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Outline of a New Feature Space 
Deformation Approach in  
Fuzzy Pattern Recognition 
Pattern recognition ability is one of the most important features that 
characterize intelligent behavior of either biological or artificial systems. 
Mathematical pattern recognition is the way to solve this problem using 
transparent algorithms that are mostly based on conventional 
mathematics. In complex systems it shows inadequacy, primary due to the 
needs for extensive computation and insufficient robustness. Algorithms 
based on soft computing approach offer a good alternative, giving a room 
to design effective tools for real-time application, having in mind that 
relevance (significance) prevails precision in complex systems. In this 
article is modified and extended Subtractive Clustering Method, which is 
proven to be effective in real-time applications, when massive pattern sets 
is processed. The new understanding and new relations that connect 
parameters of the algorithm with the information underlying the pattern 
set are established, giving on this way the algorithm ability to be data 
driven to the maximum extent. Proposed algorithm is verified by a number 
of experiments and few of them are presented in this article. 
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1. INTRODUCTION 

 Recognition of patterns is one of the most important 
aspects of human perception. The inherent characteristic 
of human perception is its ability to recognize and 
classify patterns in a nondichotomous way. This process 
is fuzzy in its nature. The fuzziness is present in almost 
all levels in a pattern recognition process: the prototype 
description, the feature extraction and valorization, and 
recognition algorithm – human perception usually uses 
an opaque algorithm to recognize objects [7]. This is 
probably a natural (evolutionary) answer to the 
complexity, information ambiguity and information 
incompleteness, widely existing in the real world.  
 Pattern recognition has been extensively studied in 
various fields of engineering, including artificial 
intelligence as the most challenging engineering task 
today. In general, there are two basic approaches: 
mathematical pattern recognition (primary cluster 
analysis) and nonmathematical pattern recognition. The 
mathematical pattern recognition is strictly mathemati-
cally defined and it is far more context dependent than 
the lattr, which is primarily based on heuristic search. In 
this paper mathematical pattern recognition is 
considered only. 
 Mathematical pattern recognition task consists of 
two specific stages: the transduction stage and 
classification stage (Figure 1). These stages will be 
discussed in the text that follows. 

Let Ω be a set of physical objects (under the term 
object here are considered physical objects and 
processes). These objects may be characterized using 
the finite set of parameters, relevant to the classification 
task at hand. Each of these parameters, or couple of 
them, are specific to the particular feature of the object 
q ∈ Ω .  Since each parameter of the objects may be 
measured using some measurement procedure, the 
particular feature may be measured too, after applying 
the arbitrary complex measurement procedure m 
associated to that feature. In this way, object q may be 
associated to the mathematical object x=M(q)= 
(m1(q), …, mq(q))∈X, [7], where mi(q) denotes the value 

 
Figure 1. Structure of pattern recognition machine. 

of the feature i for the object q and X is the 
corresponding set of all associated mathematical 
objects. Such generated mathematical object x is called 
a pattern. Depending on the adopted set of features, 
many objects q may be associated to the single 
mathematical object x. Mapping from the physical space 
to the pattern space may be considered as multivalued 
multivalued (many to one) mapping in general. 
Moreover, this mapping doesn’t include the information 
of object structure. It is simple collection of valued 
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features that is formally organized as multidimensional 
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vector, which further may be represented as a point in 
multidimensional pattern space. As it is shown in Figure 
2, an intelligent transducer that is capable to perform 
transduction of Ω to X, should be supported by feature 
extraction module and set of measurement procedures, 
relevant to the generated feature set for any particular 
pattern recognition task. 

 
Figure 2. Structure of intelligent transducer machine that 
is able to perform the first stage of pattern recognition 
task — mapping from physical to abstract pattern space. 

The second stage of pattern recognition process is 
classifying of pattern vectors. Classifying means that a 
given mathematical object x has to be assigned to a class 
of objects similar to it. This assignment may be 
considered either as hard (crisp) or fuzzy, depending on 
whether a pattern belongs exclusively to a single class 
or to all classes to different degree. Thus, in hard pattern 
recognition, a membership value of zero or one is 
assigned to each pattern, µ(x), whereas in fuzzy pattern 
recognition, a value between zero and one is assigned to 
each pattern by a membership function, µF(x). 
Accordingly, in fuzzy pattern recognition, a class of 
similar objects is a fuzzy set F~  ( F~  is the label of the 
class). The grade of membership of mathematical object 
x in a class may be also considered as the degree of its 
similarity to a representative object of that class. This 
representative object is often named a prototype. In 
both, hard and fuzzy partition of pattern set, the 
following must be satisfied: 

