Outline of a New Feature Space
Deformation Approach in
Fuzzy Pattern Recognition

Pattern recognition ability is one of the most important features that
characterize intelligent behavior of either biological or artificial systems.
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Mathematical pattern recognition is the way to solve this problem using
transparent algorithms that are mostly based on conventional

mathematics. In complex systems it shows inadequacy, primary due to the
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needs for extensive computation and insufficient robustness. Algorithms
based on soft computing approach offer a good alternative, giving a room

to design effective tools for real-time application, having in mind that
relevance (significance) prevails precision in complex systems. In this
article is modified and extended Subtractive Clustering Method, which is
proven to be effective in real-time applications, when massive pattern sets
is processed. The new understanding and new relations that connect
parameters of the algorithm with the information underlying the pattern
set are established, giving on this way the algorithm ability to be data
driven to the maximum extent. Proposed algorithm is verified by a number
of experiments and few of them are presented in this article.
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1. INTRODUCTION

Recognition of patterns is one of the most important
aspects of human perception. The inherent characteristic
of human perception is its ability to recognize and
classify patterns in a nondichotomous way. This process
is fuzzy in its nature. The fuzziness is present in almost
all levels in a pattern recognition process: the prototype
description, the feature extraction and valorization, and
recognition algorithm — human perception usually uses
an opaque algorithm to recognize objects [7]. This is
probably a natural (evolutionary) answer to the
complexity, information ambiguity and information
incompleteness, widely existing in the real world.

Pattern recognition has been extensively studied in
various fields of engineering, including artificial
intelligence as the most challenging engineering task
today. In general, there are two basic approaches:
mathematical pattern recognition (primary cluster
analysis) and nonmathematical pattern recognition. The
mathematical pattern recognition is strictly mathemati-
cally defined and it is far more context dependent than
the lattr, which is primarily based on heuristic search. In
this paper mathematical pattern recognition is
considered only.

Mathematical pattern recognition task consists of
two specific stages: the transduction stage and
classification stage (Figure 1). These stages will be
discussed in the text that follows.
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Let Q be a set of physical objects (under the term
object here are considered physical objects and
processes). These objects may be characterized using
the finite set of parameters, relevant to the classification
task at hand. Each of these parameters, or couple of
them, are specific to the particular feature of the object
q € Q. Since each parameter of the objects may be
measured using some measurement procedure, the
particular feature may be measured too, after applying
the arbitrary complex measurement procedure m
associated to that feature. In this way, object ¢ may be
associated to the mathematical object x=M(q)=
(mi(q), ..., my(q))eX, [7], where m{(q) denotes the value
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Figure 1. Structure of pattern recognition machine.

of the feature i for the object ¢ and X is the
corresponding set of all associated mathematical
objects. Such generated mathematical object x is called
a pattern. Depending on the adopted set of features,
many objects ¢ may be associated to the single
mathematical object x. Mapping from the physical space
to the pattern space may be considered as multivalued
multivalued (many to one) mapping in general.
Moreover, this mapping doesn’t include the information
of object structure. It is simple collection of valued
features that is formally organized as multidimensional
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vector, which further may be represented as a point in
multidimensional pattern space. As it is shown in Figure
2, an intelligent transducer that is capable to perform
transduction of Q to X, should be supported by feature
extraction module and set of measurement procedures,
relevant to the generated feature set for any particular
pattern recognition task.
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Figure 2. Structure of intelligent transducer machine that
is able to perform the first stage of pattern recognition
task — mapping from physical to abstract pattern space.

The second stage of pattern recognition process is
classifying of pattern vectors. Classifying means that a
given mathematical object x has to be assigned to a class
of objects similar to it. This assignment may be
considered either as hard (crisp) or fuzzy, depending on
whether a pattern belongs exclusively to a single class
or to all classes to different degree. Thus, in hard pattern
recognition, a membership value of zero or one is
assigned to each pattern, p(x), whereas in fuzzy pattern
recognition, a value between zero and one is assigned to
each pattern by a membership function, pgAx).
Accordingly, in fuzzy pattern recognition, a class of

similar objects is a fuzzy set F (1? is the label of the
class). The grade of membership of mathematical object
x in a class may be also considered as the degree of its
similarity to a representative object of that class. This
representative object is often named a prototype. In
both, hard and fuzzy partition of pattern set, the
following must be satisfied:

Vxe X, Y, (0=1. )

where ¢ denotes the number of classes, i.e., the family
of subsets of set X. This is so called orthogonality
constraint that may be relaxed in cases where pattern set
is noisy, allowing in this way that too noisy patterns
may have low degree of membership to all of existing
classes [7]. In order to formalize similarity measure, one
can define positive real-valued function d, such that:

VxeX, d(x,x)=0, 2)
Vx,yelX, d(x,y)zd(y,x). 3)
and such that, similar (close) elements in X will have

similar classification values, i.e., will be assigned to the
same class, while dissimilar elements of X will have
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different classification values, i.e., will be assigned to
different classes. In mathematical pattern recognition,
explicit definition of the classification algorithm must
be known and it is always applied to an abstract
mathematical object x = M(q) € X, not to the physical
object geQ. This algorithm is said to be transparent
and it is opposite to previously mentioned opaque
algorithm, where recognition without definition is used.
As it is stated in [12], opaque algorithm characterizes
much intelligent behavior.

