industries, the food and beverage industry, the bottling 
industry, the pulp and paper industry, the chemical 
industry, the power industry, the biotechnology and 
pharmaceutical industries, and many more all use 
process control in some capacity. Maintaining a steady 
liquid level and flow rate in a series of tanks is a 
common challenge in the process industries [2-7]. It is 
common practice to pump liquid from one tank into 
another tank or tank [8]. These tanks can be placed in a 
non-interacting or interacting series. Using a two-tank 
system as an example, in a non-interacting configu–

ration, the liquid level in tank 2 does not affect the 
liquid level in tank 1. However, in interacting con–
figuration [9], the liquid levels in both tanks influence 
one another. To preserve the reaction balance and pre–
vent spilling or equipment damage, the volume and 
velocity of the liquid contained in such tanks must be 
controlled. [10, 11].  

Open-loop control, closed-loop control, feed-for–
ward control, etc. are a few examples of the various 
control systems used in industry. The control action in 
open-loop control is independent of the system's output 
and is instead based on the input signal. For simulating 
the plant or process in advance, feed-forward control 
can anticipate and mitigate the effects of measured dis–
ruptions. To implement feedback control [12], a feed–
back loop is added to an existing system, resulting in a 
control action that guides the system to the desired 
output. 

For MRAC systems, the MIT rule is a gradient 
method of analysis and design. The process begins with 
establishing an error signal, which is the relative 
deviation between the plant's output and the reference 
model's output. For constructing an objective function 
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based on this error signal, we may fine-tune the 
controller's parameters. The controller's parameters are 
adjusted so that the objective function has a negative 
gradient. A stable adaptive control law is however 
ensured by the Lyapunov method. A Lyapunov function 
of the output error (or state error) and the parameter 
error is used to implement the Lyapunov technique. A 
negative definite derivative of the Lyapunov function 
ensures the stability of the control loop. [13, 14]. The 
parameters in the control law are adjusted with the help 
of an adaptation mechanism developed using the MIT 
and Lyapunov techniques. Resetting the parameters to 
their optimal values, the system is made error-free and 
stable [15]. The gain from the adaptation mechanism 
has an effect on the system's performance, when the 
adaption gain is high, the system can become unstable 
[16, 17]. A modified MRAC was developed as a solu–
tion, and it proved successful in stabilizing the system 
even at high adaption gain. 

The objective of the research is to stabilize the 
MRAC systems for optimal performance of the non-
interacting two-tank and interacting two-tank systems 
and to identify the impact of adaptation gain on these 
systems. In this paper, MIT and Lyapunov rule-based 
traditional MRAC and modified MRAC have been 
designed and their comparative analysis has been done. 
First, both non-interacting and interacting configu–
rations of a coupled two-tank system are modeled. To 
control the connected two-tank systems, we first derive 
transfer function representations for both models and 
then utilize the MIT and Lyapunov techniques to design 
the conventional MRAC and the modified MRAC 
systems. Adaptation gain (α), rising time (Tr), settling 
time (Ts), and peak overshoot (Mp) are all measured and 
compared across MRAC-optimized systems based on 
both methods. MATLAB/Simulink is used to run the 
simulation. 

The main practical applications of the research lie in 
the field of control systems engineering, particularly in 
the control and optimization of two-tank coupled sys–
tems. Here are some potential practical applications and 
contributions: 

Process Control in Chemical Engineering: Two-
tank systems are commonly used in chemical 
engineering for processes such as liquid level control, 
temperature control, or flow control. The research 
provides insights into utilizing Model Reference 
Adaptive Control (MRAC) techniques for effectively 
regulating these processes. This could lead to more 
efficient and precise control of chemical processes, 
improving productivity and reducing waste. 

Water Management Systems: Two-tank systems 
can also represent water management systems, such as 
water storage tanks in municipal water supply networks. 
By applying the modified MRAC techniques studied in 
the research, engineers can better manage water levels, 
ensure consistent supply, and optimize distribution, 
contributing to more reliable and sustainable water 
management practices. 

Renewable Energy Systems: In renewable energy 
applications like solar thermal systems or energy sto–
rage systems, two-tank configurations are used for heat 
storage or energy buffering. Implementing advanced 

control strategies based on the findings of the research 
can enhance the performance and stability of these 
systems. It could lead to better utilization of renewable 
energy sources, improving overall system efficiency and 
reducing environmental impact. 

Industrial Automation: Two-tank systems are 
prevalent in industrial processes for tasks such as mi–
xing, blending, or batching. By incorporating the modi–
fied MRAC techniques investigated in the research, 
industrial automation systems can achieve tighter con–
trol over these processes, resulting in higher product 
quality, reduced waste, and increased throughput. 

Scientific Merit and Engineering Practice Contri–
bution: 

Theoretical Advancements: The research cont–
ributes to the advancement of control theory by inves–
tigating the application of modified MRAC techniques, 
incorporating Lyapunov-based stability analysis, for 
complex two-tank systems. This contributes to a deeper 
understanding of adaptive control methodologies and 
their applicability to real-world engineering systems. 

Practical Relevance: By focusing on practical sys–
tems like two-tank setups, the research ensures its fin–
dings have direct relevance to real engineering prob–
lems. Engineers can directly apply the insights gained 
from this research to improve the performance, effi–
ciency, and robustness of various industrial and process 
control systems. 