.1)(  ,
1

=∈∀ ∑
=

xµXx
c

i
Fi

                         (1) 

where c denotes the number of classes, i.e., the family 
of subsets of set X. This is so called orthogonality 
constraint that may be relaxed in cases where pattern set 
is noisy, allowing in this way that too noisy patterns 
may have low degree of membership to all of existing 
classes [7]. In order to formalize similarity measure, one 
can define positive real-valued function d, such that: 

( ) 0,  , =∈∀ xxdXx  ,                          (2) 
( ) ( ).,,  ,, xydyxdXyx =∈∀                       (3) 

and such that, similar (close) elements in X will have 
similar classification values, i.e., will be assigned to the 
same class, while dissimilar elements of X will have 

different classification values, i.e., will be assigned to 
different classes. In mathematical pattern recognition, 
explicit definition of the classification algorithm must 
be known and it is always applied to an abstract 
mathematical object x = M(q) ∈ X, not to the physical 
object q∈Ω. This algorithm is said to be transparent 
and it is opposite to previously mentioned opaque 
algorithm, where recognition without definition is used. 
As it is stated in [12], opaque algorithm characterizes 
much intelligent behavior. 

Despite unstructured pattern vector, in some cases 
knowledge of the physical object structure may be of 
great help in the recognition process [20], [10]. This 
leads to the hierarchical partition of pattern space by 
successive merging and splitting the complex patterns to 
the simpler sub-patterns, which are considered as 
primitives for the particular level where current 
recognition is performed. On each level locally optimal 
pattern recognition strategy should be used, without 
taking into account strategies used in past steps and 
strategies that has to be used in future steps. As it is 
stated in [20], hierarchical pattern recognition methods 
are not iterative in general. They are rather recursive 
[10] and cannot change assignments of objects to the 
classes made on preceding levels. In this article, only 
nonhierarchical pattern recognition will be considered, 
but this doesn’t imply that the results presented may not 
be used in hierarchical clustering. 

As it is shown in Figure 3, a pattern classifying 
machine that is capable to perform classification of 
abstract set X to c classes of similar elements, should be 
supported by appropriate similarity measure function, 
transparent classification algorithm and prototype set or 
appropriate estimator capable to identify the number of 
classes existing in a given pattern set X. 

 
Figure 3. Structure of classifying machine that is able to 
perform the second stage of pattern recognition task — 
classification of abstract set X into the c classes of 
similar patterns. 

The above mentioned stages in pattern recognition 
are not independent of each other, they are rather 
mutually interconnected. This fact is observed in [20], 
where is stated: “If we could chose “optimal” features, 
clustering and classification would be trivial; on the 
other hand, we often attempt to discover the optimal 
features by clustering feature variables!”  

It is important to understand that the pattern 
recognition is hierarchically organized problem that 
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includes classification of object features into two classes 
– one relevant for the task at hand (sufficiently 
representative and discriminative in the same time) and 
the other which is not, and after that, passing to the 
lower level, classification of physical objects based on 
previously classified set of relevant features. 
Classification itself is present on all pattern recognition 
levels and accordingly, it seams that meta-problem of 
everything in pattern recognition is classification. 

In complex systems, the systems that are large size 
and/or where gathering precise information to describe 
their behavior is not possible, the classification becomes 
extremely difficult task. Mathematical pattern 
recognition, based on precise transparent algorithms is 
often mathematically intractable, making them 
intrinsically unsuitable for real-world application. This 
inadequacy can be expressed in what Zadeh called the 
principle of incompatibility (incompatibility between 
information precision and significance or relevance) 
[19]. Translating this principle into pattern recognition 
frame, one can state that as complexity of the system 
increases, our ability to formulate transparent and yet 
effective algorithm for recognition of patterns 
diminishes until precision and heuristic search become 
almost mutually exclusive. That’s why soft computing 
prevails conventional mathematical approach in case of 
complex systems.  

In this article the theoretical background of a new 
algorithm for semantic classifying patterns as well as 
some practical implementation details verified by 
selected computer simulation experiments is presented. 
The algorithm is unsupervised and independent from 
apriori defined parameters to the maximum extent (data 
driven classification) and it is suitable for real-time 
application with presence of massive pattern data. In 
section 2 basic iterative (subsection 2.1) and non 
iterative clustering algorithms (subsection 2.2) are 
formulated, where special attention is paid to objective 
functions and relation of their parameters to the pattern 
data that has to be clustered. In this section is given 
basic formulation of proposed non-iterative clustering 
algorithm (2.3), together with relations between the 
pattern set and algorithm related parameters. In section 
3 results of performed computer simulation 
experiments, which show the effectiveness of proposed 
non-iterative clustering algorithm are given. In section 4 
summary and conclusions are presented. 
 