Despite unstructured pattern vector, in some cases
knowledge of the physical object structure may be of
great help in the recognition process [20], [10]. This
leads to the hierarchical partition of pattern space by
successive merging and splitting the complex patterns to
the simpler sub-patterns, which are considered as
primitives for the particular level where current
recognition is performed. On each level locally optimal
pattern recognition strategy should be used, without
taking into account strategies used in past steps and
strategies that has to be used in future steps. As it is
stated in [20], hierarchical pattern recognition methods
are not iterative in general. They are rather recursive
[10] and cannot change assignments of objects to the
classes made on preceding levels. In this article, only
nonhierarchical pattern recognition will be considered,
but this doesn’t imply that the results presented may not
be used in hierarchical clustering.

As it is shown in Figure 3, a pattern classifying
machine that is capable to perform classification of
abstract set X to ¢ classes of similar elements, should be
supported by appropriate similarity measure function,
transparent classification algorithm and prototype set or
appropriate estimator capable to identify the number of
classes existing in a given pattern set X.
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Figure 3. Structure of classifying machine that is able to
perform the second stage of pattern recognition task —
classification of abstract set X into the c classes of
similar patterns.

The above mentioned stages in pattern recognition
are not independent of each other, they are rather
mutually interconnected. This fact is observed in [20],
where is stated: “If we could chose “optimal” features,
clustering and classification would be trivial; on the
other hand, we often attempt to discover the optimal
features by clustering feature variables!”

It is important to understand that the pattern
recognition is hierarchically organized problem that
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includes classification of object features into two classes
— one relevant for the task at hand (sufficiently
representative and discriminative in the same time) and
the other which is not, and after that, passing to the
lower level, classification of physical objects based on
previously classified set of relevant features.
Classification itself is present on all pattern recognition
levels and accordingly, it seams that meta-problem of
everything in pattern recognition is classification.

In complex systems, the systems that are large size
and/or where gathering precise information to describe
their behavior is not possible, the classification becomes
extremely difficult task. Mathematical pattern
recognition, based on precise transparent algorithms is
often mathematically intractable, making them
intrinsically unsuitable for real-world application. This
inadequacy can be expressed in what Zadeh called the
principle of incompatibility (incompatibility between
information precision and significance or relevance)
[19]. Translating this principle into pattern recognition
frame, one can state that as complexity of the system
increases, our ability to formulate transparent and yet
effective algorithm for recognition of patterns
diminishes until precision and heuristic search become
almost mutually exclusive. That’s why soft computing
prevails conventional mathematical approach in case of
complex systems.

In this article the theoretical background of a new
algorithm for semantic classifying patterns as well as
some practical implementation details verified by
selected computer simulation experiments is presented.
The algorithm is unsupervised and independent from
apriori defined parameters to the maximum extent (data
driven classification) and it is suitable for real-time
application with presence of massive pattern data. In
section 2 basic iterative (subsection 2.1) and non
iterative clustering algorithms (subsection 2.2) are
formulated, where special attention is paid to objective
functions and relation of their parameters to the pattern
data that has to be clustered. In this section is given
basic formulation of proposed non-iterative clustering
algorithm (2.3), together with relations between the
pattern set and algorithm related parameters. In section
3 results of performed computer simulation
experiments, which show the effectiveness of proposed
non-iterative clustering algorithm are given. In section 4
summary and conclusions are presented.

2. THEORETICAL FORMULATION

Let R” be a p-dimensional real Euclidean feature
space and X={x|, x,,..., x,} € R” be a set of n pattern
vectors, where x=M(q)=( mi(q),..., m,(q) }=(x,, x;,

.o x), 1 £j < n, and mfq) denotes the value of the

feature i for the physical object geQ) .
Assume further, that the matrix:

U=[u,|eR™, 1<k<n 1<i<c, “

is the fuzzy partition matrix, where its member ;i is
the membership degree of pattern vector xj to the i-th
cluster, and
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i

s xP), 1<i<g, (5)

is the center, i.e., the most representative pattern
(prototype) of the cluster i. The set of all cluster centers

is denoted by V' = {v|, v,, ..., v.} € R”, and in general is
allowed to be VN X = .

2.1. lterative algorithms

According to Ruspini [17] who has introduced the
notion fuzzy partition to represent the clusters in a
pattern vector set, the problem of fuzzy clustering is to
find a fuzzy partition matrix defined as (4), where
number of fuzzy clusters, c, is a priori known, such that
close patterns (in sense of (2) and (3)) will have similar
classification vector, while dissimilar patterns will have
different classification vector. The classification vector

ljk of a pattern x; is k-th column vector of partition
matrix U, i.e., U, =[uy,...1, )" €R. The way to

solve above defined task is to select ﬁk such that

suitable defined functional will be minimized. As it is
stated in [17], generally this functional has no solution,
so it has to be relaxed into a minimization problem with
suitable constructed objective function J, that is the

function of two variables, U and V.
Dunn [8] and Bezdek [1], [2], have proposed the

following objective function based on variance
criterion:

L@ =YY ) dxv) 2 w1 (6)
i=1 k=1
where dissimilarity measure between pattern vector and
cluster center d(x;-v;) is adopted to be a norm, which is
defined as:

d(ov) =[x v, = @) M) (D)

and satisfies conditions (2) and (3). Matrix Ge R”? is
called simple covariance matrix and it must be
symmetric and positive-definite. In case that feature
space is isotropic, G should be identity matrix, that
leads to Euclidean norm as a dissimilarity measure
function (clusters can be seen as equally sized
hypersfere). In case of anisotropic feature space one can
select other types of covariance matrix G, for instance,
diagonal norm or Mahalanobis norm, as it is discussed
in [20] and [6]. Non-identity covariance matrix
introduce into the feature space anisotropic dissimilarity
measure which create hyperelipsoidal shape of clusters.

