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Compressible, isothermal, low Mach number, viscosity dominated flow in a gas

lubricating slider bearing is considered in the paper under the assumption of
continues gas injection/suction through the bearing. Two characteristic cases are
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encountered at that: (a) forced injection/suction at a constant rate, and (b)
natural injection/suction due to the pressure difference on both sides of the
bearing. In the latter case ambient pressure is supposed constant and the flow
through relatively long slits isothermal and slow. It is shown that the injection of
the gas, even at relatively small rates, highly increases the pressure in the

bearing, thus increasing the slider bearing load too, while the suction affects the
pressure distribution conversely. The results obtained can be applied in the design
of externally pressurized gas bearings.
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1. Introduction

Due to both its theoretical attraction and practical
importance compressible gas flow in micro-channels
has been paid much attention in the literature recently.
Since micro-channels have extremely small widths,
measured in microns, only moderately high values of
the Reynolds number can be attained in a micro-channel
flow, with the consequence that the effect of viscosity is
spread over the whole cross-section of the channel.
Thus, it either competes inertia for high subsonic or
supersonic flow, like in the classical boundary layer
theory, or dominates over it for low Mach number
subsonic flow, like in the hydrodynamic Iubrication
theory. Pressure-driven micro-channel flow find very
useful applications in problems of integrated cooling of
electronic circuits and superconducting magnets, in
cryo-coolers for infra-red detectors and diode lasers, in
high-frequency fluidic control elements, etc. The results
obtained in [1], [2], [3] and [4] show how the effect of
viscosity extended over the whole cross-section of the
channel may dramatically alter the flow characteristics
of a pressure-driven flow, in comparison with more
conventional high Reynolds number flows. This applies
not only for non-isothermal flows, but also, and a little
bit surprisingly, to low Mach number isothermal flows
too, which are usually (and erroneously!) treated in
engineering applications as incompressible ones. Shear-
driven flows in micro-channels occur in externally
pressurized thrust bearings and micro-motors. Thus,
both pressure-driven and shear-driven micro-channel
flows represent an important constituent part of what is
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now called Micro- Electro - Mechanical - Systems
(MEMS) technology (see two excellent review papers
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on this theme by Beskok et al. [5], and by Ho and Tai
[6]). The results obtained in [7] show that gas injection
into the slider bearing through a porous wall, even at
small rates, considerably improves the load
characteristics of the bearing, so that this effect can be
very usefully employed in the design of these slider
bearings.

In this paper we treat the classical problem of the
shear-driven gas flow in a slider bearing, with the
addition of the effect of gas injection/suction through
the bearing pad. The flow is supposed to be a low Mach
number, isothermal flow, and for simplicity the gas
injection/suction through the pad is supposed to be
continuous. At that we treat two possible cases of wall
porosity, which affect the obtained results via the
boundary conditions on the pad. In the first case a
forced injection/suction at a constants rate is due on the
pad. In the second one we suppose that the bearing pad
is made of a porous material, such as sintered metal, in
which the flow is subjected to the well known Darcy's
law. The flow in the pad is also compressible, slow and
isothermal. It is affected by the difference between the
outer pressure which is assumed constant and the
variable pressure inside the slider bearing, and by the
pad geometry. We also consider injection/suction of the
gas through a series of narrow slits in the pad, and show
the existence of a full analogy between this case and
the previous one, provided the friction factor for the
flow through slits is inversely proportional to the local
value of the Reynolds number, so that an equivalent
value of the permeability coefficient can be found. Our
aim is to study the effect of various kinds of the gas
injection/suction through the pad upon the flow
characteristics, in particular upon the pressure
distribution inside the bearing.

We show that gas injection into the bearing, even
with the rates much smaller than the speed of the
runner, greatly improves the performance of the bearing.

2. Problem statement and the derivation of the
pressure governing equation
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We consider the problem depicted in Fig. 1 in
which the injection/suction of the gas through the
bearing pad is allowed in order to improve the
performance of the bearing. The flow in the bearing will
be supposed to be a steady, 2-D, isothermal,
compressible flow of a perfect gas. As well known,
isothermal gas flow cannot be consistent with the full
system of governing equations, which includes the
energy equation too. However, several gas flows in
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Figure 1. Slider bearing with gas injection/suction through
the bearing pad.

techniques proceed with very small temperature
variations, so that they can be treated as nearly
isothermal. In such a case the energy equation is
uncoupled from the others and serves only for the
determination of heat, which is spontaneously
exchanged with the environment in this case. Thus, the
system of equations governing the flow in the problem
considered will consist of the equation of continuity, the
momentum equations in x and y direction (s. Fig. 1), and
the equation of state. They will be written in
nondimensional form by using the following scales (s.
Fig. 1) : §,, for all lengths, speed of the runner u,, for all
velocities, and pressure and density at the entrance into
the bearing, p, and p,, respectively, for pressure and
density.

