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Optimal Control of Motion of the 
System Based on Mathematical 
Pendulum with Constant Length 
 
The paper discusses the motion of the mathematical pendulum (with reference to 
the transportation machines modelling), from the state of constant velocity motion 
of the suspension point to the state of rest for the pre-assigned time with damping 
of oscillations at the end of the process. Solutions of the task were found by 
application of the Pontryagin's principle of maximum, and adaptive and digital 
methods of oscillations damping. Acceleration of the suspension point of the 
mathematical pendulum is used as the control value in all cases. The case of the 
constant length of the mathematical pendulum is discussed 
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1. INTRODUCTION 
 

Modelling of operation of the crane’s systems 
(unloading bridges) can be done by establishing the 
analogy between a crane trolley with a grab on one side, 
and a mathematical pendulum with a moving point of 
suspension, on the other side. In this case the point of 
suspension of the mathematical pendulum represents the 
centre of gravity of the crane trolley, while the material 
point represents the grab with the payload.  
 Works of some authors like Kazak [12], [13], 
Komarov [14], Lobov [16] confirms this analogy, where 
the crane trolley and the load were modelled as dynamic 
systems with two masses inter-linked with an inelastic 
rope. In these works the laws of load oscillations in 
vertical planes are determined, as well as the recurrent 
influence of given oscillations on inertial forces of the 
system at various rules of change of the driving force of 
the crane trolley.  
 The task of reducing the influence of inertial force, 
by applying the above mentioned analogy, requires 
solving of two aspects of the motion of the 
mathematical pendulum: (1) motion of the mathematical 
pendulum from the state of rest to the assigned distance 
with damping of oscillations at the end of the process, 
and (2) motion of the mathematical pendulum from the 
state of rest at the beginning of acceleration period or 
state of motion at constant velocity at the beginning of 
braking period, to the state of uniform motion at an 
assigned velocity at the end of the acceleration period or 
to the state of rest at the end of the braking period, with 
damping of oscillations at the end of both periods of 
non-stationary motion modes (acceleration, braking).  
 Zaremba [29] solves the first task concerning the 
motion of mathematical pendulum of constant length for 
the minimal time, where velocity and acceleration 

[6] takes into consideration velocity of the suspension 
point limited with absolute value and obtains the 
solution for the "first" and the "second" aspect of the 
pendulum motion through the viscous environment for a 
minimum time, which is a control value. Bolotnik and 
Chiong [3], solve the "first" aspect of the motion of the 
mathematical pendulum of variable length taking for the 
control value the driving force limited with an absolute 
value.  
 The second approach to the aspect of motion of 
mathematical pendulum is by using the Pontryagin's 
principle of maximum. Taking the limited acceleration 
of the suspension point as the control value, and 
applying the principle of maximum, Sokolov [27] 
defines that the choice of the value of control in the 
given moment, determines whether the value of 
functional (which presents the energy of mathematical 
pendulum) would be minimal or maximal. Karihaloo 
and Parbery [10], solve the first issue of the motion of 
the mathematical pendulum by taking the driving force 
as the control value, and applying the principle of 
maximum. The functional, which should be minimised 
in this case within the given interval of time, is the 
control itself - the square of driving force. Zrni} et al. 
[30], solve the "second" issue of the motion of the 
mathematical pendulum by using the principle of 
maximum, taking the acceleration of the suspension 
point as the control value. The functional, which should 
be minimised within the given interval of time, 
represents the total of squares of inclination angle, 
angular velocity of inclination and control 
(acceleration).  
 A considerably different approach to the solutions 
of issues of dynamic loads of crane systems, damping of 
oscillations during the motion of crane trolley and load 
can be found in the papers of: Auering [1], [2], 
Schwardtmann [23], Unbehauen et al. [28]. Authors of 
these papers model the control systems on the basis of 
known characteristics of crane systems and their 
dynamic models, and determine regimes of work of 
driving mechanisms with the aim of oscillations 
damping, i.e. automation of crane facilities. That 
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is possible only if it is possible to control load 
oscillations.  
 Moustafa and Ebeid [17] derive a non-linear 
model for an overhead crane, which takes into account 
simultaneous travel and transverse motions of the crane. 
They also develop an anti-swing control system, which 
adopts a feedback control to specify the crane speed at 
every moment.  