Differentiating the objective function (6) with

respect to V (for fixed U ) and to p; (for fixed V), and
keeping the restriction (1), on can define location of
cluster centers:

Ve ) g WL, (= 10) (8
D ()"

k=1
and membership degree for each pattern vector:
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“2/(w-1) 2/(w-1)
M :"xk _vi" Z:,"xk _Vj" >
=

i=l...,c, k=1,...,n.

(€))

where w is the exponential weight factor that shapes
fuzzy partition matrix (the larger w, the fuzzier partition
matrix; no theoretically justified procedure exist for
choosing w; usually is chosen w = 2).

The nonlinear optimization problem described by
equations (8) and (9) cannot be solved analytically.
There exist various iterative algorithms, which obtain a
local minimum of objective function (6). The best
known is fizzy c-means algorithm as an extension of
IZODATA algorithm [3] that consists of four steps:

Step I Given an input pattern x;
Set all initial parameters (w, ¢, M, €, A)

Set randomly initial partition matrix u® ,
/=0, keeping restriction (1)
WHILE (A > ¢)

Step 11 Calculate cluster centers set V' using (8)
Step III  Calculate the new partition matrix g using (9)
Step IV Calculate A= “17 = _go “

M

END WHILE

IZODATA Algorithm

Quality of the solution depends strongly on the
choice of the number of fuzzy clusters, ¢, and initial

partition matrix, u© , both as a priori data.

Recently, as in [6], [13], [14], or [15], additional
objective functions are proposed, modifying original
idea (6) by introducing new elements that control
clustering process and that are more sensitive to a given
pattern set X. In all cases it is an iterative process that
searches for the global minimum of objective function.

Starting from the concept of possibilistic clustering,
the following objective function is proposed in [13],
[14] and [6]:

~ c n
TpU.V) =2 ()" o -vi) >+

i=1 k=1

C n
+> > ()", w>1 (11)
=l k=l
where 1); is a positive parameter. It is important to note

that in possibilistic clustering partition matrix U is,
strictly speaking, not longer a “partition matrix”, since
its partition vectors doesn’t satisfy the constraint (1).

Instead, there is clamed that members of matrix U can
be interpreted as degree of typicality (not sharing). This
gives rise to good performance in the presence of noise
and outliers.

Another objective function that introduce entropy as
a measure for fuzzyfication of pattern data set [15] is:

T @)=Y wd(xv) 67 2> wylogo'py, (12)
i=1 k=1 i=1 k=1

where o; and £ are positive parameters. The first term in
(12) refers to objective function that was used for
ordinary crisp c-partition, while the entropy term
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introduces fuzziness (the concept of entropy of fuzzy set
as a measure of fuzziness is discussed in [20]).

2.2. Non-iterative algorithms

Convergence speed and stability of iterative algorithms
in the presence of high dimensionality of feature space
and large size pattern set may appear as a critical
problem in their practical application, especially in case
of real-time application. Moreover, these algorithms
become unusable in case when pattern set is not present
in advance, but the patterns arrive sequentially in time.

Opposite to the iterative algorithms, non-iterative
algorithms are one-pass algorithms that possess high
speed and straightforward convergence as inherent
property. Accordingly, they appear as a good candidate
for real-time and real-world applications where
complexity starts to rule, diminishing requirements for
precision and emphasizing the search for approximate
but yet significant solution. The principle of incompati-
bility leads to something what was termed in [9] as
admissible algorithms instead of precise algorithms.

Following idea stated above, in [18] simple non-
iterative algorithm, named the Mountain Method was
proposed. This method was based on the relaxation of
iterative fuzzy clustering methods by allowing that only
previously specified points located in feature space may
be selected as cluster center. The feature space is
discredited by regularly spaced grid. These grid points
are further used for calculation potential field. A total
potential for each grid point is calculated on such a way
that partial potential is calculated in respect to any
particular pattern point, and then, total potential is
obtained by summing of calculated partial potentials for
all pattern points. Repeating this procedure for all grid
points one can calculate the complete potential field in
considered feature space. After that, the grid point
having the highest accumulated potential is selected as
the first cluster center. After the first cluster center is
selected, the potential field of the feature space is
reduced by applying the negative potential field
centered in the grid point that is selected as a first
cluster. As a consequence, the grid points close to the
first cluster center will have greatly reduced potential,
while the distant one will preserve their initially formed
potential. The next cluster center is determined by
selection of the grid point with highest remaining
potential. Search for the other cluster centers is obtained
by repeating the procedure until the remaining potential
field drops below the previously defined level.
Algorithm itself is simple and stable in term of
convergence, but very sensitive for dimensionality of
pattern space and selected grid density. For instance, if
feature space has dimensionality dim=3 and if
resolution per axis of R=0.1 is selected, then the feature
space is covered by (1/R)"d =10"3 grid points. It shows
that computational requirements grow exponentially
with dimensionality and resolution, which is extremely
unsuitable for real-time applications.

As a solution for observed problem, the Subtractive
Clustering Method (SCM) is proposed in [5]. Instead
the restriction that only grid points may be selected as
cluster centers, the problem is relaxed to the maximum
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extent, allowing that only pattern points itself may be
selected as a cluster center. In this way, SCM may be
interpreted as a search for prototypes within the pattern
data set X, i.e., ¥ < X. This approach drastically reduces
computing burden, especially in case of high
dimensionality of feature space. Moreover, it seams
quite logical that typical represent of the cluster is not
imaginary pattern, but existing pattern x € X that
reflects further to the existing physical objectg € Q3.