Performance Enhancement: The application of 
modified MRAC techniques has the potential to en–
hance the performance of control systems in terms of 
stability, tracking accuracy, and disturbance rejection. 
This can lead to tangible benefits such as improved 
product quality, reduced energy consumption, and inc–
reased system reliability in engineering practice. 

The research makes valuable contributions to both 
the theoretical understanding and practical implemen–
tation of adaptive control strategies, particularly in the 
context of non-interacting and interacting two-tank cou–
pled systems, with implications for a wide range of 
engineering applications. 

After the brief introduction in section 1, section 2 
gives the mathematical modeling of the NITT (Non-
inverting Two-Tank) and ITT (Inverting Two-Tank) 
systems. The designing procedure of the MIT and Lya–
punov rule-based normal MRAC and modified MRAC 
have been discussed in sections 3 and 4 respectively. 
Performance evaluation and simulation results are given 
in section 5. The last section 6 gives the overall conc–
lusions of this work. 

 
2. MATHEMATICAL MODELING OF TWO-TANK 

SYSTEM 
 

In this paper, the two-tank liquid level system is se–
lected as a plant to be controlled, because it is a non–
linear inherently unstable system. The Two-tank liquid 
level system is arranged in non-interacting and inte–
racting modes as shown in Figure 1. 

The parameters used in Figure 1 are defined as A1 
and A2 is the cross-sectional area of tank-1 and tank-2 
respectively, Qin is the inflow rate of liquid in tank-1, 
Q1, and Q2 are the outflow rate of liquid in tank-1 and 
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tank-2 respectively, H1 and H2 are the height of liquid in 
Tank-1 and tank-2 respectively and R1 and R2are the 
resistances to flow of liquid from Tank-1 and tank-2 
respectively. 

 
(a) 

 
(b) 

Figure 1. Block Diagram of (a) Noninteracting Two-Tank 
Liquid Level System (b) Interacting Two-Tank Liquid Level 
System 

 

2.1 Noninteracting 
 

The transfer function of the non-interacting two-tank 
coupled system depicted in Figure 1(a) is determined by 
solving the mass balance equation, 

(Mass inflow rate of the first tank) - (Mass outflow 
rate of the first tank) = rate of change of mass inside the 
tank 

( )1 1 1in
d

Q Q A H
dt

ρ ρ ρ− =   (1) 

( )1 1 1in
d

Q Q A H
dt

− =    (2) 

Assuming linear resistance to flow we have, 

1
1

1

H
Q

R
=    (3) 

Now, put the Q1 from Eq. (3) to Eq. (2), 

( )1
1 1

1
in
H d

Q A H
R dt

− =    (4) 

Taking Laplace Transform of Eq. (4) 

( ) ( ) ( )1
1 1

1
in

H s
Q s A sH s

R
− =   (5) 

( ) ( )1
1

1 1 1 in
R

H s Q s
A R s

=
+

  (6) 

Similarly, the mass balance equation for tank 2, 

( )1 2 2 2
d

Q Q A H
dt

− =    (7) 

( )1 2
2 2

1 2

H H d
A H

R R dt
− =    (8) 

Taking Laplace Transform of Eq. (8), 

( ) ( ) ( )1 2
2 2

1 2

H s H s
A sH s

R R
− =   (9) 

Substituting H1(s) from Eq. (6) to Eq. (9), 

( ) ( ) ( )1
2 2 1 2 1 2

1 1 1 in
R

R Q s A R R s R H s
A R s

⎛ ⎞
= +⎜ ⎟+⎝ ⎠

  (10) 

( )
( ) ( )
2 2

2
1 1 2 2 1 1 2 2 1in

H s R
Q s A R A R s A R A R s

=
+ + +

  (11) 

( )
( ) ( )
2 2

2
1 1 2 2 1 1 2 2 1in

H s R
Q s A R A R s A R A R s

=
+ + +

  (12) 

Now, Eq. (12) represents the Transfer Function of a 
non-interacting two-tank coupled system. 

 
2.2 Interacting 

 
The transfer function of the interacting two-tank coup–
led system depicted in Figure 1(b) is determined by 
solving the mass balance equation, 

(Mass inflow rate of the first tank) - (Mass outflow rate 
of the first tank) = rate of change of mass inside the tank 

( )1 1 1in
d

Q Q A H
dt

ρ ρ ρ− =   (13) 

( )1 1 1in
d

Q Q A H
dt

− =    (14) 

Assuming linear resistance to flow we have, 

1 2
1

1

H H
Q

R
−

=    (15) 

Now, put the Q1 from Eq. (15) to Eq. (14), 

( )1 2
1 1

1
in
H H d

Q A H
R dt
−

− =   (16) 

( )1 1 2 1 1 1in
d

Q R H H A R H
dt

− + =   (17) 

Taking Laplace Transform of Eq. (17), 

( ) ( ) ( )1 1 2 1 1 1inQ s R H s H s A R sH− + =   (18) 

( ) ( ) ( )1 2
1

1 1 1
inR Q s H s

H s
A R s

+
=

+
  (19) 

Similarly, the mass balance equation for tank 2, 

( )1 2 2 2
d

Q q A H
dt

− =    (20) 