One of the ways of damping of oscillations in 
mechanical systems is shown in the papers: Hyde and 
Seering [8], Singer and Seering [24], [25], [26] where 
the general theory on damping of oscillations of 
mechanical (flexible) systems, based on assignment of a 
corresponding, desired input to the system (“input 
shaping”) is developed. This desired input is applied not 
only in the coupling with the open loop systems, but 
also in the coupling with closed loop systems. This 
approach is developed in the Massachusetts Institute of 
Technology (MIT).  

In the papers of Noakes et al. [19], [20], Noakes 
and Jansen [18] and Kress et al. [15] application of the 
general theory of damping of oscillations, developed in 
MIT, to the damping of oscillations of the load 
suspended by the rope and transported by the overhead 
crane is presented. This load represents a pendulum 
which can freely oscillate during transportation and 
whose oscillations are damped. This way of damping of 
oscillations is applied and realised in Oak Ridge 
National Laboratory (ORNL).  

It is also important to mention the research done in 
Sandia National Laboratories (SNL), which shows that 
it is possible to damp oscillations of a load suspended 
on a rope if the time of constant acceleration / 
deceleration is equal to the period of natural oscillations 
of the load, i.e. if the acceleration / deceleration of crane 
is programmed in an appropriate manner. These 
algorithms represent, in fact, open loop systems. The 
results of researches and applications can be found in 
the work of Jones and Petterson [9].  
 The above mentioned papers are based on the 
following facts (Carbon, [5]): basically, there are three 
characteristical types of device distinguished by taking 
the acceleration / deceleration time as a reference 
variable: 1. the natural oscillation period of the load 
(pendulum) is smaller than the acceleration / 
deceleration time, 2. the natural oscillation period of 
pendulum is larger than the acceleration / deceleration 
time, 3. the natural oscillation period of pendulum is 
equal to the acceleration / deceleration time. The 
following damping methods can be employed on the 
basis of these values (see figure 2.): a) digital oscillation 
damping, b) analog oscillation damping, and c) adaptive 
oscillation damping.  
 In this paper the "second" issue of the motion of a 
mathematical pendulum is solved for the period of 
deceleration (braking) of the mathematical pendulum 
point of suspension (crane trolley). Optimal solutions 
are researched by using the principle of maximum for a 
system with constant length of the mathematical 
pendulum. At the same time, solutions, which could be 
obtained by using adaptive and digital methods of 

oscillations damping, are also shown. They are given in 
analytical form.  
 
2.  A FEW WORDS ABOUT UNLOADING OF THE 

BULK CARGO WITH GRAB CRANE DEVICES 
 

Bulk cargo terminal represents the organisation of 
different activities, connected with handling and control 
of material flow from the vessel to the transport or 
storage system, with maximum servicing of vessels at 
minimum expenses. The feature of the bulk cargo is the 
fact that the costs of transportation, manipulation and 
waiting represent an important part of their values. The 
terminal operates 24 hours a day, seven days a week 
during the sailing period. Even the very small reduction 
of the duration of the unloading cycle can save energy 
needed for the unloading cycle and increase unloading 
capacity. [30] 

Unloading devices are in most cases, bottlenecks of 
the terminal, so their optimal function is the basic 
prerequisite for the optimum performance of the whole 
system. Bulk cargo can be unloaded by continuos 
unloading devices, or by grab crane devices. 

This paper considers only the unloading cycle of 
grab crane devices. Automation of the unloading 
process of the crane facilities with grab is possible, but 
very expensive. On the other side, the crane operator 
can not repeat the optimal unloading cycle in the longer 
time period. The only practical and feasible solution is 
to introduce the semi-automatic unloading cycle which 
consists of the manual part, where the crane operator 
controls the grab motion, and the automatic part where 
the computer controls the grab moving according to the 
given algorithm [21]. 

The manual part of the semi-automatic unloading 
cycle consists of lowering of the empty grab to the 
material surface in the vessel, from the point of 
completion of the automatic part of the unloading cycle, 
garbing of the material and hoisting of the grab with 
cargo to the point of commencement of the automatic 
part of the unloading cycle. The automatic part of the 
semi-automatic unloading cycle consists of the grab 
transfer from the point of commencement of the 
automatic part of the unloading cycle to the receiving 
hopper, grab discharging and empty grab return from 
the hopper to the point of completion of the automatic 
part of the unloading cycle. The commencement / 
completion point of the automatic part of the semi-
automatic unloading cycle depends on given geometry 
of the system, river water level, material level in the 
vessel, etc. In this paper only the automatic part of the 
semi-automatic unloading cycle will be analysed.  
 
