Thin walled I-beam under complex
loads - Optimization according to
stress constraint

Optimization of a thin-walled open section I-beam loaded in a complex
way, subjected to the bending and to the constrained torsion, is
considered. From the general case when bending moments about both
principal axes appear simultaneously with the bimoment, some particular
cases can be considered depending on the loading case. The problem is
reduced to the determination of minimum mass i.e. minimum cross
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sectional area of structural thin-walled beam elements of proposed shape,
for given complex loads, material and geometrical characteristics. That is
why the area of the cross section is taken as the objective function. The

ratios of thickness and length of the parts of the cross section are assumed

to be non constant. The stress constraint is introduced. The starting points
during the formulation of the basic mathematical model are the
assumptions of the thin-walled beam theory from one side and the basic
assumptions of the optimum design from the other. The Lagrange
multiplier method is used. Solutions of analitically obtained expressions
for the mathematical model, numerical solutions, as well as the saved
mass, are calculated for three loading cases.
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1. INTRODUCTION

Optimization is a mathematical process through
which the set of conditions is obtained giving as the
result the maximum or minimum value of a specified
function. In the ideal case, one would like to obtain the
perfect solution for the considered design situation. But
in the reality, one can only achieve the best solution.

The quantities numerically calculated during the
process of obtaining the optimal solution are called the
design variables.

The process of selecting the best solution from
various possible solutions must be based on a prescribed
criterion called the objective function. It is represented
by a mathematical equation that embodies the design
variables to be minimized or maximized.

The total region defined by the design variables
included in the objective function is called the design
space and it is limited by the constraints.

Many studies have been made on the optimization
problems treating the cases where geometric
configurations of structures are specified and only the
dimensions of members, such as areas of members cross
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sections, are determined in order to attain the minimum
structural weight or cost. Many methods have been
developed for the determination of the local minimum
point for the optimization problem [2, 5, 8, 9, 10].

One of very often used thin walled profiles in steel
structures, I-cross section, is considered in this paper as
the object of the optimization.

The determination of optimal dimensions is a very
important process but not always the simple one.

The aim of this paper is the determination of the
minimum mass of the beam.

2. DEFINITION OF THE PROBLEM

It is assumed that the load can be applied to the I-
beam in an arbitrary way.

The cross section of the beam (Fig. 1) is supposed
to have flanges of mutually equal widths b,=b;, and
thicknesses ¢, =t;, and the web of width b, and thickness
t,. The ratios of thickness and widths of flanges are
treated as not constant quantities.

The load is applied in two longitudinal planes,
which are parallel to principal axes X; (i=1,2) of the
cross section. If applied in such a way the loads will
produce the bending moments acting in above
mentioned two planes parallel to the longitudinal axis of
the beam and as the consequence of such a kind of loads
the effects of the constrained torsion will appear in the
form of the bimoments producing the corresponding
stresses [3, 6].
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Figure 1. Cross section.

The determination of the minimum mass of the
beam reduces in another way to the determination of the
minimum cross-sectional area described by (1)

A:Amin > (1)

for the given loads and material and geometrical
properties of the considered beam and its section.

3. OBJECTIVE FUNCTION

If the coefficients (2)
t.
W = b—l #const., (i=1,2) 2)

i
are introduced it can be seen from Fig. 1 that the area of
the cross section is given by (3)

A=Ybt, =Y wb?, (i=12) 3)

and it will be treated as an objective function in the
considered problem.

4. CONSTRAINTS

The normal stresses will be taken into account in
the considerations that follow and that is why the
constraints treated in the paper are the stress constraints.

The normal stresses are the consequences of the
bending moments M x, (=1,2), and of the bimoment B

that appears if the constrained torsion exists and they
will be denoted by o X, (i=1,2), and o, respectively [3,
6].