( )1 2 2
2 2

1 2

H H H d
A H

R R dt
−

− =   (21) 

Taking Laplace Transform of Eq. (21), 

( ) ( ) ( ) ( )1 2 2
2 2

1 2

H s H s H s
A sH s

R R

−
− =  (22) 
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( ) ( ) ( ) ( )2 1 2 1 2 2 1 2 2 2R H s A R R sH s R H s R H s= + +   (23) 

Substituting H1(s) from Eq. (19) to Eq. (23), 

( ) ( ) ( ) ( )1 2
2 2 1 2 1 2 2

1 1 1
inR Q s H s

R A R R s R R H s
AR s

+⎛ ⎞
= + +⎜ ⎟+⎝ ⎠

  (24) 

( )
( ) ( )
2 2

2
1 1 2 2 1 1 2 2 1 2 1in

H s R
Q s A R A R s A R A R A R s

=
+ + + +

  (25) 

Now, Eq. (25) represents the Transfer Function of 
the interacting two-tank coupled system. Table 1 lists 
the specifications of the two-tank coupled system [18]. 
Table 1: Parameters Specifications to Model both Two-Tank 
Coupled Systems 

Parameters Values 
A1 0.025 m2 
A2 0.025 m2 
H1 0.3 m 
H2 0.15 m 
R1 100 s/m2 
R2 200 s/m2 

 
The transfer functions of the non-interacting and inte–

racting two-tank coupled systems are given by Eqs. (26) 
and (27) when the parameters from Table 1 are substi–
tuted into the formulas of Eqs. (12) and (25) respectively, 

( )
( )
2

2
200

12.5 7.5 1in

H s

Q s s s
=

+ +
  (26) 

( )
( )
2

2
200

12.5 12.5 1in

H s

Q s s s
=

+ +
  (27) 

The two-tank system's linearized model is a second-
order model. As a result, the linear reference model can 
be constructed as a standard second-order transfer 
function, as shown below, 

( )
( )

2

2 22
m n

c n n

y s

u s s s

ω
ζω ω

=
+ +

  (28) 

In MRAC, the first step is to select the reference 
model depending on the requirement. After that, the 
control algorithm's design is done to update the 
controller's adjustable parameters. The reference model, 
which describes the desired performance specifications, 
i.e., rise time (Tr), settling time (Ts), and peak-overshoot 
(Mp) for system response, is given. For the analysis of 
this research work, a critically damped (ζ =1) second-
order system, is taken from [18] and represented by Eq. 
(29) and Eq. (30) for non-interacting and interacting 
two-tank coupled systems respectively. 

( )
( ) 2

1

6.25 5 1
m

c

y s

u s s s
=

+ +
    (29) 

( )
( ) 2

1

2 1
m

c

y s

u s s s
=

+ +
   (30) 

 

3. MODEL REFERENCE ADAPTIVE CONTROL 
 

MRAC is a form of adaptive control that belongs to the 
broader category of non-dual adaptive control [19]. A 

reference model may define the performance of the 
system. After comparing the actual output to the mo–
deled output, the feedback controller settings are modi–
fied using different approaches like the MIT rule and 
the Lyapunov rule, which is described below. The 
MRAC is modeled to manipulate the plant or system 
output to track the reference model. Model Reference 
Adaptive System has two types of loops. First is an 
inner loop, also known as a regulator loop. It is a stan–
dard control loop that consists of a regulator and the 
plant to update the plant parameter through an adap–
tation mechanism. The second is the outer loop, also 
known as the adaptation loop. This loop coordinates the 
regulator parameters to manage the steady state error 
between the system output and modeled output down to 
zero. The basic block diagram of MRAC is shown in 
Figure 2. 

 
Figure 2. Block Diagram of Model Reference Adaptive 
Controller 

Since the designed mathematical model of the sys–
tem is a second-order system, hence, we have chosen a 
standard critically damped second-order system as a 
reference model to design the controller. Let the equa–
tions (31) and (32) given below characterize the system 
and reference model equation, respectively: 

( ) ( ) ( ) ( )
2

1 22

d y t dy t
a b y t b u t
dtdt

= − − +   (31) 

( ) ( ) ( ) ( )
2

2
m

m m m m c
d y t dy t

a b y t b u t
dtdt

= − − +   (32) 

Here, a, b1, b2, am and bm are constants y(t) is plant 
output and ym(t) is reference model output. The equation 
that describes the control law is shown below by Eq. (33) 

( ) ( ) ( )1 2cu t u t y tθ θ= −    (33) 

The difference between the output of the reference mo–
del ym, and the plant output y is defined as the term "error 
function," It may be represented as follows by Eq. (34): 

( ) ( ) ( )me t y t y t= −    (34) 
 

3.1 MIT RULE 
 
This rule was devised by the Massachusetts Institute of 
Technology (MIT); therefore, it is commonly known as 
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the MIT rule. It applies the MRAC scheme [20-22] to 
real-world systems. For the stability analysis of the 
system by the MIT rule, we needed a loss function J, 
often known as the cost function, which may be illus–
trated using [23-27], 

( ) 21
2

J eθ =    (35) 