3. MATHEMATICAL MODEL 
 

Planary motion of the given dynamic system, 
idealising a crane plant installation, shown on figure 1. 
will be considered. A rigid body of mass m1 is 
connected by massless, inextensible rope with another 
rigid body of mass m2 performing a rectilinear motion 
under the driving force Fd. The direction of motion of 
mass m2 is chosen as the horizontal “z”-axis. It is 



FME Transactions     Vol. 30, No 1, 2002  ▪  3 
 

assumed that the driving force Fd can be directed along 
both the positive and the negative “z”-direction. That 
could be achieved in practice by using an “ac” motor. 
The suspended mass m1 performs motion in the “zy”-
plane under the tension in the rope and the gravitational 
force.  

 
Figure 1. Simplified crane’s trolley and cargo moving 
scheme. 
 
Review of indications used in the mathematical model: 
z - instantaneous centre of gravity position of the crane 
trolley, ψ - angle of vertical rope inclination, g - gravity 
acceleration, kg125001 =m  - mass of the cargo and 
grab, kg5.253=wm  - mass of the trolley wheel, 
m2=15000 kg - mass of the crane trolley, L - 
instantaneous length of rope (length of rope is changing 
during the time of grab hoisting and lowering), 

m2.0=wr  - radius of the trolley wheel, θ - angle of 
wheel twisting (z=θ⋅rw), Fd - driving force of the 
trolley, Fwr - resistance to wind, acting on the grab, 
depends on the grab surface (neglected), Fw - resistance 
to trolley motion:  

ww DdfmmgF /)2()( 21 β⋅µ+⋅+= ;  [31]   (1) 

where d=0.1 m - the trolley wheel axis diameter, 
Dw=2⋅rw - the trolley wheel diameter, µ=0.012 - 
coefficient of friction between the wheel bearing and the 
axle journal, f=0.05⋅10-2 m - coefficient of rolling 
friction, β=2.3 - flange friction factor (caused by trolley 
skewing). 

Using the Lagrange's equations we obtain the 
system of two differential equations describing the 
motion of the grab and the crane trolley. For small 
angles of rope inclination ψ∈(0÷10)° the system can be 
written as: [4], [30] 
- first equation: 

wrwd

w
FFFLmLm

LmLmzmmm
−−=ψ⋅⋅⋅+ψ⋅ψ⋅⋅−
⋅ψ⋅+ψ⋅⋅+⋅+⋅+

1
2

1

1121
2
)2(

    (2) 

-second equation:       
  
 1/2 mFgLLz wr−ψ⋅−=ψ⋅⋅+ψ⋅+ ; 

The second equation of the obtained system is the 
differential equation of the mathematical pendulum of 
variable length, with moving point of suspension with 
the material point affected by force of resistance to 
motion.  
 
4. CONTROL OF TROLLEY AND GRAB MOTION 

DURING OSCILLATIONS DAMPING 
 

Taking into account theoretical considerations of 
adaptive and digital damping of oscillations, the second 
equation of system the (2) will be considered separately.  

 
 

Figure 2. Damping methods of pendulum oscillation. Tn - 
period of natural oscillations of pendulum, T - period of 
acceleration or braking, t0 - period during which 

acceleration / barking is interrupted. 
 

If we adopt that .)( consttz = , which means that 
the velocity of the point of suspension of mathematical 
pendulum (centre of gravity of the crane trolley) is 
changing with constant acceleration / deceleration. For 
achieving the adaptive damping of oscillations (figure 
2c), it is necessary to define, by solving the second 
differential equation of the system (2), the duration of 
the acceleration / braking period at the end of which the 
angle of inclination and angular velocity of rope 
inclination are equal to zero.  
 Digital damping of oscillations can be realised 
through three different stages of motion of the crane 
trolley centre of gravity, (figure 2a). If we adopt that 