2. THEORETICAL FORMULATION 

Let pR  be a p-dimensional real Euclidean feature 
space and X={x1, x2,..., xn}∈ pR  be a set of n pattern 
vectors, where xk=M(q)=( m1(q),…, mp(q) )=( 1

kx , 2
kx , 

 …, p
kx ), 1 ≤ j ≤ n, and mi(q) denotes the value of the 

feature i for the physical object q∈Ω .  
 Assume further, that the matrix: 

[ ] nc
ik RU ×∈= µ

~ , 1 ≤ k ≤ n, 1 ≤ i ≤ c,            (4) 

is the fuzzy partition matrix, where its member µik is 
the membership degree of pattern vector xk to the i-th 
cluster, and 

vi = ( 1
iv , 2

ix , …, p
ix ), 1 ≤ i ≤ c,             (5) 

is the center, i.e., the most representative pattern 
(prototype) of the cluster i. The set of all cluster centers 
is denoted by V = {v1, v2, ..., vc} ∈ pR , and in general is 
allowed to be V ∩ X ≠ ∅. 

2.1. Iterative algorithms 

According to Ruspini [17] who has introduced the 
notion fuzzy partition to represent the clusters in a 
pattern vector set, the problem of fuzzy clustering is to 
find a fuzzy partition matrix defined as (4), where 
number of fuzzy clusters, c, is a priori known, such that 
close patterns (in sense of (2) and (3)) will have similar 
classification vector, while dissimilar patterns will have 
different classification vector. The classification vector 

kU~  of a pattern xk is k-th column vector of partition 

matrix U~ , i.e., 1
1 ],,[~ cxT

ckkk RU ∈= µµ … . The way to 

solve above defined task is to select kU~  such that 
suitable defined functional will be minimized. As it is 
stated in [17], generally this functional has no solution, 
so it has to be relaxed into a minimization problem with 
suitable constructed objective function J, that is the 
function of two variables, U~  and V. 

Dunn [8] and Bezdek [1], [2], have proposed the 
following objective function based on variance 
criterion: 

1         , )()(),~(
1 1

2 >µ= ∑∑
= =

w-vxdVUJ
c

i

n

k
ik

w
ikA      (6) 

where dissimilarity measure between pattern vector and 
cluster center d(xk-vi) is adopted to be a norm, which is 
defined as: 

)()()( 22
ik

T
ikMikik -vxM-vxvx-vxd =−=          (7) 

and satisfies conditions (2) and (3). Matrix pxpRG∈  is 
called simple covariance matrix and it must be 
symmetric and positive-definite. In case that feature 
space is isotropic, G should be identity matrix, that 
leads to Euclidean norm as a dissimilarity measure 
function (clusters can be seen as equally sized 
hypersfere). In case of anisotropic feature space one can 
select other types of covariance matrix G, for instance, 
diagonal norm or Mahalanobis norm, as it is discussed 
in [20] and [6]. Non-identity covariance matrix 
introduce into the feature space anisotropic dissimilarity 
measure which create hyperelipsoidal shape of clusters. 
 Differentiating the objective function (6) with 
respect to V (for fixed U~ ) and to µik (for fixed V), and 
keeping the restriction (1), on can define location of 
cluster centers: 
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and membership degree for each pattern vector: 



78  ▪  Vol. 31, No 2, 2003        FME Transactions   
 

. ,,1,,,1

,
1

)1(2)1(2

n  kc i

 vxvx
c

j

w
jk

w
ikki

…… ==

−−= ∑
=

−−−
µ

              (9) 

where w is the exponential weight factor that shapes 
fuzzy partition matrix (the larger w, the fuzzier partition 
matrix; no theoretically justified procedure exist for 
choosing w; usually is chosen w = 2). 