J
e

e
∂

=
∂

   (36) 

where, e is output error, which may be considered as the 
difference between the output of the plant and the 
output of the reference model, and θ (i.e., θ1 and θ2) is 
the regulating parameter that is generally recognized as 
the control parameter. In this case, the loss function is 
reduced by adjusting a parameter denoted by θ (i.e., θ1 
and θ2). Therefore, adjusting the parameter so that it 
moves in the opposite direction as J's gradient would be 
appropriate., i.e., 

( )Jd
dt

θθ γ
θ

∂
= −

∂
   (37) 

( )ed
e

dt

θθ γ
θ

∂
= −

∂
   (38) 

Here, ∂e/ ∂θ is known as the sensitivity derivative of 
the plant. This term depicts how the error is affected by 
modification made in the parameter, denoted by the 
symbol θ. The γ is adaptation gain [18]. Adaptation gain 
refers to a tuning parameter used to adjust the adap–
tation rate of the controller. The adaptation gain aims to 
strike a balance between fast convergence and stability. 
A high adaptation gain can lead to quick parameter 
updates and quicker convergence, but it may also intro–
duce instability and overshoot in the control system. On 
the other hand, a low adaptation gain can improve 
stability but may result in slower convergence and 
reduced tracking performance. The selection of the 
adaptation gain depends on the characteristics of the 
controlled system and the desired performance specifi–
cations. The best adaptation gain can be determined 
using a systematic strategy, such as trial-and-error, 
optimization algorithms, or advanced control design 
methods. In this paper, the trial-and-error method has 
been used to find a suitable range of adaption gain. 

Since the error is specified by Eq. (34), hence the 
modification in error w.r.t. time may be written as  

2 1
2

2
1

1 1 m m
m

m m m

m
c

m

b bb b
e y y e y

a a a a a a

bb
u

a a

θ

θ

⎛ ⎛ ⎞ ⎛ ⎞
= − − − − + − +⎜ ⎜ ⎟ ⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝

⎞⎛ ⎞
+ − ⎟⎜ ⎟ ⎟⎝ ⎠ ⎠

  (39) 

The aim of an adaptive controller is that the y should 
be the asymptotic trace of ym and hence from Eq. (39), 

1 1
0m m

m
y y a a
a a

− = ⇒ =   (40) 

2 22
1 1

2
0m m

m

b bb
a a b
θ θ− = ⇒ =   (41) 

1 12 1
2 2

2
0m m

m

b b bb b
a a a b
θ θ

−
+ − = ⇒ =   (42) 

Now, ( )1me a e t= −  is negative definite and e → 0 as 
t → ∞, hence the system will be stable. 

Putting Eq.(33) into Eq. (31) and using the Laplace 
transform, we get the following: 

( )
( )

( )2 1
2

1 2 2
c

b
y s u s

s as b b

θ
θ

=
+ + +

  (43) 

Taking Laplace transform of Eq. (32), 

( ) 2
m

m c
m m

b
y s u

s a s b
=

+ +
  (44) 

Take Laplace Transform of Eq. (34) and put Eq. (43) 
and Eq. (44), 

( )
( )

( ) ( )2 1
2 2

1 2 2

m
c c

m m

bb
e s u s u s

s as b b s a s b

θ
θ

= −
+ + + + +

  (45) 

( )
( )2

2
2 1 2 2

c
be

u s
s ac b bθ θ

∂
=

∂ + + +
  (46) 

( )( )
( )

2
2 1

222
1 2 2

c
be

u s
s ac b b

θ
θ θ

−∂
=

∂ + + +
  (47) 

( ) ( )
( )2 2 1

2 2
2 1 2 2 1 2 2

c
b be

u s
s ac b b s ac b b

θ
θ θ θ

⎛ ⎞⎛ ⎞−∂ ⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟∂ + + + + + +⎝ ⎠⎝ ⎠

  (48) 

( )
2

2
2 1 2 2

be
y

s ac b bθ θ

⎛ ⎞−∂ ⎜ ⎟=
⎜ ⎟∂ + + +⎝ ⎠

  (49) 

Put the value of a from Eq. (40) and θ2 from Eq. (42) 
into Eq. (46) and (49), we get Eq. (50) and (51) 

2
2

1
c

m m

be
u

s a s bθ
∂

=
∂ + +

   (50) 

2
2

2 m m

be
y

s a s bθ
−∂

=
∂ + +

   (51) 

Eq. (38) can be written as, 

( )1

1

ed
e

dt

θθ
γ

θ
∂

= −
∂

   (52) 

( )2

2

ed
e

dt

θθ
γ

θ
∂

= −
∂

   (53) 

By substituting the values of 
1

e
θ
∂
∂

 and 
2

e
θ
∂
∂

 from 

Eq. (50) and (51) into Eq. (52) and (53), we get Eq. (54) 
and (55) respectively, 

1 2
2 c

m m

b
e u

t s a s b

θ
γ

∂
= −

∂ + +
  (54) 

2 2
2

m m

b
e y

t s a s b

θ γ∂
=

∂ + +
  (55) 

To absorb the plant parameter b2 Eq. (54) and Eq. 
(55) re-definedas Eq. (56) and Eq. (57) respectively 



310 ▪ VOL. 52, No 2, 2024 FME Transactions
 

which defined the adaptation laws using the MIT rule. 
Where α = γb2/bm. Figure 3 shows the block diagram of 
MRAC using the MIT rule. 