As it is shown below, SCM has no a priori
prescribed number of clusters that has to be identified,
instead, heuristic criteria is established to accept/reject
new cluster and halt the clustering process. This criteria
is based on a priori defined set of parameters that
governs clustering process in such a way that should be
avoided generation of too small or too many clusters, as
well as, too close clusters.

Step 1 Given an input pattern X; normalize input pattern
Set all initial parameters (74, 7', Euppers Eiower)

For each x; calculate potential Pk(l) =P(x, x;), k,j

=1,..,n
Select the first cluster center using
(*P(l) , x;)= max( Pl(l) y e s Pn(l)) >V =X;

Step 11 Reduce potential for each x; using
Pj(z):P/.“) SPYPwLx), k=1, .00
Identify candidate for the second cluster center
using
(*P(z) , X;)= max( Pl(z) yeres Pn(z)) — v, =Xx;, set =2

*P(l) and *P(l) < Elower *P(l))

Calculate the d,,;,, = shortest distance between
current candidate cluster and all previously
idetfied clusters

IF (dpin/ra) +( PP 1" PYY>1

WHILE ( "P" >¢

upper

accept candidate cluster and set v; = x;
ELSE

set P =0 and identify new candidate for
the cluster center using
("P", x;y= max( EU) s s Pn(l) ) V=x;

END IF
Reduce potential for each x; using

PI=pPO "POPw,xp), k=1, ...

Step IV

Identify candidate for the next cluster center
using

(P = max(R”, .., B,
END WHILE

SCM Algorithm

Although the SCM algorithm is simple and efficient
there are some drawbacks that avoid its real potentials
to be exploit to the maximum extent. First, cluster
generation process is governed by a priori given set of
parameters, and no relation with pattern data set is
established at all. According to that, there are no
inherent abilities of the clustering process to adjust itself
to the specific properties of the pattern set that has to be
clustered. Second, generation of partition matrix is not
well related to the given pattern set in term as it was
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made in various iterative clustering algorithms (6), (11),
(12). In order to overcome these drawbacks, SCM
algorithm is modified and new non-iterative algorithm
is generated, following the basic idea of original SCM
algorithm.

2.3 . Further extension of SCM

Suppose the given pattern data set: X = (xq, ...., X, is
normalized 1i.e., fitted into a wunit p-dimensional
hypercube that represents feature space. The presence of
a pattern deforms that feature space. Measure of this
deformation may be any real-valued positive function
defined as:

P, =P(d’(x,,%).0) , (13)

where 0 is the set of real valued parameters. The
relation (13) defines potential field around the pattern
Xk

Taking into account whole pattern set, one can
define a total deformation of the feature space as a
function of the pattern set distribution:

(I):iP[dz(xk,x),OJ, k=1...n, (14)
k=1

This is an additive function that superimposes partial
fields generated by each pattern existing in the feature
space.

In general, any radial basis function may be a
candidate for potential function P (13). Here Gaussian
exponential function is proposed:

By =exp|-d* (5, -0/ |, (k=1,...n) , (15)

and generalized bell function:

1 -1
PB={1+[d2(xk—x)/oz]rM} , (k=1,..,n); m=1.(16)

Both are radially symmetric functions of the squared
distance between the pattern x; and x; and valued in the
interval ®<[0,1]. As it is well known, Gaussian func-
tion has one parameter, o, that shapes decay rate and
wideness in the same time (see Fig. 4a). Generalized
bell function has two parameters, o and m. Parameter
defines wideness, exactly; it determines the distance at
which potential has a half of the maximum value.
Opposite to Gaussian function, parameter G controls
wideness of the generalized bell function only. Decay
rate is controlled by another parameter, m. When m = 1
decay rate has its maximum value and function takes a
rectangular pulse shape (all points grater then o will
have zero value). For m=~1.5 generalized bell function is
approximately the same as Gaussian function. For grater
values of m the top area become more concentrated
while decay rate becomes lower, that results in the
widening of basis area (see Fig. 4b). In both cases
parameter o is related to the resolution parameter of the
potential functions (16) and (17), but its real nature may
not be considered as the same. In general, the
generalized bell function is more controllable and
appears better suited for the problem at hand.
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Intensity of the potential field will follow the pattern
distribution so the high potential intensity will occur in
dense areas, while low intensity will be in the areas
where density of patterns are low or there are no
patterns at all. Following this property, the maximum
intensity of potential field will coincide with center of
the densest region in feature space. The highest
deformation of the feature space is located where the
most of the presented patterns are concentrate.
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Figure 4. Gaussian (a) and generalized bell (b) potential
functions for various values of shaping parameters.

Consequently, one can adopt the point with
maximum intensity of the potential field as a center of
the first cluster. Following the original idea of Mountain
method, the second cluster may be found if the
influence of the first cluster on the potential field is
removed and after that another point, having maximum
potential is selected within remaining potential field.
For that purposes it is necessary to construct field
suppressor function in the form:

O =PoS (17)
such that:
S:S[dz(vl,x)],and R (1) =0 . (18)

where S is the suppressor function and v; is the center of
the first identified cluster. Again, a candidate for
suppressor function may be radial basis function, P or
Py and in that case, following the relation (17) and
restriction (18), suppressor may be formulated as:

S:l—P[dz(vl,x)], (19)
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The procedure may be further repeated until the last
cluster center is identified. Figure 5 shows an example
of the whole process on the synthetically generated
pattern set. It is easy to recognize how the pattern set
deforms two-dimensional feature space, and how
this deformation follows the cluster centers (they
can be visually identified). It is quite logical that
maximum deformation belongs to the most
representative pattern.
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Pattern vector set: 220 randomly generated pattern vectors
concentrated within 2 well separated classes.