.)( consttz =  during the first stage in the second 
equation of the system (2), the velocity of the point of 
suspension is changing with constant acceleration / 
deceleration. There is no acceleration .)( consttz =  
during the second stage of motion (period t0, figure 2), 
so the velocity of suspension point is equal to the 
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velocity attained at the end of the first stage. If we adopt 
that in the third stage .)( consttz = , the velocity of 
suspension point is changing with constant acceleration 
/ deceleration from the initial velocity, equal to the one 
at the end of the second stage, to some required final 
velocity of motion at the end of acceleration period or to 
the state of rest at the end of braking period. It is 
necessary to define the duration of each particular stage 
by solving the system of transcendent equations 
obtained by solving the second differential equation of 
the system (2) for each stage with corresponding 
boundary conditions. The condition, which must be 
used for solving the given system, is, as in adaptive 
damping, that the angle of rope inclination and angular 
velocity of rope inclination should equal zero at the end 
of the acceleration / braking period. 
 The constant obtained from the condition that 

.)( consttz = , which means that the acceleration / 
deceleration of suspension point is constant, i.e. that the 
velocity of point of suspension is changing with uniform 
acceleration / deceleration, is equal to the relation 
between the required velocity at the end / start of the 
period (given stage) of acceleration / braking and the 
duration of acceleration / braking period (given stage). 
The constant )(tz  can be also calculated as the tangent 
of angle between the straight line of the change of 
velocity of the point of suspension and the time axis.  
 For obtaining the optimal oscillation damping in 
the non-stationary modes of movement (acceleration, 
braking), the second equation of the system (2) should 
be also separately observed and can be written as: (for 
L=const., Fwr=0) 

 LzLg /)/( −ψ⋅−=ψ ;                       (3) 

Taking the crane trolley acceleration z  for the control 
and introducing the new variables: 

 ,;;; 321 uzyzyy ===ψ=ψ                 (4) 

the equation (3) can be replaced by the system of 
equations of the first order: 

 21 yy = ; LuyLgy /)/( 12 −⋅−= ; uy =3 ;     (5) 

The problem consists of defining such a manner of 
control “u” for which the system, for the acceleration 
period, from the initial state: 

 0)(,0)(,0)(, 0302010 ==== tytytytt ;      (6a) 

will arrive to the state: 

tccccc Vtytytytt ==== )(,0)(,0)(, 21 ,      (6b) 

or, for the braking period, from initial state: 

tVtytytytt ==== )(,0)(,0)(, 0302010 ;   (7a) 

to the state: 

 0)(,0)(,0)(, 321 ==== cccc tytytytt ;       (7b) 

where Vt - crane trolley velocity in the stationary mode. 
The time interval [t0, tc] is known in advance. 

The unique control is conditioned by the 
requirement: 

 .mind)(
2
1 22

2
2
1

0

→++∫ tuyy
ct

t

             (8) 

This condition of optimality prevents the values of 
control and rope inclination angle from becoming too 
high. The problem defined by relations (5), (6), (7) and 
(8) is reduced to the form which enables direct 
application of the principle of maximum [22]. To that 
end and in compliance with (5) and (8) the function  

 
[ ]

;2/)(
/)/(

22
2

2
13

1221
uyyu

LuyLgy
++−λ+

+−⋅−λ+λ=Η
   (9) 

is established where the values λ1, λ2, λ3 satisfy the 
differential equations system: 

332211 /,/,/ yHyHyH ∂∂−=λ∂∂−=λ∂∂−=λ .  (10) 

According to the theorem of the principle of 
maximum, the function (9) has the maximum value as 
the optimal solution. According to the required 
condition of extreme: 

 0/ =∂∂ uH   ;   0/ 22 >∂∂ uH  ,               (11) 

the control  

 32)/1( λ+λ⋅−== Lzu  ,                   (12) 

is obtained. 
By substituting (8) in the equations (5) and (9), the 

following equation system is obtained: 

21 yy = ; 

32
2

12 )/1()/1()/( λ−λ+−= LLyLgy ; 

323 )/1( λ+λ−= Ly  ; 121 )/( yLg +λ=λ ; 

212 y+λ−=λ  ;  03 =λ ; 

 
 

(13) 

and for its solution there is the sufficient number of 
conditions (6) and (7). The system of differential 
equations defined in this way, with conditions (6) and 
(7), represents a two-point boundary value problem. 