1
2

m
c

m m

b
e u

t s a s b

θ
γ

∂
= −

∂ + +
  (56) 

2
2

m

m m

b
e y

t s a s b

θ
γ

∂
=

∂ + +
  (57) 

 
Figure 3. Block Diagram Model for MRAC using MIT rule 
 

3.2 LYAPUNOV RULE 
 
The Lyapunov stability theory may be used to describe 
the algorithms for adjusting parameters in the MRAC 
system. Based on the system mentioned above by Eq. 
(31), the control law defined by Eq. (33), and the error 
given by Eq. (34). We have chosen the Lyapunov func–
tion as [12, 18], 

( ) ( )

( )

22
1 2 2 2 1

2

2
2 1

2

1 1
, ,

2

1

m

m

V e e b b b
b

b b
b

θ θ θ
γ

θ
γ

⎛
= + + − +⎜

⎝
⎞

+ − ⎟
⎠

  (58) 

( )( )

( )( )

2 2
2 2 1 2

2 1 1

1

1

m m

m c

V a e e b b b ye

b b u e

θ θ α
γ

θ θ α
γ

= − + + + − − +

+ − −
  (59) 

where, α = γb2/bm and to ensure that V is negative 
definite, 

( )( )

( )( )

2 2 1 2

2 2 1 1

1

1
0

m

c

b b b ye

b b u e

θ θ α
γ

θ θ α
γ

+ − − +

+ + − =
  (60) 

 
Figure 4. Block Diagram Model for MRAC using Lyapunov 
Rule 

Therefore, Eq. (61) and Eq. (62) define adaptation 
laws using the Lyapunov rule. Figure 4 shows the block 
diagram of MRAC using the Lyapunov rule. 

2d ey
dt
θ

α=    (62) 

 

4. MODIFIED MODEL REFERENCE ADAPTIVE 
CONTROL 
 

Now, the modified MRAC has been planned to improve 
the response of the system. The modified MRAC 
scheme is just the PD controller superimposed on the 
MIT and Lyapunov rule-based MRAC control method. 
Here, we stabilize both systems and follow the intended 
response by combining the control laws of MRAC using 
the MIT rule, Lyapunov rule, and PD control law. The 
PD control law's Proportional and Derivative gains can 
be modified with the MIT and Lyapunov rule's adaption 
parameters. Therefore, the controller law is demons–
trated as Eq. (63). Figure 5(a) shows the block diagram 
of the modified MIT rule-based MRAC and Figure 5(b) 
shows the block diagram of the modified Lyapunov 
rule-based MRAC. 

( ) ( ) ( ) ( ) ( )
1 2 p d

de t
u t r t y t k e t k

dt
θ θ

⎛ ⎞
= − − +⎜ ⎟

⎝ ⎠
  (63) 

 
(a) 

 
(b) 

Figure 5. Block Diagram of Modified MRAC using (a) MIT 
Rule (b) Lyapunov Rule. 

 

5. PERFORMANCE EVALUATION AND SIMULA–
TION RESULTS 

 
This section details a simulation performance evaluation 
of both adaptive controllers for both systems. The set 
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point which is the value of height, H2, is 0.15m. It 
investigated how different adaptation gain values affect 
the system behavior for all adaptation strategies. The 
adaptive controllers are analyzed using a step input 
signal by taking a non-interacting system as Eq. (26) 
and an interacting system as Eq. (27). In MRAC, the 
first step is to select the reference model depending on 
the requirement. After that, the control algorithm's de–
sign is done to update the controller's adjustable para–
meters. The reference model regarding the transfer fun–
ction obtained from the desired performance specifi–
cations (i.e., rise time, settling time, overshoot, and 
steady-state error) is given. In the present work, for the 
analysis, the reference model of the non-interacting and 
interacting two-tank coupled system is taken from 
Dinakin, and Oluseyi, 2021. 

 
5.1 Influence of adaptation gain using conventional 

MRAC on non-interacting system 
 

Firstly, the adaptation gain α is varied, and the resulting 
influence on the non-interacting system's (26) time 
response is analyzed. The results of a simulation with 
gain values 0.01, 0.1, 1, 5, 10, 100, and 1000 have been 
shown in Figure 6 with the MIT rule and in Figure 7 
with the Lyapunov rule for the reference model (29). 

 
(a) 

 
(b) 

 
(c) 

Figure 6: Simulation Results of Conventional MRAC with 
MIT Rule at (a) α = 0.01, (b) α = 0.1, (c) α = 1 for Non-
interacting System 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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(f) 

Figure 7: Simulation Results of Conventional MRAC with 
Lyapunov Rule at α = 0.01, (b) α = 0.1, (c) α = 1 (d), α = 10, 
e) α = 100, (f) α = 1000 for Non-interacting System 

From Figure 6 and Table 2, it may be observed that 
as the adaptation gain increases, the system starts osci–

llating and at α =1 the system becomes unstable with the 
MIT rule. But with the Lyapunov rule the system’s res–
ponse is fast but oscillating and the oscillation increases 
with adaptation gain as shown in Figure 7. The per–
formance of the system w.r.t. rise time, settling time, 
peak time, and peak overshoot is shown in Table 2. 