Cluster #1: center: (0.6046, 0.3804); pattern vectors: 155
Cluster #2: center: (0.3650, 0.7522); pattern vectors: 65

Figure 5. An example of two well separated pattern
classes (top) and two iterations of proposed continual
potential field clustering algorithm.

Clustering process is performed using generalized
bell potential function, (c=0.15, m=1.5) and generalized
bell suppressor function, (c=0.5, m=1.5). Generated
initial potential field and corresponding feature space
deformation Fig. 5b. Following the deformation of
feature space the first cluster center is assigned to the
maximum deformation point, i.e., v=(0.6046, 0.3804)
(belongs to the larger cluster). Remaining potential field
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after first potential suppression is performed and
corresponding deformation of feature space is shown in
Fig. 5c¢. Now, applying the same procedure, it is
possible to identify the second cluster center, i.e.,
,=(0.3650, 0.7522) (belongs to the smaller cluster).
Since the pattern vectors are generated randomly,
identified cluster centers well correlate with centers
used in generation process of pattern vectors, i.e. (0.6,
0.3) and (0.4, 0.7).

In order make proposed algorithm suitable for real-
time application, continuous model have to be turned
into the discrete one, considering the existing pattern
data only. For that purpose, a new matrix function is
formulated:

P(d*(q.) - P(d*(4.x,)
D= : : , ® e R™. (20)
P(dz(xn,xl)) P(dz(xn’xn))

Since the distance function d is symmetric (3), and
potential function P is real-valued (13), matrix @ is
symmetric and positive-definite. For convenience, this
matrix may be expressed as a column vector containing
the sum of each row:
n n r
= Y P(d (.3 D P(d(x,0%)) | @ e R™
k=1 k=1
@n
First cluster center v, is then the pattern vector that
satisfies:

V=X, —> ZP(dZ v, x, )): &, =max® . (22)
i=1

Continuous suppressor function (19) is also modified

and transformed into vector form:

S:[I_P(dz(vi’xl)) I_P(dz(vf’x“))]’

i=1,.,c, SeR™ (23)

where ¢ is a number of clusters that has to be identified
or that has been identified. Then, remaining potential
field will be calculated transforming general relation
(17) into vector dot product:

O =0-S . (24)

Second cluster center v, is the pattern vector that
satisfies:

max®; =®, >v, =x, . 25)

The procedure has to be repeated until cluster center v,
is identified or appropriate objective function is
satisfied.

Discrete algorithm that is stated above is illustrated
in Fig. 6 using the same example as that one which is
used in case of continuous potential field calculation
(actually there are slight differences that comes as
consequence of random generator used in creation of
pattern data). Clustering process is performed using the
same parameters for potential and suppressor function
as in previous case. Generated initial potential field and
corresponding feature space deformation is shown in
Fig. 6b. Maximum deformation of the feature space was
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occurred for the pattern x, = (0.5469, 0.2424) and
consequently, this pattern is promoted to be the first
cluster center. Remaining potential field after first
potential suppression is performed is shown in Fig. 6c.
Applying the same procedure, the second cluster center,
v, =(0.3827, 0.7103) is identified.
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Pattern vector set: 288 randomly generated pattern vectors
concentrated within 2 well separated classes:

Cluster #1: center: (0.5469, 0.2424); pattern vectors: 232
Cluster #2: center: (0.3827, 0.7103); pattern vectors: 56

Figure 6. An example of two well separated pattern
classes (top) and two iterations of proposed discrete
potential field clustering algorithm (note that the pattern
data slightly defers from those one used in example
shown in Fig. 5).

Fuzzy partition matrix U defined by (4) will be
generated using FCM approach (9), but with some
modifications that follow properties of given pattern
data set X. As it can be seen from examples given in
Fig. 5 and Fig. 6, total potential of pattern vector x; that
is selected to be a prototype v; for class j well coincide
with the actual size of that class, i.e., it is clear that
‘larger’ cluster generates higher potential field (and
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larger deformation of feature space), while the ‘smaller’
cluster generates the lower intensity potential field (and
smaller deformation of the feature space). This relation
is introduced in (9) and on that way was obtained the
new equation for calculation membership degree for
each pattern vector:
2/(w-1)
,||

N e U
£y ,Zl @, T (26)

vi v
i=lL...c, k=1...n.

where @, is the intensity of accumulated potential by
prototype v, defined by (22) and (25), and w is the
fuzzifier as in original fuzzy c-means algorithm. Since
equation (26) preserves constraint (1) matrix U will be
partition matrix of the pattern set X. Effectives of
proposed partitioning equation (26) is shown in Fig. 7,
where is given partition of the pattern set used as
example in Fig. 6. This example is typical case where
fuzzy c-means algorithm shows its tendency that portion
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Cluster #1 (larger cluster):
center: (0.5469, 0.2424)

center_FCM: (0.6170, 0.2450)
Cluster #2 (smaller cluster):

center: (0.3827, 0.7103)

center_FCM: (0.4580, 0.5900)

Figure 7. Partition of pattern set given in Fig. 6 - shown
are the cluster centers connected with lines to their
respective member patterns (cluster flower). Partition
generated by proposed algorithm (above) and generated
by fuzzy c-means algorithm (below).

of the larger cluster is apt to be drawn into the small
one, when large and small clusters are close. Shown are
the cluster centers connected with lines to their
respective member patterns. Note, that all patterns are
correctly classified by proposed partitioning algorithm
(Fig. 7). Partition of the same pattern set generated by
fuzzy c-means algorithm is given in Fig. 7 below, where
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above-mentioned tendency is evident and lot of patterns
is misclassified. Proposed partitioning algorithm is able
to control the size of cluster in accordance to the real
distribution of patterns.