If the allowable stress is denoted by o, the
constraint function can be written as

¢ = (p(G)Z O x, max T O X, max + O pmax <ogp. (4)

The maximal normal stresses, are defined [3, 6] in
the form

cS)(,.maxZA/M)(‘/VVX" (i=1’2) (5)

Gomax =B/ Wy, (6)

where WXI- (i=1,2) are the section moduli and W, is the

sectorial section modulus for the considered cross
section.
After the introduction of (5) and (6) into the
expression (4), the constraint function becomes (7)
My My

oM My B )
Wy, =Wy W,
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If the ratio
zZ= b2 /b] s (8)

is the optimal relation of the parts of the considered
cross section and if

v=0/t, 9

the constraint function (7) will be reduced in the
considered case to the form

1
tbby (6+yz 2 4 p2
141 2( ) 191 (10)
+6B -0y <0.
tb7by ‘

After the diferentiation of the expression (10) with
respect to the variables b; u b,, the following
expressions are obtained

X _ 36m, 1 _
abl I tlblzbz (6+\V Z)z (11)
—6M %—123 i ,
" 4ybj 1o b,
a_‘P:_leX] ! . (3“"2)2—63 ; - (1)
abz tlbl b2 (6+\|IZ) tlbl b2

5. LAGRANGE MULTIPLIER METHOD

Applying the Lagrange multiplier method [2, 5, 8,
9, 10, 11] to the vector which depends on two
parameters b; (i=1,2) the system of equations

%(A+Mp)20, (i=12) (13)

will be obtained and, after the elimination of the
multiplier A from (13), it obtains the form (14)

oo _ 24 20

(%) i=1j=2). (14
ob o, b, e, S I=hI=2) (9

6. BIMOMENT EXPRESSED THROUGH THE
BENDING MOMENTS

If the bending moments are acting in planes parallel
to the longitudinal axis the bimoment as their
consequence will appear and it can be expressed as the
product (15) of the bending moments and the
eccentrities of their planes &; b; (i=1,2) measured from
the principal axes (Fig. 1) in the following way [3, 6]

B=)&bMy , (i=12) (15)
In the considered case when the I-beam is the object

of the optimization, the equation (14) will definitelly be
reduced to the equation

k=4
> ezt =0. (16)
k=0
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The coefficients ¢, in (16) are defined by (17)

co =—12(1+6¢,),

My
o = 2{w(1+24§1)—36§2 m 2 }
X

1

M
cz=2w{11wal+6(3+4a2)M"2} (17)

X,

My
63=2\v2[\v§1+(6+11&2)M ]

X

M
C4 =W3(1+2§2)MX2

Xy
7. THE LOADING CASES

From the general case when bending moments
about both principal axes appear simultaneously with
the bimoment as their consequence, some particular
cases will be considered depending on the loading case.

As an example in this chapter an I-beam fixed at
one end will be considered and it will be subjected to
two loads: concentrated bending moment and
concentrated force acting at the free end of the beam.
The results obtained through the analytical approach are
given here, and later in chapter 9, these cases are treated
numerically using the Finite Element Method (FEM)

[1].

7.1. Beam loaded by a concentrated bending
moment at its free end

The concentrated bending moment will be
introduced in two different ways (Loading cases 1 and
2) presented in Figs. 2 and 3. Three values y = 0.5;
0.75; 1 for the relation (9) are assumed. The eccentrities
of the moment planes from (15) are assumed as &;, &, =
0, 0.2, 0.4, 0.6, 0.8, 1.0, 3.0, 5.0, or in another way
0<E,<5; 0<E,<05.

Loading case 1 Loading case 2

My =0 My =0
XzA XzA ;
A ——
1 Mxc10KNem ! Mx,*=10 KNem
X, .
£,=0 L E=05
— e
£=0 £b i &0

Figure 2. Bending moment
MXl in the plane &,=0

Figure 3. Bending moment
MX1 in the plane £,=0.5

The optimal ratios z=b,/b; defined by (8) obtained
from the equation (16) and the relations between z and
the eccentrities &; and &, for Mx,/Mx,=0 and #,/t;=0.5
are shown in Figs. 4 and 5. The optimal ratios z for
t,/t,=0.75 and 1.0 are given in Tables 1 and 2. The
columns in Tables 1 and 2 are given in shortened form
because the ratios z have same values for each &,.
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Table 1. Optimal z for M y, /MXI =0, 1,/ =0.75

Vel | o |o2]oaloslos| 1] 3|5

0 8 [1.89|1.64]|1.54|1.49|1.46|1.38|1.36

5 8 [1.89]1.64]1.54]1.49]1.46]1.38]1.36

Table 2. Optimal zfor My /My =0, t;/t; =1

Ve |& [0 02 04 06 08 1 3 5

0 6 142 123 116 1.12 1.09 1.03 1.02

5 6 142 123 116 1.12 1.09 1.03 1.02

12 -

10

Figure 4. Relation between z and &,

12
—&=0
/\/\ ........ £=02
/\/\ ----------- £=04
------ £=0.6
31 e £=08
...................................... "
N ol
£=5
2.5

Figure 5. Relation between z and &,

From Figs. 4 and 5 and from the results presented in
Tables 1 and 2, it is obvious that the quantity z
decreases with the increase of the eccentricity &; and
that it does not depend on the eccentricity &,.