 
5.2 Influence of adaptation gain using conventional 

MRAC on interacting system 
 

In this section, the interacting system's time response is 
analyzed with varying the adaptation gain α. The results 
of a simulation with the gain values 0.01, 0.1, 1, 2, 2.1, 
5, 10, 100, and 1000 have been shown in Figure 8 with 
MIT rule the gain values 0.01, 0.1, 1, 10, 100, and 1000 
have been shown in Figure 9 with the Lyapunov rule for 
the reference model (30). 

Table 2: Effect of Adaptation Gain on Non-interacting Coupled System with MRAC 

Adaptation Law MIT Rule Lyapunov Rule 
Adaptation Gain Overshoot 

(%) 
Peak 
Time 

Settling 
Time 

Rise Time Overshoot 
(%) 

Peak 
Time 

Settling 
Time 

Rise 
Time 

0.01 5.9561 56.7946 70.0150 27.6027 9.1257 52.4903 83.2475 25.3755 
0.1 54.8493 74.0427 422.2048 6.5342 56.7376 17.0250 96.3780 6.1572 
1 0 23.8360 23.8360 7.1054x10-14 72.5685 14.9886 66.8941 2.8020 
10 - - - - 112.8315 7.5277 49.2161 4.8553 

100 -  - - 96.8645 3.7443 49.3982 2.2316 
1000 - - - - 116.4551 2.3791 49.9839 0.8704 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 8: Simulation Results of Conventional MRAC with 
MIT Rule at (a) α = 0.01, (b) α = 0.1, (c) α = 1, (d) α = 2, (e) α 
= 2.1 for Interacting System 

From Figure 8 and Table 3, it may be observed that 
as the adaptation gain increases, the system starts osci–
llating and at α = 2.1, the system becomes unstable with 
the MIT rule. But with the Lyapunov rule the system’s 
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response is fast but oscillating and the oscillation 
increases with adaptation gain as shown in Figure 9. 
The performance of the system w.r.t. rise time, settling 
time, peak time, and peak overshoot is shown in Table 
3. To overcome this problem the modified MRAC has 
been designed and analysis has been discussed in 
section 5.3 and section 5.4 for non-interacting and 
interacting systems respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 9: Simulation Results of Conventional MRAC with 
Lyapunov Rule at (a) α = 0.01, (b) α = 0.1, (c) α = 1 (d), α = 
10, e) α = 100, (f) α = 1000 for Interacting System 

Table 3: Effect of Adaptation Gain on Interacting Coupled System with MRAC 

Adaptation 
Law 

MIT Rule Lyapunov Rule 

Adaptation 
Gain 

Overshoot 
(%) 

Peak 
Time 

Settling 
Time 

Rise 
Time 

Overshoot Peak 
Time 

Settling 
Time 

Rise Time 

0.01 15.1789 57.7352 109.4357 27.6781 16.6722 54.7833 108.6629 26.9792 
0.1 58.2757 17.6557 76.5372 6.2898 61.5635 15.5906 6.0719 6.0719 
1 174.4740 15.9238 79.7763 2.4037 91.1170 6.6162 27.2981 2.2286 
2 549.6657 16.8916 27.6988 1.8798 89.7327 5.8287 28.6087 1.8340 
10 - - - - 67.4724 3.3769 36.3920 1.1898 

100 - - - - 98.2883 3.2040 49.6718 0.7653 
1000 - - - - 116.0202 1.6961 49.9601 1.0196 
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5.3 Influence of adaptation gain using modified 
MRAC on non-interacting system 

 
Here, we have combined the control law of MRAC 
using the MIT and Lyapunov rule with the PD control 
law such that the system became stable and tracked the 
desired response. The gains of PD control law (Pro–
portional and Derivative) have been fine-tuned using a 
trial-and-error process. In the process of turning the 
initial values of Kp and Kd have been considered. These 
values can be estimated based on knowledge of the sys–
tem. In this process firstly, we adjusted the proportional 
gain (Kp) while keeping the derivative gain (Kd) at zero. 
Therefore, we have increased the value of Kp gradually 
until the system exhibits some overshoot in response to 
a step input. Once we have determined an appropriate 
value for Kp, we go for adding derivative gain (Kd). 
thereafter we increased Kd gradually while monitoring 
the system's response. The derivative action helped to 
reduce overshoot and improved settling time. The pro–
cess of tuning is continued for the fine-tuning of Kp and 
Kd until we have achieved the desired control per–
formance. Back and forth process has been adapted for 
adjusting the Kp and Kd while observing the system's 
response. The Performance metrics such as rise time, 
settling time, overshoot, and steady-state error are used 
to evaluate the controller's performance. After fine-
tuning of controller, the gains in the PD controller have 
been found as Kp = 5, and Kd = 2.5. 

In this section, the non-interacting system's time 
response is analyzed with modified MRAC by varying 
the adaptation gain α. The results of a simulation with 
the gain values 0.1, 1, 10, 50, 100, and 1000 have been 
shown in Figure 10 and Figure 11 with the MIT rule and 
in Figure 12 and Figure 13 with the Lyapunov rule for 
the reference model (29). Figure 10 and Figure 12 show 
the step response and Figure 11 and Figure 13 shows the 
error between the system and reference model. 