Issue of the motion of the mathematical pendulum 
(crane trolley and load) will be solved for boundary 
conditions defined by expression (7), for the breaking 
period, and for the case of constant length of the 
mathematical pendulum (rope), because there is no 
difference in the form of solutions if we solve the said 
issue with boundary conditions (6) or (7).  
 The change of driving force of the suspension 
point of the mathematical pendulum (crane trolley) 
which is necessary for realisation of a required motion 
in time, should be obtained by replacing the 
corresponding values for rope inclination angle (ψ), 
angular velocity (ψ ) and angular acceleration of rope 
inclination (ψ ), velocity ( z ) and acceleration (control) 
( z  i.e. u) of the suspension point, which are obtained in 
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one of the three shown ways, in the first equation of the 
differential equations system (2).  
 
4.1. Damping of Oscillations of the Mathematical 

Pendulum with Constant Rope Length 
 

Differential equation (3), for the change of the 
velocity of the point of suspension with constant 
acceleration / deceleration ( .)( consttz = ), is 
transformed to the following form: 

  cgL −=ψ+ψ  ;                          (14) 

 The solution of the differential equation (14) has 
the form: [11] 

gctkCtkC /)sin()cos( 21 −+=ψ ;      (15) 

After the differentiation of the expression (15), it 
follows that the angular velocity of rope inclination  

 )cos()sin( 21 tkkCtkkC +−=ψ  ;       (16) 

where C1, C2 - constants which should be determined 
from the system of equations (15) and (16) on the base 
of initial conditions, and Lgk /=  - angular 
frequency of mathematical pendulum oscillations.  

a) Adaptive damping of oscillations of the mathematical 
pendulum with constant rope length [4] 

 At the adaptive damping of oscillations with 
constant length of the mathematical pendulum (rope) 
and boundary conditions defined by expressions (7) 
(braking), the constant “c” ( .)( consttz = ) has the 
following value: 

TVc t /= ; 

where Vt - velocity of the point of suspension at the start 
of the braking period, and T - braking time. 

Initial conditions, on the basis of which the 
constants C1 and C2 are calculated, are: 

ψ(0)=0  and  ψ (0)=0 ; 

which means that at the initial moment of the braking 
period the mathematical pendulum is in the equilibrium 
position. 
 By substituting the expression for constant “c” and 
initial conditions in the expressions (15) and (16) the 
values for constants C1 and C2 are obtained: 

  )/(1 TgVC t=   and  02 =C  . 

By returning the obtained expressions for 
constants C1 and C2 into the expressions (15) and (16), 
the final expressions for ψ and ψ  are obtained as: 

  ( )[ ] )/(1cos TgtkVt −=ψ ;                 (17) 

  ( ) )/(sin TgtkkVt−=ψ ;                   (18) 

Equalling the left side of the equation (17) to zero 
(inclination of rope at the end of the braking period 

should be equal to zero), the solutions for which the 
inclination of rope is equal to zero are obtained. 

,...2,0;1)cos(;0 π=⇒=⇒=ψ tktk  

 The second solution is adopted (t=2⋅π/k), 
which means that for gLt /2π= , the rope 
inclination will be equal to zero, and the velocity of the 
mathematical pendulum point of suspension will be also 
equal to zero. As the adopted solution is at the same 
time the solution of equation (18) i.e. 

0)/2( =πψ gL , the angular velocity of the rope 
inclination will also be equal to zero. On the basis of 
above presented facts, the duration of the braking period 
during the adaptive damping of mathematical pendulum 
oscillations with constant length and with the point of 
suspension moving with constant deceleration is: 

  gLT /2 π= ;                           (19) 

 It is noticed that in this case the duration of the 
braking period is equal to the period of natural 
oscillations of the mathematical pendulum of length L.  

b) Digital damping of oscillations of the mathematical 
pendulum with constant rope length [4] 

 During the digital damping of the oscillations 
there are, as it was mentioned before, three stages of 
motion. Constants “ci“ ( ii ctz =)( , i=1,2,3) for 
boundary conditions defined by expressions (7) 
(braking) have, for each stage, the following values:  

)2/( I1 tVc t=  ; 02 =c ; )t2/( III3 tVc = , 

where It , IIt  and IIIt  - times of duration of the first, the 
second and the third stage of braking period. 