7.2. Beam loaded by a concentrated force at its
free end

For the previously defined models when the beam
was loaded by only one concentrated bending moment,
the maximal normal stress values at the fixed end of the
considered cantilever I-beam of the length L = 150 cm
loaded by the concentrated force F* passing through the
shear center plane (Fig. 6) are presented (Loading case
3). In the case of an I-beam the shear center plane
coincides with the web.
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Loading case 3

XZ/
— —

F#*=]1 KN

Figure 6. Concentrated force along the web

The results for the ratios (8) z=b,/b; obtained

from the equation (16) are the same as the results for the
loading case 1 and they are also presented in Figs. 4 and
5 and in Tables 1 and 2.

8. DETERMINATION OF THE MINIMUM CROSS
SECTIONAL AREA

The cross sectional geometrical characteristics are
calculated taking into account the initial dimensions of
the I-section: b;=5.5 cm, b,=9.2 cm, #,=0.8 cm, #,=0.8
cm. The length of the considered cantilever I-beam is
L=150 cm.

For the given loading cases (Figs. 2, 3 and 6) and
for the defined geometry of the profile, the initial
stresses are calculated.

The problem is considered in two ways:

a) The optimal dimensions of the cross section b pimal
and byopima are obtained by equalizing initial and
optimal areas (Auisig=Aopiimar) and by using  the
calculated optimal relation z from the expressions
derived in this paper. In that case the normal stress
lower than the initial one is obtained (Goprimar<Ciniiar) and
it represents the model used for the control (Table 3).

b) The optimal values b, and b, are obtained for the
given loading cases using the calculated optimal ratio z
= (b2 /b1)optima- From the condition prescribing that the
stresses must be lower than the allowable i.e. initial
stress, the optimal values are obtained by comparing the
stress defined by the optimal geometrical characteristics
to the initial stress (optimal model).

Starting from the optimal cross sectional
dimensions (b, and b,"), the optimal (minimum) cross
sectional area A,,;, is calculated for the given loading
case and the results including the saved material are
given in Table 3.

Table 3. Normal stresses and saved mass

Loading case Z initial Z optimal
1 7.3846
2 1.6727 1.4602
3 7.3846
Loading W init. W init. G init.
case [em’] [em*] [kN/cm?]
0.2014
49.649 37.107 0.9427
3.02
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Loading W contr. W contr. O contr.
case [cm’] [em*] [KN/cm?]
62.988 0.15876
47.033 37.947 0.9373
62.988 2.38
Loading Wy opt. W opt. G opt.
case [cm’] [cm?] [kN/cm?]
49.654 0.2014
46.838 37.711 0.9427
49.654 3.02
Loading A init. A opt. Saved mass
case [em’] [em’] [%]
12.6 11.64
14.26 14.23 0217
12.6 11.64

9. APPLICATION OF THE FINITE ELEMENT
METHOD

Loading cases 1, 2 and 3 presented in the previous
chapters now are treated also by the Finite Element
Method (FEM) using the programme KOMIPS [4]. The
cross sectional geometrical characteristics are calculated
taking into account the initial dimensions of the I-
section considered in the Chapter 8.

The model of the beam having the length L=150 cm
consists of 360 2-D plate finite elements. The flanges
are divided into 90 elements each (2 elements through
the width and 45 elements along the beam), and the web
is divided into 180 elements (4 elements through the
width and 45 elements along the beam). The elements
are numerated starting from the fixed end towards the
free end of the beam. The first 90 elements are in the
upper flange, next 90 elements are in the lower flange
and last 180 elements are in the web.

When the FEM is applied the introduction of the
concentrated bending moment in the loading case 1 is
modeled in three ways: loading cases 4, 5 and 6
presented in Fig. 7a, 7b and 7c.

o
o are=10

-l —
(c)

Loading case 6

M*=10 M*=5
=5

f E*
(@ (b)

Loading case 4 Loading case 5

Figure 7. Concentrated bending moment MX] in the
plane &,=0

Loading case 4: Concentrated bending moment M*=10
kNem is introduced in the nodal point situated at the
connection of the upper flange and the web (Fig. 7a).