 
Figure 10: Simulation Results of Modified MRAC with MIT 
Rule for Various Values of Adaptation Gain (α) 

 
Figure 11: Error in Simulation Results of Modified MRAC 
with MIT Rule for Various Values of Adaptation Gain (α) 

 
Figure 12: Simulation Results of Modified MRAC with 
Lyapunov Rule for Various Values of Adaptation Gain (α) 

 
Figure 13: Error in Simulation Results of Modified MRAC 
with Lyapunov Rule for Various Values of Adaptation Gain 
(α) 

From Figure 10 to Figure 13 and Table 4 it may be 
observed that by designing a modified MRAC the non-
interacting coupled system became stable; overshoot 
and oscillations are removed for a higher range of 
adaptation gain values with both the MIT and Lyapunov 
rule. As the adaptation gain increased, the system 
response became fast as shown in Table 4. The 
performance of the system w.r.t. rise time, settling time, 
peak time, and peak overshoot are shown in Table 4 and 
it can also be observed that the Lyapunov rule gives a 
better result than the MIT rule. 

Table 4: Effect of Adaptation Gain on Non-interacting Coupled System with Modified MRAC 

Adaptation 
Law 

MIT Rule Lyapunov Rule 

Adaptation 
Gain 

Overshoot Peak Time Settling 
Time 

Rise Time Overshoot Peak Time Settling 
Time 

Rise Time 

0.1 0 100 98.1122 74.1687 0 100 98.0735 75.6608 
1 0 100 97.9141 74.2825 0 100 97.8782 75.7652 

10 0 100 55.9504 33.0764 0 100 49.5992 29.9893 
50 3.0985x10-4 40.2645 19.0918 10.2749 3.5358x10-7 60.2578 16.2895 9.1021 
100 2.8645x10-6 56.2578 15.7002 7.6511 1.0310x10-6 56.2578 15.3303 7.5825 

1000 6.2089x10-7 56.2578 14.6839 7.2591 4.3198x10-8 62.2578 14.6562 8.1923 
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Table 5: Effect of Adaptation Gain on Interacting Coupled System with Modified MRAC 

Adaptation 
Law 

MIT Rule Lyapunov Rule 

Adaptation 
Gain 

Overshoot 
(%) 

Peak 
Time 

Settling 
Time 

Rise 
Time 

Overshoot 
(%) 

Peak 
Time 

Settling 
Time 

Rise 
Time 

0.1 0 100 98.0268 77.3924 0 100 98.0113 77.9924 
1 0 100 97.8189 77.4866 0 100 97.8045 78.0851 

10 0 100 49.1994 30.4553 0 100 46.2938 29.0241 
50 0.0244 16.5776 12.3970 7.1087 0.3200 12.5131 10.0591 6.1318 
100 0.5227 9.3422 7.8884 4.3405 1.4257 7.3662 6.2925 3.7626 

1000 0.0101 11.6411 6.0431 2.7872 0.0061 11.6411 5.8951 2.9689 
 
 

5.4 Influence of adaptation gain using modified 
MRAC on interacting system 

 
For the interacting system, we have also followed the 
same step as explained in section 5.3 for the tuning of the 
controller for a reliable response. After fine-tuning of 
controller, the gains in the PD controller have been found 
as Kp = 5, and Kd = 2.5. In this section, the interacting 
system's time response is analyzed with modified MRAC 
by varying the adaptation gain α. The results of a simu–
lation with the gain values 0.1, 1, 10, 50, 100, and 1000 
have been shown in Figure 14 and Figure 15 with the 
MIT rule and in Fig. 16 and Fig. 17 with the Lyapunov 
rule for the reference model (30). Figure 14 and Figure 16 
show the step response and Figure 15 and Figure 17 
shows the error between the system and reference model. 

From Figure 14 to Figure 17 and Table 5 it may be 
observed that by designing a modified MRAC the 
interacting coupled system became stable; overshoot 
and oscillations are removed for a higher range of 
adaptation gain values with both the MIT and Lyapunov 
rule. As the adaptation gain increased, the system res–
ponse became fast as shown in Table 5. The perfor–
mance of the system w.r.t. rise time, settling time, peak 
time, and peak overshoot is shown in Table 5 and it can 
also be observed that the Lyapunov rule gives a better 
result than the MIT rule. 

 
Figure 14: Simulation Results of Modified MRAC with MIT 
Rule for Various Values of Adaptation Gain (α) 

 
Figure 15: Error in Simulation Results of Modified MRAC 
with MIT Rule for Various Values of Adaptation Gain (α) 

 
Figure 16: Simulation Results of Modified MRAC with 
Lyapunov Rule for Various Values of Adaptation Gain (α) 

 
Figure 17: Error in Simulation Results of Modified MRAC 
with Lyapunov Rule for Various Values of Adaptation Gain 
(α) 

6. CONCLUSIONS 
 

In this paper, the traditional and Modified MRAC has 
been designed and simulated in MATLAB/Simulink for 
non-interacting and interacting two-tank coupled 
systems. The performance of normal MRAC systems 
has been compared to that of the modified systems, 
which is the MIT and Lyapunov technique super–
imposed with a PD controller in their design. The tradi–
tional and modified MRAC systems have demonstrated 
their adaptability and robustness in controlling non-
interacting and interacting two-tank systems under 
various conditions. The adaptability gain parameter, a 
crucial component of these systems, has been shown to 
play a significant role in determining their performance. 
After carefully tuning this gain, we have achieved 
desirable control performance, with considerations for 
stability and convergence. Our investigation has high–
lighted the importance of a balanced adaptation gain. 
Too high gain can lead to overshooting and instability, 
while too low gain may result in sluggish responses and 
poor tracking performance. Achieving the right balance 



316 ▪ VOL. 52, No 2, 2024 FME Transactions
 

is a critical aspect of the successful implementation of 
these adaptive control techniques. Through a rigorous 
examination of these adaptive control strategies, several 
key findings and insights have emerged. A significant 
contribution of this paper lies in the comparative 
stability and adaptation gain analysis of both controller 
designs. This comparative aspect is crucial for engineers 
and researchers seeking the most effective control 
strategy for similar dynamic systems. 