The proposed pattern recognition algorithm is
essentially one-pass algorithm, although within its
structure there are some parts that are repeating itself.
This repetition is governed by the number of pattern
classes that are exist in a given pattern set, in this way it
may be addressed to one of the major problems with any
classification algorithm, namely, the need to know the
number of classes. Instead of using a priori number of
fuzzy clusters ¢, the partitioning may be optimized by
introduction additional criteria that correlate with the
structure underlying the pattern set. This problem is
discussed in literature and several validity measures my
be found in [7], [20], [10], [2], [3], [6], [5], [16] and [4],
but no single measure was proven as general one.
Common problem for all of them is monotonicity of
validity function. As a general rule it should be
emphasized that multi criteria approach is the one who
possess sufficient robustness to cover various cases that
may occur in practice.

Total variance of fuzzy partition of pattern set
may be a good candidate for validity criteria, since
it was used as an objective function in fuzzy c-
means algorithm (6). Minimum total variance means
that identified partition is optimal. Dividing total
variance by size of pattern set, in [4] compactness of
the fuzzy partition was introduced:

Comp=ﬁ21;m,k>wd<xk-v[)2, wl (@)
while in [16] the same relation is interpreted as within-
fuzzy cluster-fluctuations (the only difference is that the
total sum of variances is not divided by the size of
pattern set). This criterion is generally governed by idea
that the similar patterns should be as close as possible,
so the partition that has more compact clusters will be
better then the other one having lower compactness.
However, compactness alone has no sufficient potential
to completely describe fuzzy partition of pattern set. In
order to solve this problem, one more criterion has to be
added - the criterion that is able to measure dissimilarity
between clusters.

It is clear that the partition having compact but too
close clusters (too close cluster centers) is not a good
partition. Potential answer to this problem may be to
introduce another criterion, this one that controls the
distance between the clusters. This leads to the criterion
named separation [4]:

Sep=rg£n§d(vk-vi) : (28)

where the squared distance between clusters are
suggested to be a feature that represents quality of the
partition.

An alternative approach is presented in [16]. As
appropriate feature that can control distance between
clusters is introduced a sum of so called between-fuzzy
cluster-fluctuations, i.e., the pattern fluctuation between
clusters:
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i=1 k=1

2 13
s X == (%), (29)
e

Above given criteria, i.e., those one that consider
compactness and those one that consider separation of
the clusters, are opposite in general, so their
combination obviously leads to the composite criterion
that do not possess monotonicity, although its
constituents are monotone functions. This composite
criterion may be local minimum of the function:

Valg(U,V)=Comp/ Sep , (30)

or:

} 31

2
X _Vi" _"Vi X

Val, 1= 53w,

where in the both cases optimal partition is that one
which has minimal Val(U, V). For the example shown in
Fig 6. the following is obtained: Comp = [NaN 0.0527
0.0373], Sep = [NaN 0.5761 0.1662], that leads to:
Val 1 =[NaN 0.0916 0.2242] and accordingly, optimal
number of fuzzy clusters is: Opt Clust No = 2. The
same is confirmed by the second criterion (31).

The proposed pattern recognition algorithm may be
summarized by the algorithm that follows:

Step I Given an input pattern set X; normalize input
pattern
Set all initial parameters (o, m, w)
Calculate

T
<I>=[ZP(d2(x. ) ZP(dz(x,,,m)}
k=1 k=1
Select the first cluster center using
v, =X, —)Z:P(dz(vl , X, )):@Vl =max®
i1
Step II Reduce potential field by (I)fe =®-§,
Identify the second cluster center using
maxtl)f =P, >V, =x,,
Set validity criterion Val, =[NaN], set/=2

Calculate partition matrix U” using Eq. (26)
Calculate validity criterion Valy = Val(U, V)
WHILE (V(ll(/) < Val(,_l))

Step Il Reduce potential field by ® =®F, -,
Identify the next cluster center using
R
max®, = ¢v(l+l) >V =X

Calculate validity criterion Valy, = Val(U, V)
END WHILE

Poposed Feature Space Deformation (FSD) Algorithm

3. EXPERIMENTAL VERIFICATION

In this section presented are three examples that
illustrate proposed pattern recognition algorithm. In all
of the following examples, the parameter values used in
the experiments are provided together with appropriate
plots.

A. Example |: Butterfly

This is the well known example widely used as a
benchmark test for various clustering algorithms. The
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pattern set consists of 15 points such as shown in Figure
8. The pattern vectors create in 2-dimensional feature
space visually symmetric figure having two dense
regions and one pattern that bridge those regions. The
identified clusters should be symmetric and the pattern
‘between’ should have equal membership degree in both
clusters. The same is identified by proposed clustering
algorithm. Identified cluster centers as well as partition
matrix well correlate with those one identified by FCM
clustering algorithm.