In order to simplify this system of equations, even
before we write then down, we will now make the
following assumption, which can be always accepted in
the theory of lubrication. Let the maximum angle of
inclination of the pad contour toward the x-axis, o,
(s. Fig. 1), be small enough, so that it can serve as a

small parameter € : o, =¢. In this case the local

thickness of the gas film &(x) will be a slowly varying
function of x, and all physical quantities, like both
velocity components, pressure and density will be also
slowly varying functions of x. To make these slow
variations explicit, we will introduce the following slow
coordinate &=¢€x, instead of x. Also, since the
inclination of the pad contour actually determines the
ratio between velocity components u and v in x and y
direction, respectively, v will be much less then u
throughout the bearing, so that we can write:
v(x,y)=¢V(E, y), where V(§,y) is an order one

transverse velocity component. Further, we will assume
that y Mg /Re=MAe, A=0(1), where vy is the ratio of
specific heats, M, is the reference Mach number
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defined as: M, =u,/+yp,/p,, and Re is the
reference Reynolds number: Re=pyu,d,/u (u is
constant viscosity).

Simplified governing equations in nondimentional
form will now read (some of denotations used for
dimensional quantities in Fig. 1 are retained for
simplicity!):

- continuity equation in which equation of state for
isothermal flow in the form: p = p is used,

0 apV
(p”)+ (p )20’ )
fola Oy
- momentum equation in x-direction,
2 ou ou _ p ﬁ 2
v M p(ua +Vay)——aa+kay2 +0E7), (2)

- momentum equation in y-direction,
0
a—p - 0(s?) . 3)
Y

Obviously, for high subsonic and supersonic flow
inertia term in (2) is of the same order of magnitude as
the dominant viscous term, and the problem is one of
boundary layer type. However, for low subsonic Mach
numbers inertia term can be neglected, and the flow is
viscosity dominated. This case is particularly simple
because equation (2), taking into account (3), can be
easily integrated. Employment of boundary conditions:
for y=0,u=1, and for y=03(§), u=0, then yields:

p'd’ y pdy’
205 o 2 “)

u=1-(1+

where p'=dp/dg is gradient of the pressure.

Since we are primarily interested in the derivation
of an equation for the pressure distribution inside the
bearing, we will now circumvent the determination of V'
from (1). We will simply integrate (1) in y from 0 to
5(€), apply the boundary conditions: y =0, V' =0, and
for y=0(§), V =V,(&), and Leibnitz's formula to get:

3
d%jlop udy=-p¥y(@) .

Finally, utilizing (4) the following equation governing
the pressure is obtained:

8 p p"+8° p 438(88' p—21) p'—6A(8+2V,) p=0,
with boundary conditions: for £=0, p=1, and for
E=L, p=1, where L=¢l/5, (s. Fig. 1). Since
v(x,y) =¢€V(E,y), as stated earlier, note that the

injection/suction velocity must be much smaller then the
runner velocity in order for this theory to be applicable.
For convenience of numerical integration of this
equation we will introduce X =&/ L instead of &, and
get:

2
63p%+63%+36(5%p—2xm%-
ds

)
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with boundary conditions: for X =0 and X =1, p=1.
Two qualitative conclusions can now be drawn from

(5).

a) Even if 8=1 (Couette - like flow) some non-
trivial pressure distribution inside the slider bearing can
be induced by injection/suction of the fluid. At that, if
Vo(X) > 0 the pressure curve is concave at the point of
pressure extremum, indicating that p <1 inside the

bearing. If V(X) < 0 the pressure curve is convex at

the point of pressure extremum, indicating that p>1
inside the bearing, so that Couette-like flow with
injection can still be used for lubricating purposes. Since
for 6=1, a_. =0, the definition of small parameter €
should be changed. It can be redefined to be:
8:yM§ /Re, ie. by chosing A=1. For A=1,
L=¢gl/§,= uuol/poéié and plays the role of the
bearing number A, s. [8] (A = 6L) in this problem.

max

b) If the injection/suction velocity distribution
Vo(X) is chosen to be: Vj(X) =—ﬁ%, the last
term in (5) disappears, and pressure extremum and
inflexion points overlap, which is not feasible if both of
boundary conditions for pressure have to be satisfied -
the only solution of (5) for such an injection/suction
velocity distribution being the trivial one: p =1. In what
follows we will call this wvelocity the critical
injection/suction velocity.

3. Injection/suction velocity distribution

As announced in the Introduction we will consider
two possible cases of the gas injection/suction through
the bearing pad, referred to in what follows as Case A
and Case B.