Calculated normal stresses [kN/cm?’] in first four
element layers of the upper flange (elements no. 83 +
90) are given in Table 4.
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Table 4. Loading case 4 - Normal stresses

89

8.43

87

3.12

85

0.29

83

0.21

90

8.43

88

3.12

86

0.29

84

0.21

In the case a) the maximal stress concentration
appears at the place of the introduction of the load, in
the elements 89 and 90. In the fourth line of elements
the stresses corespond to analitically obtained values at
the distance of 1.45* b, from the place of the
introduction of the loads.

Loading case 5: Two concentrated bending moments
M*=5 kNcm each, having total value M*=10 kNcm, are
introduced in the nodal points situated at the
connections of the horizontal flanges and the web (Fig.
7b).

Calculated normal stresses [kN/cm?] in the same
elements no. 83 + 90 are given in Table 5.

Table 5. Loading case 5 - Normal stresses

89 424 |87 1.63 |85 0.24 (83 0.21
90 424 |88 1.63 (86 0.24 (84 0.21

The same results are obtained for the elements in
the lower flange.

In the case b) the maximal stress concentration
appears in the elements 89, 90, 179 and 180, but it is
50% lower than in the case a).

In the fourth line of elements the stresses corespond
to analitically obtained values again at the distance of
1.45* b, from the place of the introduction of the loads.

Loading case 6: The concentrated bending moment
M*=10 kNcm is represented by the couple produced by
two paralel vertical concentrated forces F*=3kN
introduced in the nodal points situated in the centroid
and on the centroidal axis at the distance of 3,33 cm
from the end of the beam (Fig. 7¢).

The maximal normal stress 6=1.11 kN/cm? appears
in the element no. 358 and in all other elements the
stresses are approximately ¢ = 0.2 kN/em?.

In the case c) the stress concentration is minimal if
compared to the cases @) and b) and the highest value
appears in the element 358 — at the place of the
introduction of the load.

When the FEM is applied, the introduction of the
concentrated bending moment in the loading case 2 is
modeled in three ways: loading cases 7, 8 and 9
presented in Fig. 8a, 85 and 8c.

M*=10 4

M*=10
M*=10

o v
(a) (b) (©)

Loading case 7 Loading case 8 Loading case 9

Figure 8. Concentrated bending moment MX1 in the

plane &,=0.5

FME Transactions

Loading case 7: Concentrated bending moment M*=10
kNcm is introduced in the model in the nodal point
situated at the end of the upper flange (Fig. 8a).

Calculated normal stresses [kN/cm®] in first three
element layers of the upper flange (elements no. 85 +
90) are given in Table 6.

Table 6. Loading case 7 - Normal stresses

89 463 |87 4.09 |8 0.89
90 1541 |88 237 (8 1.08

In the case a) the maximal stress concentration
appears at the place of the introduction of the load, in
the element 90. In the third line of elements the stresses
corespond to analitically obtained values at the distance
of 1.08* b, from the place of the introduction of the
loads.

Loading case 8: The concentrated bending moment
M*=10 kNcm is represented by the couple produced by
two paralel vertical concentrated forces F*=3 kN
introduced in the nodal points situated at the end of the
upper flange and at the distance of 3,33 cm from the end
of the beam (Fig. 8b).

Calculated normal stresses [kN/cm?] in same
elements no. 85 + 90 are given in Table 7.

Table 7. Loading case 8 - Normal stresses

89 276 |87 222 |85 1.02
90 16.18 |88 3.34 (86 1.09

In the third line of elements the stresses corespond
to analitically obtained values at the distance of 1.08* b,
from the place of the introduction of the loads.

Loading case 9: The concentrated bending moment
M*=10 kNcm is introduced in the same way as in the
case a), but the end of the cantilever beam is stiffened
by the vertical rectangular plate (Fig. 8c).

Calculated normal stresses [kN/cm?] in the elements
no. 85 + 90 are given in Table 8.