Experimental data:

Pattern vector set:
15 pattern vectors
data_x=[0.2,0.2,0.2,0.3,0.3,0.3,0.4, 0.5,0.6,0.7, 0.7,
0.7,0.8, 0.8, 0.8];
data_y =[0.3,0.5,0.7,0.4, 0.5, 0.6, 0.5, 0.5, 0.5, 0.4, 0.5,
0.6,0.3,0.5,0.7];
Potential function type and parameters:
potential field — Generalized bell (c = 0.25, m = 1.5)
suppressor — Generalized bell (c = 0.5, m=1.5)

Vals= [NaN 0.1860 0.2361] — c_opt =2

Cluster #1: center: [0.3000 0.5000]
center FCM: [0.2850 0.5000]
Cluster #2: center: [0.7000 0.5000]
center FCM: [0.7150 0.5000]

B. Example II: Modified butterfly

Es an extension of the previous example here is
considered modified butterfly pattern set where
simmetricity is no longer preserved since one of the
wings is scaled by a factor 0.5 (Figure 9). In this way
two clusters close to each other and with the same
number of patterns but with different density are
generated in respect to the original butterfly set.

Experimental data:

Pattern vector set:
15 pattern vectors
data_x=[0.2,0.2,0.2,0.3,0.3,0.3, 0.4, 0.5, 0.55, 0.6,
0.6, 0.6, 0.65, 0.65, 0.65];
data_y=10.3,0.5,0.7,0.4, 0.5, 0.6, 0.5, 0.5, 0.5, 0.45, 0.5,
0.55, 0.4, 0.5, 0.6];

Potential function type and parameters:
potential field — Generalized bell (c = 0.25,
suppressor — Generalized bell (c = 0.5,
Vals= [NaN 0.1724 0.1771] > c_opt=2
Cluster #1: center: [0.6000 0.5000]
center_FCM: [0.5940 0.5000]

Cluster #2: center: [0.3000 0.5000]
center FCM: [0.2680 0.5000]

m = 1.5)
m=1.5)

C. Example Ill: Pattern set from Fig. 6 contaminated
with 20% noise patterns

In order to test the sensitivity of proposed recognition
algorithm to noise, the pattern set that was used in
example shown in Fig. 6 is contaminated with 20%
noise patterns (Figure 10). Despite to such a high noise
contamination the proposed algorithm behaves quite
stable producing no misclassifications and exactly the
same cluster centers are identifyed as in case of
noncontaminated pattern set (compare the results shown
in Fig. 6). At the opposite side FCM algorithm reacts
clearly to the changes, producing different clustters then
in original case. Although the same number of clusters
is identified, cluster centers are not in the same location
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and the number of misclassified patterns is enlarged.
Proposed algorithm is robust to outliers and shows clear

potential to classify such patterns in the correct way.

Experimental data:

Pattern vector set: 358 randomly generated patterns
vectors concentrated within 2 well separated classes:

Cluster #1: center: (0.6, 0.3); radius: 0.25; pattern

vectors: 227

Cluster #2: center: (0.4, 0.7); radius: 0.15; pattern

vectors: 73

+ 58 randomly generated noise pattern over the whole

feature space
Potential function type and parameters:
potential field — Generalized bell (c = 0.15, m
suppressor — Generalized bell (c =0.5, m
Vals = [NaN 0.1134 0.2572]—> c_opt=2

1
NN
R

oz

Cluster #1: center: [0.6616, 0.2687]
center_FCM: [0.6230, 0.2580]
Cluster #2: center: [0.3900, 0.7034]

center_FCM: [0.4170, 0.6380]
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Figure 8. Partition of ‘butterfly’ pattern set; a) Initial
deformation of the feature space; b) Suppressed

deformation of the feature space after identification of the
first cluster; c) Cluster centers connected with lines to

their respective member patterns (cluster flower) for
proposed and FCM algorithm (note that in both cases
middle pattern has membership degree 0.5 and
consequently belongs to both identified clusters).

84 = Vol. 31, No 2, 2003

a)

<
L

Y eI I\
KSR

Deformation
-
L

NN (X
g 55K ISSTIS
N
ZEOAKESERIIILK X
ST
SIS ““‘\3“‘: :“:“‘:“::“““:‘
“‘““‘:::¢‘:‘:“
23

Feature #2 Feature #1
b)
c 25
£ SN
£ , "-"'1'0’0’0"‘\\\\\“{\ )
s 175558
i
S SN
0.4
0
Feature #2 Feature #1
1
C) 0.9
0.8
0.7
[
3+ 0.6
g
Sos
®
O 0.4
w
0.3
0.2
0.1
% 0.2 0.4 0.6 0.8 1
Feature #1
1
aﬁ w FCM Algorithm
0.8
0.7
o
3+ 0.6
2
S o5
®
O 0.4
w
0.3
0.2
0.1
= 0.2 0.4 0.6 0.8 1
Feature #1

Figure 9. Partition of asymmetric ‘butterfly’ pattern set; a)
Initial deformation of the feature space; b) Suppressed
potential field after identification of the first cluster and
corresponding deformation of the feature space; c)
Cluster centers connected with lines to their respective
member patterns (cluster flower) for proposed and FCM
algorithm.
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Figure 10. Partition of data set used in experiment
shown in Fig. 6 contaminated with 20% of noise
patterns; a) Initial potential field and corresponding
deformation of the feature space; b) Suppressed
potential field after identification of the first cluster
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c) Flower diagrams for proposed and FCM algorithm.