In Case A we assume the velocity V(X) can be

chosen at will, without going into the problem of
feasibility of such a velocity distribution. For
convenience, in our numerical examples we will take
Vo(X) = const.

In Case B we assume the pad is made of a porous
material with given permeability coefficient o. The
nondimensional pressure outside the pad is p, = const.
so that the flow through the pad proceeds under the
pressure difference | Dy~ p(x)|. The flow is supposed to
be, lake inside the bearing, steady, 2-D, isothermal,
compressible flow of a perfect gas, and is subjected to
Darcy's law. Equations governing such a flow, if written
in nondimensioal form by using the same scales, used
already in the normalization of equations governing the
flow inside the bearing, read:

By B D AT

o ’5_ Ox oy

where p, ¥ and vV are pressure and velocity compon-

0. (6

ents in the bearing pad respectively, and
2 2 2
3, v M, B 1)

__0 -0
k_oc Re _oc}“c”
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where o is the permeability coefficient of the bearing
pad.Since both transverse velocity components in the
pad and in the bearing must be of the same order of

magnitude, ¥V can be presented as vV =¢ 17, V= o).

Then, from the second of equations (6) it follows that k&

must be of the order 871, so that the order of /8(2) isg?.

This determines the order of permeability coefficient for
which the theory presented here is valid.

Further, we will introduce the slow coordinate
&=¢ex instead of x for the same reason as before, and

conclude that 7 is of the order & in the pad and is
much smaller then V. Thus, the first order equations
governing the flow in the pad are:

P AP

oy —kv and o
and can be easily solved with the boundary conditions
(s. Fig. 1): for y=b, p=p, ,and y=08(5), p = p(9).
The solutions are:

:0,

2 2 2 2 2 2
~ Pg—P +bp -3p, ;_Bp — Py
b5 YT b-s > VTP-9p

where B is an O(1) coefficient. From here, for y = 38(&)
we finally get the injection/suction velocity V) (€):

p?-p2
b-9%p ’

to be used in the integration of equation (5).

Practically, gas injection/suction through the pad
can be maintained by a number of narrow slits,
perpendicular to x - axis. If the flow in each of them is
steady, 1-D, compressible, low Mach number flow, it is
well known that the momentum equation for such a
flow will be (in dimensional form):

dﬁ 4Tw
dy = d ) (8)

where d is diameter of the slit, T, is the local value of

Vo(8) =V(£,8(8) =B (7)

the wall shear stress: T, = fT)Vz /2, and f is the
friction factor. In laminar, low Mach number flows:
f =C/Re, where C is a constant (C=16 for pipes), and
Re=pVvd/p is the local Reynolds number. If written
in nondimensional form, equation (8) attains now the
form of the second of equation (6), provided
o =d? /32, which at the same time yields the estimate
d /8y = O(g), as a necessary condition for the validity of
theory. The same holds for continuity equation for 1-D,
isothermal flow, which is as well known: pVv = const.

Thus, the two problems are fully equivalent, and there is
no need to treat injection/suction through slits
separately.

4. Numerical results and discussion

We assume to have the simplest pad geometry in
the form: d=1-(1-3,) X, where 5, =8, /9 (s. Fig. 1).
In this particular case e=8,(1-8,)//, so that
L=1-6,, and cannot be chosen arbitrarily, except in
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Couette-like flow in which the definition of & was
changed. The critical velocity is constant in this case
and equal to 0.5.

4.1. Case A

We first present the results of numerical
calculations of in Case A, when the injection/suction
velocity is: V,(X) = const..

In Fig. 2 we present the results obtained by
numerical integration of (5) for a Couette-like flow. It is
clearly seen that this flow with gas injection (¥ <0)

can serve for lubricating purposes because large gauge
pressures inside the bearing can be generated even with
relatively small injection rates.
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Figure 2. Couette-like flow with injection/suction, as a
slider bearing.

In Fig. 3 we present the results obtained by
numerical integration of (5) for the classical form of the
pad and (a) 8, = 0.5, and (b) 8, =0.2. In both cases the
performance of the bearing can be greatly improved by
injection of the gas through the pad. This effect is
especially pronounced for relatively small exit cross
section of the bearing (s. Fig. 3a). With decreasing of 5,
maximums of the pressure distribution are apparently
shifted to the right, yielding very large pressure drops
near the exit. It is also seen that the gauge pressure
inside the bearing is maintained even if gas is
withdrawn, up to the critical velocity of 0.5 for which
the pressure distribution is uniform p=1.