Initial conditions ψ(0) and ψ (0) on the basis of 
which constants C1i and C2i (i=1,2,3) for each stage are 
calculated are: 
- the first stage:   

ψI(0)=0  and  ψ I(0)=0 ; 

- the second stage: 

ψII(0)= ψIk  and  ψ II(0)=ψ Ik ; 

where ψIk  and ψ Ik - angle of rope inclination and 
angular velocity of rope inclination at the end of the first 
stage of the braking period. 
- the third stage:   

ψIII(0)= ψIIk  and ψ III(0)=ψ IIk ; 

where ψIIk  and ψ IIk - angle of rope inclination and 
angular velocity of rope inclination at the end of the 
second stage of the braking period. 
 By substituting the values of constants “ci“ and 
corresponding initial conditions in expressions (15) and 
(16), (procedure for each stage is identical to the one 
shown when defining the duration of braking period for 
the adaptive damping of oscillations), and by composing 
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the obtained expressions and their equalisation to zero, 
(inclination and angular velocity at the end of the 
braking period must be equal to zero), we obtain the 
system of two transcendent equations from which the 
time of duration of each particular stage should be 
determined. The obtained system has the following 
form: 

( ) ( )
( ) 01cos

coscos
=−+

+−++

III
IIIIIIIIIII

tk
tktkKtktktkK  

( ) ( )
( ) 0sin

sinsin
=+

+−++

III
IIIIIIIIIII

tk
tktkKtktktkK  

 
 

(20) 

where IIII ttK /=  - relation between the assumed 
times of duration of the first and the third stage 
(constant). 

Because we have the system of two equations with 
three unknowns, we will assume that tttt IIIIII === , 
from where follows that K=1, and we shall introduce the 
replacement k⋅t = α. After these assumptions and 
replacements the expressions (20) take the following 
form:  

01cos)2cos()3cos( =−α+α−α  

0sin)2sin(2)3sin( =α+α−α  

 
(21) 

Using the features of trigonometric functions, 
expressions (21) are transformed to the following form: 

( ) 01coscos2cos2 2 =−α−αα ;              (22) 

  ( ) 01coscossin4 =−ααα ;                   (23) 

Solutions of equation (22) are for: cosα=0, ⇒ 
α=π/2, 3π/2,...; for cosα=1, ⇒ α=0, 2π,...; and for 
cosα=0.5, ⇒ α=π/3, 2π/3, ... 

Solutions of equation (23) are for: sinα=0, ⇒ 
α=0, π, ...; for cosα=0, ⇒ α=π/2, 3π/2,...; and for 
cosα=1, ⇒ α=0, 2π, ... 

 The common solutions of equations (22) and (23) 
are for cosα=0 and cosα=1, because the duration of 
braking period at digital damping of oscillations is 
shorter than the period of natural oscillations of the 
mathematical pendulum (figure 2), so the only 
satisfactory solution (except the trivial one α=0) for the 
given limit is: α=π/2. By reverting we obtain:  

gLtttkt IIIIII /)2/(2/ π===⇒π=  ; 

 The braking period (T) which meets all required 
conditions, at digital damping of oscillations of the 
mathematical pendulum with constant length, is equal to 
the total of times of duration of particular stages:  

 gLtttT IIIIII /)2/3( π=++=  ;         (24) 

which represents 3/4 of the period of natural oscillations 
of the mathematical pendulum of length L. 
 

c) Optimal damping of oscillations of the mathematical 
pendulum with constant rope length  

 Expressions for the rope inclination, rope angular 
velocity, velocity of the mathematical pendulum point 
of suspension (crane trolley) and control obtained by 
solving the system of differential equations (13) for 
L=const. have the following forms, respectively:  
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where  

)
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144arctan5.0sin(1 22

−
−++

=
gL

gLL
L

ga  ; 

)
12

144arctan5.0cos(1 22

−
−+

⋅
+

=
gL

gLL
L

gb  ; 

)/()/( 22 LgLLgba ++−=α  , 

Lg
abL
+

=β 2  ,  22 ba
a
+

=γ  ,  22 ba
b
+

=δ  , 

δβ+γ−α= )1(1x ,  γβ−δ−α= )1(2x . 