4. CONCLUSION AND DISCUSSION

In this article a general discussion about the problem
of classifying physical objects using mathematical
pattern recognition is presented. Two specific stages in
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mathematical pattern recognition are identified, i.e., the
transduction stage and the classification stage, as well as
that the above mentioned stages are not independent
each other. Classification is also present in transduction
stage since feature extraction, as a part of transduction
stage, is also classification (classification of features in
order to generate appropriate feature set, necessary for
any classification of physical objects). Pattern
recognition is hierarchically organized task, where
classification lies in its background as a meta-problem.
Mathematical pattern recognition, based on precise
transparent  algorithms is often mathematically
intractable, making them intrinsically unsuitable for
real-world application. Translating the Zadeh’s principle
of incompatibility into the pattern recognition frame
leads to conclusion that with increasing of system
complexity, our ability to formulate transparent and yet
effective algorithm for recognition of patterns
diminishes, until precision and heuristic search become
almost mutually exclusive, giving in this way a room for
soft computing to prevails conventional approach.
Further, several iterative and non-iterative

approaches to fuzzy clustering are reviewed, giving a
special attention to their suitability for real-time
application. Furthermore, non-iterative algorithms were
discussed, i.e., mountain algorithm and subtractive
clustering algorithm that are based on using potential
functions to discover prototype pattern vectors dispersed
in a given feature space. It is observed that these
algorithms has remarkable potential for real-time
application but, there are some drawbacks which has to
be removed:

o First, cluster generation process is governed by a
priori given set of parameters, and no relation with
pattern data set is established at all. According to
that, there are no inherent abilities of the clustering
process to adjusts itself to the specific properties of
the pattern set that has to be clustered.

e Second, generation of partition matrix is not well
related to the given pattern set in term as it was made
in various iterative clustering algorithms.

In order to overcome these drawbacks, SCM algorithm

is modified and new non-iterative algorithm is

generated, following the basic idea of original SCM
algorithm. This algorithm is based on idea that each
pattern deforms feature space and further, that the most
deformed areas will coincide to the most dense areas of
pattern population, i.e., the highest deformation of the
feature space will be related to the most representative
patterns — prototypes. This idea is formulated by
appropriate set of analytical relations. Fuzzy partition
matrix is generated using modified FCM approach. Size
of cluster is related to the accumulated potential of the
prototype and this information is entered in FCM
relation for calculation of membership degrees. This
modification provides partitioning process with ability
to follows properties of pattern data set. Furthermore,
the problem of cluster validity, which is especially
important for the proposed algorithm, because it is
related with algorithm ending condition is analyzed.

Instead of using a priori number of fuzzy clusters,

additional criteria that correlate with the structure
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underlying the pattern set are introduced. In order to
show potential of proposed algorithm, a number of
experiments are provided, showing that algorithm
possess better characteristics than FCM in term of
robustness to outliers and tendency to combine or
intersect close clusters different in size.

The future work will be addressed to establish
connection of a priori defined parameters in potential
and suppressor function, as well as to further refine
partitioning equations to establish better correlation with
pattern set at hand. Furthermore, the future work will be
addressed to the modification of proposed algorithm in
terms of their capability to classify patterns that are not
present in advance, but arriving into classifying machine
sequentially in a time.
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KOHIEINIT HOBE METOJIE ®A3H1
INPEITIO3HABABA OBJINKA TIPUMEHOM
JE®OPMAINMUJE NIPOCTOPA OCOBEHOCTH

Ilerap b. Ilerposuh

CriocoOHOCT TIpero3HaBama OOJHKa je jeTHO Of
Haj3HAYajHUjUX CBOjCTaBa KOja KapaKTEPHIIy HHTEIH-
TeHTHO TIOHAIIAake OMOJIOIIKUX MM BEIITAYKUX CHCTE-
Ma. MaTeMaTn4ko IMpeno3HaBame O0JIMKa IMpelcTaBiba
(dopMaiHy OCHOBY 3a pellaBame OBOT 33j1aTKa IpHMe-
HOM Ipenu3HO (HOPYMYIIMCAaHUX ajlrOpUTama, KOju cy y
HajBeheM ey 0a3upHM Ha KOHBEHIMOHAIIHOj MaTeMa-
tind. KoJ KOMIUIEKCHMX CHCTeMa OBaKaB IIPUCTYII
MOKa3yje 3Ha4yajHe HeJOCTaTKe, IPBEHCTBEHO 300T
3axTeBa 3a OOMMHHM H3padyHaBamHMa U HEIOBOJHHE
poOycHocTH. AnropuT™MH Koju cy OasupaHu Ha 'soft
computing' mMeromama TMpeAcTaBibajy O0Opy aiTepHa-
THUBY, OTBapajyhm mpocTtop 3a pa3Boj epUKACHHUX
aNropuTaMa 3a IpUMeHy y peaHOM BpeMeHy, nonasehu
O]l YMIbEHHIIC J]a 3HAYCHE caAprkaja HHPOpMaIija HOCH
Behly BpeZHOCT y OJJHOCY Ha IPELH3HOCT. Y OBOM paiy
m3Naxke ce mMoamduKaija U mpormpeme 'Subrtactive
Clustering' MeTozme, Koja ce Mmokaszaja e(puUKacHOM Yy
00pasin MacMBHHUX CKYyNOBa OOJIMKAa y PEaHOM BpeMe-
Hy. HoBu mpuctyn koju je 0a3upaH NpPBEHCTBEHO Ha
NOBEe3MBakby IapaMerapa alropurMa ca HH(OpMauuo-
HUM CaJIp’KajeM TPUCYTHHM Y CKyIy OOJNHKa KOjU ce
oOpaljyje, maje momatHe crerneHe ciaoboxe U omoryhasa
Jla TIpoIlec Tpemno3HaBama Oyae BoleH momanmnma Koju
ce o6pabyjy. [Ipemnoxxenn anropuram je Bepu(pUKOBaH
BEIMKUM OpoOjeM CHMYJAIllMOHMX EKCIIEpHMEHATa, Of
KOJUX CY HEKU HaBEJCHH y OBOM Pay.
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