In Fig. 4 the pressure extremum value is shown as
a function of ¥V, for L =1 and A =1, and for different

values of §,. It can be noticed that for a fixed value of
V., the pressure extremum decreases with J,, this effect

being much more pronounced for the gas injection than
for the gas suction.
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Figure 3. Pressure distribution inside a slider bearing with
gas injection/suction, for (a) 5, =0.5, and (b) 5, =0.2
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Figure 4. Pressure extremum value in the bearing as a
function of V.

In Fig. 5 we show the development of the
longitudinal velocity component, determined by (4), in a
convergent part of the bearing for: L=1, A=1,
3,=05and V, =-0,2. Slow variations of the velocity

field in X-direction, as well as some acceleration of the
fluid particules, typical of the flow in convergent
cannels, are obvious. In the case of gas injection into the
slider bearing the care mast be taken about possible
combinations of the governing parameters for which a
back flow in the bearing may occur, because in such a
case the basic assumption concerned with the order of
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magnitude of the velocity components is violated. Our
calculations show that the back flow first occurs in the
entrance cross section of channel. In order to circumvent
this phenomemon the shear stress on the porous wall in
this cross section must be positive, which leads:
pP'(0)<2A.
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Figure 5. Longitudinal velocity field in the bearing for
A=1,8,=05and V, =-0,2.

4.2. Case B

In this case the flow through the porous wall of the
bearing is caused by the local pressure difference
p, — p(x). In Fig. 6 and Fig. 7 pressure distribution in
the bearing is presented for different values of
parameters p,/ p,, A and §,. We also plot there the

referential pressure distribution for ¥, = 0. Obviously,

the pressure distribution in the bearing is severely
influenced by the injection/suction through the porous
wall, particulary for high values of the parameter
p, ! p,, for which one can expect that gas injection
into the bearing takes place. Consequently, the load
characteristics of the bearing are considerably improved
for these values of p,/ p, .

In Fig. 8 we show the distribution of the injection/
/suction velocity V,(X) in the bearing for various
values of the governing parameters. Naturally, for small
values of p,/p, we have suction all over the bearing

surface, while for relabively large values of p,/p,

injection takes place, improving the load char-
acteristics. For intermediate values for p,/p,, V,(X)

may change sign in the bearing. For example, for
p, ! p, =1.10 we have injection for X e (0;0,30) A

A(0,94;1,0) and suction for X €[0,30;0,94].
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The theory presented in this paper can be usefully
applied for any form &(X) of the bearing, within the

frames of validity of the theory. Numerical examples
performed for the Couette — like flow and for the case
for which o&(X) us linear function show that the

pressure distribution in the bearing with one porous wall
is severaly affected by the gas injection/suction through
the wall, with the consequence that gas injection can be
usefully employed for the improvement of bearing load
characteristics. At that, the governing parameters: A,

d,,Land p,/p, play the key role.
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O YTULIAJY YEPU3rABAA / UCUCABAA T'ACA
KPO3 NOPO3HU 314 HA CTPYJAHKE TACA Y
KITUSHOM NEXAJY

L. LipHojesuk, B. A. hopheBuh

Y pamy ce TpeTupa M3OTEPMCKO, CTHUIIJEUBO
CTpyjalbe raca y KJIHM3HOM JIexXajy NpH MajuM
BpefHOCTIMa MaxoBor 6poja, Mof MPEeTIOCTaBKOM
ma ce rac yOpusraBa/mcmcaBa Kpo3 OPO3HU
HEMOKPEeTHH 31 Jiexaja. [Ipu Tome ce mocMmaTpajy
lBa KapaKTEepHCTHYHa ciy4daja: (a) TPUHYIHO
yOpHu3raBame/MCcucaBame raca KOHCTaHTHOM
Op3uHOM U (6) CHOHTAaHO yOpU3raBamhe/MCHCABAHE
[0 KOjer foja3u ycjeq pa3inke NpuThcaka ca obe
CTpaHe Jexaja. Y cly4ajy fa je CHOJballbU
OpPUTHCAK KOHCTaHTaH W Jla je CTpyjame Kpo3
Ayrauke TIporene Takobe M30TEpMCKO H CIOpO,
MMOKAa3aHo je Jla yOpu3raBame raca y Jiexaj, 4yak u
opu ManuM Op3WHaMa, JOBOAM [0 3HA4YajHOT
noBehama npuTncka y memy, noBehasajyhm Takobe
U HEroBy HOCMBOCT. McmcaBame raca jeiyje Ha
pacnopeq npuTtucka o6pHyTO. [JoO6ujeHn pe3yaraTu
MOTy OWUTH KOPHCHO yNOTPEeOIHEHN Y KOHCTPYKIA]I
TacCHUX KIIM3HUX JieXkKajeBa.
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