The conventional MRAC is suitable only for a few 
lower adaptation gain values. It has been observed with 
the conventional MRAC that both the non-interacting 
and interacting two-tank liquid-level coupled systems 
have given very poor results with very high oscillations 
and reduced tracking performance. To overcome these 
problems the modified MRAC has been designed. The 
modified Model Reference Adaptive Controller has 
been designed for both the non-interacting and inte–
racting two-tank coupled systems for a wide range of 
adaptation gain values. From the modified MRAC it has 
been observed that both the systems are stable and 
tracked the desired response for a wide range and very 
high gain values. With the increase in the values of 
adaptation gain, the system's performance is improving 
in terms of fast response, lesser settling time, a drop in 
overshoot, and well-tracking of desired response. There 
are no oscillations in the response for a large range and 
high gain values for both systems. It has also been 
observed that both systems have better responses with 
the Lyapunov rule as compared to the MIT rule. 
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NOMENCLATURE  

Qin inflow rate of liquid in tank-1 
Q1 outflow rate of liquid in tank-1 
Q2 outflow rate of liquid in tank-2 
H1 height of liquid in tank-1 
H2 height of liquid in tank-2 
R1 resistances to flow of liquid from tank-1 
R2 resistances to flow of liquid from tank-2 
A1 cross-sectional area of tank-1 
A2 cross-sectional area of tank-2 
J cost function 
Tr rise time 
Ts  settling time 
Mp Peak overshoot 
a,  constants 

am,  
b1,  
b2,  
bm 
Kp proportional gain 
Kd  derivative gain 

Greek symbols 

ρ density of liquid 
ζ damping ratio 
ωn natural frequency 
θ1,  
θ2, 

adaptation parameters 

γ,  
α adaptation gains 

Superscripts  

in input 
m Reference model 

Acronyms and Abbreviations 

MIT Massachusetts Institute of Technology 
MRAC Model Reference Adaptative Controller 
PD Proportional Derivative 
NITT Non-inverting Two-Tank 
ITT Inverting Two-Tank 

 
 
ИСТРАЖИВАЊА О МОДИФИКОВАНОМ 
МРАЦ-У ЗАСНОВАНОМ НА ПРАВИЛИМА 

МИТ-А И ЉАПУНОВА ЗА СИСТЕМЕ СА ДВА 
РЕЗЕРВОАРА КОЈИ НИСУ У ИНТЕРАКЦИЈИ 

И МЕЂУСОБНО ДЕЛУЈУ 
 

Д. Гупта, А. Кумар, В.К. Гири 
 

Метода адаптивне контроле је техника која 
аутоматски и континуирано мери динамичке 
карактеристике постројења како би се направила 
поређење са његовом потребном производњом. 
Користи разлику између излаза постројења и 
референтног излаза за израчунавање прилагодљивих 
параметара система за одржавање оптималних 
перформанси без обзира на варијације система. На 
понашање правила прилагођавања значајно утиче 
вредност адаптационог добитка. Овај рад описује 
дизајн МИТ-а (Masachusetts Institute of Technologi) и 
модификованог адаптивног контролера заснованог 
на Љапуновљевим правилима (МРАЦ) како би се 
стабилизовао процесни систем са два резервоара 
који није у интеракцији и који је у интеракцији. 
Такође је рађено истраживање варијације у појачању 
адаптације. У почетку, традиционални МРАЦ зас–
нован на правилима МИТ-а и Љапунова је дизај–
ниран да стабилизује систем за вучу-резервоар који 
није у интеракцији и који је у интеракцији и утв–
рђено је да су оба система стабилна само за неко–
лико вредности појачања прилагођавања. Да би се 
превазишао овај проблем, модификовани МРАЦ је 
планиран да стабилизује и побољша одзив система. 
Модификована МРАЦ шема је само ПД (пропор–



318 ▪ VOL. 52, No 2, 2024 FME Transactions
 

ционални дериват) контролер који је суперпонован 
на МРАЦ метод контроле. Сада са модификованим 
МРАЦ-ом, системи су стабилизовани и њихов одзив 
је побољшан за широк спектар побољшања прила–
гођавања. Такође је представљена компаративна 
анализа традиционалног и модификованог МРАЦ-а. 

Анализа перформанси у смислу времена пораста, 
времена смиривања и прекорачења врха је спро–
ведена упоређивањем резултата добијених за сва 
наведена правила са варијацијама у појачању 
адаптације, на МАТЛАБ/Симулинк платформи. 
Добијени резултати дају охрабрујуће резултате. 

 

 
 

 