Expressions for integration constants iC  
(i=1,…,6), because of their complexity are not given in 
the analytical form. Numerical values of constant iC  
for boundary conditions defined by expressions (7) 
depending on the rope length i.e. the braking period 
defined by expression (19) for different velocities of the 
point of suspension, i.e. crane trolley tV  are shown in 
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the table 1. Numerical values of constants iC  for 
boundary conditions defined by expression (7) depen-
ding on rope length, i.e. the braking period defined by 
expression (24) for different velocities of point of 
suspension i.e. crane trolley tV  are shown in the table 2.  

Table 1. Integration constants ( gLT /2π= ) 
L [m] iC  tV  [m/s] 

  0.8333 1.05 1.3333 
 1 -0.0817522 -0.1030078 -0.1308035 
 2 0.0052562 0.0066228 0.0084099 
6 3 0.1375141 0.1732678 0.2200226 
 4 0.0081229 0.0102349 0.0129966 
 5 -0.0107218 -0.0135094 -0.0171548 
 6 0.8389610 1.0570909 1.3423376 
 1 -0.0791063 -0.0996740 -0.1265701 
 2 0.0043189 0.0054419 0.0069103 
7 3 0.1299424 0.1637274 0.2079078 
 4 0.0066649 0.0083977 0.0106638 
 5 -0.0115672 -0.0145747 -0.0185075 
 6 0.8384639 1.0564645 1.3415422 
 1 -0.0769691 -0.0969811 -0.1231506 
 2 0.0036061 0.0045437 0.0057698 
8 3 0.1241087 0.1563769 0.1985739 
 4 0.0055826 0.0070341 0.0089322 
 5 -0.0123549 -0.0155672 -0.0197679 
 6 0.8380908 1.0559944 1.3409453 

Table 2. Integration constants ( gLT /275.0 π⋅= ) 
L [m] iC  tV  [m/s] 

  0.8333 1.05 1.3333 
 1 0.4374305 0.5511624 0.6998888 
 2 0.5762470 0.7260713 0.9219952 
6 3 0.8534373 1.0753309 1.3654996 
 4 0.6426107 0.8096895 1.0281772 
 5 -0.0185154 -0.0233294 -0.0296247 
 6 0.9636119 1.2141509 1.5417790 
 1 0.4411656 0.5558686 0.7058649 
 2 0.5787715 0.7292521 0.9260344 
7 3 0.8412426 1.0599657 1.3459881 
 4 0.6379508 0.8038180 1.0207213 
 5 -0.0199677 -0.0251593 -0.0319484 
 6 0.9627581 1.2130752 1.5404129 
 1 0.4441347 0.5596098 0.7106156 
 2 0.5808112 0.7318221 0.9292979 
8 3 0.8319273 1.0482285 1.3310838 
 4 0.6343155 0.7992375 1.0149047 
 5 -0.0213214 -0.0268649 -0.0341142 
 6 0.9621176 1.2122682 1.5393882 

 
In the case of application of expressions (24) - 

(28) for boundary conditions defined by expressions (6), 
constants iC  from tables 1 and 2 have the same 
absolute values, but with opposite sign.  

The results obtained by adaptive (*) and optimal 
damping of oscillations for: the constant length of rope 
L=7 m, the braking period defined by expression (19) 
and other parameters given in the chapter 3, are 
presented in the figure 3, and they are: angle of the rope 
inclination ψ (figure 3a), angular velocity of the rope 
inclination ψ  (figure 3b), velocity of the point of 

 

 

 

 
Figure 3. Change of the relevant parameters during 
adaptive (*) and optimal damping of oscillations. 

suspension (crane trolley) z  (figure 3c) and 
acceleration of the point of suspension of the 
mathematical pendulum ( z ) (figure 3d). 

a) 

b) 

c) 

d) 
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Figure 4. Change of relevant parameters during digital (*) 
and optimal damping of oscillations. 

 The results obtained by digital (*) and optimal 
damping of oscillations for: the constant length of rope 
L=7 m, the braking period defined by expression (24) 
and other parameters given in the chapter 3, are 

presented in the figure 4, and they are: angle of the rope 
inclination ψ (figure 4a), angular velocity of the rope 
inclination ψ  (figure 4b), velocity of the point of 
suspension (crane trolley) z  (figure 4c) and 
acceleration of the point of suspension of the 
mathematical pendulum ( z ) (figure 4d). 
 