Table 8. Loading case 9 - Normal stresses

89 2.14 |87 1.92 |18  0.58
90 7091 |88  2.67 |86 1.11

In the third line of elements the stresses corespond
to analitically obtained values again at the distance of
1.08* b, from the place of the introduction of the loads.

When the FEM is applied, the introduction of the
concentrated force along the web in the loading case 3 is
modeled in only one way - loading case 10 presented in
Fig. 9.

Loading case 10: Two concentrated vertical forces
F*=0.5 kN, each having total value F*=IkN, are
introduced in the model in the nodal points situated on
the centroidal axis on both sides of the web (Fig. 9).
Only in this case the I-beam is modeled using 3-D finite
elements.
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Figure 9. Concentrated forces along the web.

The results obtained by program KOMIPS
corespond to analitically obtained values (Table 3).

The results are presented in Table 9 for the initial,
the control and the optimal model.

Table 9. Results obtained by FEM corespond to
analitically obtained values
Model Results -KOMIPS
Initial G = 2.96 kN/cm’
Control | & =2.28 kN/cm’
Optimal | & =2.82 kN/cm®

Results - Table 3
& = 3.02 kN/cm®
& = 2.38 kN/cm®
& = 3.02 kN/cm®

10. CONCLUSION

On the basis of the proposed optimization procedure
it is possible to calculate the optimal ratios between the
parts of the considered thin walled profiles in a very
simple way.

For all loading cases it is possible to find the
decreased level of the stresses in the Control model as
well as the saved mass of material with respect to the
initial stress limits.

The maximal normal stresses depend on the way of
the introduction of the loads (stress concentration
appears around the place of introduction of the loads).

The results obtained by the Finite Element Method
show and prove the existence of Saint-Venant principle.
As it is known the influence of the stress concentration
disappears at the distance between one and two cross
sectional dimensions.

It is also possible to calculate the saved mass of the
used material for different loading cases.
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CJIO)KEHO ONNTEPEREHU TAHKO3UAN HOCAY
I-IMMPOPUJIA - OITUMU3ALINJA TTPA
HAIIOHCKOM OI'PAHUYEBY

H. Anhesnh

Pasmatpana je onTHMH3anMja CIOXEHO onrtepeheHHx
TaHKO3WAWX HOCAa4ya MONPEYHUX Npeceka obmuka I-
npo¢Ta U30KEHUX CaBHjalby W OTPAHUYICHO] TOP3HjH.
W3 ommrer cimydaja, Kagja MOMEHTH CaBHjama HENyjy
OKO 00e TIJaBHE TEXHUIIHE Oce HCTOBPEMEHO Cca
OMMOMEHTOM, WM3JIBOjEHH Cy HEKH MOCEOHH CIy4ajeBH
KOjU C€ pa3MaTrpajy y 3aBHCHOCTH Of Clly4aja
onrtepehema. [Ipobnem je pemykoBaH Ha ojapehuBame
MUHHMMallHE Mace, T.J. MUHHMAaJHE IIOBpIIMHE
MIPEAJIOKEHOT O0JIMKA TONPEYHOTr IpeceKa TaHKO3HUI0T
HOcaya, 3a JaTa CIIO)KeHa omnTepeliema, Marepujan u
reOMETPHUjCKe KapaKTepUCTHKe. 300T TOra je MOBpIIMHA
MOTIPEYHOT Tpeceka u3abpaHa 3a (YHKIHjy IIHIBA.
[pernocraBba ce na oxHOC NeOJbMHE W INMPHHE
MOjeMUHUX  JIeJOBa  TOMPEYHOr  Ipeceka  HHje
KOHCTaHTaH. YBEICHO je HAIlOHCKO orpaHmueme. llpu
(dbopMUpamy OCHOBHOI MaTeMaTHYKOI MOJENa IOILIO
ce O] MPETIOCTaBKH TEOpHje TaHKO3MIMX IITaroBa ca
jeAHe cTpaHe M OCHOBHHX HPETIIOCTaBKH Ipoliema
ONTHMAJIHOT TIpOjeKToBama ca apyre. Kopumhena je
Meroa JlarpamyKoBOI MHOXKHTeJba. Pesynraté aHaiu-
THYKH JOOWjeHHX jeHAYMHA 32 MATEMaTHYKH MOJEII,
HyMEpHYKa pellerha, Kao M yIITela Mace, U3padyyHaTH
Cy 3a Tpu ciy4aja onrepehema.
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