5. DISCUSSION OF RESULTS 
 

During the discussion on the motion of the 
mathematical pendulum (chapter 4), for the optimal, 
adaptive and digital damping of oscillations, limitation 
in the sense of maximum absolute value, for the control 
value (acceleration / deceleration of the crane trolley) is 
not set. The obtained results show that the values of 
control for corresponding assigned velocities of the 
crane trolley ( tV ) in stationary regimes are within 
recommended boundaries [7], which means that the 
required condition of optimality (8) provides by itself 
for the minimum level of control value, i.e. phase 
limitations of control value are not needed. It is possible 
to influence the maximum value of control directly by 
increasing (decreasing) the velocity of the point of 
suspension of the mathematical pendulum, i.e. crane 
trolley required during the acceleration (boundary 
conditions 6), or from which the deceleration starts 
(boundary conditions 7), for the assigned interval of 
time defined by expressions (19), (24).  
 Differences between adaptive and digital method 
of oscillations damping, in addition to different time of 
duration of non-stationary regimes of motion 
(acceleration / braking) i.e. the time of duration of 
unloading cycle, concern the magnitude of dynamic 
loads (inertial forces) which act on the carrying 
structure of the crane.  
 If the shorter time of unloading cycle is needed, 
i.e. if the times of non-stationary regimes are limited 
[7], it is necessary to use digital method of oscillations 
damping. This requirement causes bigger dynamic loads 
on the carrying structure and also higher dispersion of 
characteristic values ( z,, ψψ ) from the ones obtained at 
optimal damping of oscillations. 
 It is convenient to apply the adaptive method of 
oscillations damping if there is no limitation of the 
duration time of non-stationary regimes, i.e. if there is 
no limitation of the duration of unloading cycle, because 
then dynamic loads of the crane structure are equal to 
the optimum ones for the required conditions of 
oscillations damping, while the characteristic values 
( z,, ψψ ) are smaller than the same obtained during the 
digital method of oscillations damping.  
 The obtained results present, which is also shown 
in diagrams in figures 3 and 4, that the difference 
between optimal method of oscillations damping and 
methods which are presently in practice (adaptive, 
digital) are minimal. In the case of load oscillation 
damping, (the load being considered as the 
mathematical pendulum of a constant length) by 
adaptive method, these differences practically do not 
exist. These facts are guiding us to the conclusion that 
by using the adaptive or digital method, oscillations of 

a) 

b) 

d) 

c) 
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load during braking (acceleration) of the crane trolley 
can be damped in the manner very close to the 
optimum, so there is no need to design or develop new 
control systems for driving crane trolleys which would 
achieve the assigned motion of the trolleys at optimal 
damping of load oscillations.  
 
6. CONCLUSION 
 

Application of the obtained results is in 
introducing the semi-automatic unloading cycle during 
the bulk cargo unloading. In that case it is possible to 
achieve the optimal unloading cycle, dissipation of 
material during the grab discharging can be reduced to 
minimum, dynamic loads in the cranes can be smaller, 
and it is also possible to eliminate the influence of the 
human factor in the unloading process (training of 
operator, weather conditions, night work, etc.). 
 Also, obtained results i.e. analytical expressions 
for the rope inclination, rope angular velocity, velocity 
of the mathematical pendulum point of suspension 
(crane trolley) and control can be used as the input for 
oscillation damping control based on shaping inputs. 
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OPTIMALNO UPRAVQAWE KRETAWEM SISTEMA 
ZASNOVANIH NA MATEMATI^KOM KLATNU 

KONSTANTNE DU@INE 
 

U. Bugari}, J. Vukovi}  
 

U radu se razmatra preme{tawe matemati~kog 
klatna (sa osvrtom na primenu pri modelirawu 
dizali~nih postrojewa) iz stawa kretawa ta~ke 
ve{awa konstantnom brzinom u stawe mirovawa 
za unapred zadato vreme sa prigu{ivawem 
oscilacija na kraju procesa. Re{ewa se tra`e 
primenom Pontriagin-ovog principa maksi-
muma i adaptivnog odnosno digitalnog metoda 
prigu{ivawa oscilacija. Kao upravqa~ka 
veli~ina u oba slu~aja koristi se ubrzawe ta~ke 
ve{awa matemati~kog klatna. Razmatran je 
slu~aj sa konstantnom du`inom matemati~kog 
klatna.  
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