The nonlinear optimization problem described by 
equations (8) and (9) cannot be solved analytically. 
There exist various iterative algorithms, which obtain a 
local minimum of objective function (6). The best 
known is fuzzy c-means algorithm as an extension of 
IZODATA algorithm [3] that consists of four steps: 

Step I  Given an input pattern x; 
   Set all initial parameters (w, c, M, ε, ∆) 
   Set randomly initial partition matrix )(~ lU ,  

l = 0, keeping restriction (1) 
WHILE (∆ > ε) 

Step II  Calculate cluster centers set )(lV  using (8) 

Step III Calculate the new partition matrix )1(~ +lU  using (9) 

Step IV Calculate 
M

ll UU )()1( ~~
−=∆ +  

END WHILE 
IZODATA Algorithm 

Quality of the solution depends strongly on the 
choice of the number of fuzzy clusters, c, and initial 
partition matrix, )0(~U , both as a priori data.  

Recently, as in [6], [13], [14], or [15], additional 
objective functions are proposed, modifying original 
idea (6) by introducing new elements that control 
clustering process and that are more sensitive to a given 
pattern set X. In all cases it is an iterative process that 
searches for the global minimum of objective function.  

Starting from the concept of possibilistic clustering, 
the following objective function is proposed in [13], 
[14] and [6]: 

  2
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where ηi is a positive parameter. It is important to note 
that in possibilistic clustering partition matrix U~  is, 
strictly speaking, not longer a “partition matrix”, since 
its partition vectors doesn’t satisfy the constraint (1). 
Instead, there is clamed that members of matrix U~  can 
be interpreted as degree of typicality (not sharing). This 
gives rise to good performance in the presence of noise 
and outliers. 

Another objective function that introduce entropy as 
a measure for fuzzyfication of pattern data set [15] is: 
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where αi and ζ are positive parameters. The first term in 
(12) refers to objective function that was used for 
ordinary crisp c-partition, while the entropy term 

introduces fuzziness (the concept of entropy of fuzzy set 
as a measure of fuzziness is discussed in [20]).  
 
2.2. Non-iterative algorithms 

Convergence speed and stability of iterative algorithms 
in the presence of high dimensionality of feature space 
and large size pattern set may appear as a critical 
problem in their practical application, especially in case 
of real-time application. Moreover, these algorithms 
become unusable in case when pattern set is not present 
in advance, but the patterns arrive sequentially in time.  
 Opposite to the iterative algorithms, non-iterative 
algorithms are one-pass algorithms that possess high 
speed and straightforward convergence as inherent 
property. Accordingly, they appear as a good candidate 
for real-time and real-world applications where 
complexity starts to rule, diminishing requirements for 
precision and emphasizing the search for approximate 
but yet significant solution. The principle of incompati-
bility leads to something what was termed in [9] as 
admissible algorithms instead of precise algorithms.  
 Following idea stated above, in [18] simple non-
iterative algorithm, named the Mountain Method was 
proposed. This method was based on the relaxation of 
iterative fuzzy clustering methods by allowing that only 
previously specified points located in feature space may 
be selected as cluster center. The feature space is 
discredited by regularly spaced grid. These grid points 
are further used for calculation potential field. A total 
potential for each grid point is calculated on such a way 
that partial potential is calculated in respect to any 
particular pattern point, and then, total potential is 
obtained by summing of calculated partial potentials for 
all pattern points. Repeating this procedure for all grid 
points one can calculate the complete potential field in 
considered feature space. After that, the grid point 
having the highest accumulated potential is selected as 
the first cluster center. After the first cluster center is 
selected, the potential field of the feature space is 
reduced by applying the negative potential field 
centered in the grid point that is selected as a first 
cluster. As a consequence, the grid points close to the 
first cluster center will have greatly reduced potential, 
while the distant one will preserve their initially formed 
potential. The next cluster center is determined by 
selection of the grid point with highest remaining 
potential. Search for the other cluster centers is obtained 
by repeating the procedure until the remaining potential 
field drops below the previously defined level. 
Algorithm itself is simple and stable in term of 
convergence, but very sensitive for dimensionality of 
pattern space and selected grid density. For instance, if 
feature space has dimensionality dim=3 and if 
resolution per axis of R=0.1 is selected, then the feature 
space is covered by (1/R)^d =10^3 grid points. It shows 
that computational requirements grow exponentially 
with dimensionality and resolution, which is extremely 
unsuitable for real-time applications. 

As a solution for observed problem, the Subtractive 
Clustering Method (SCM) is proposed in [5]. Instead 
the restriction that only grid points may be selected as 
cluster centers, the problem is relaxed to the maximum 



FME Transactions     Vol. 31, No 2, 2003 ▪  79 
 

extent, allowing that only pattern points itself may be 
selected as a cluster center. In this way, SCM may be 
interpreted as a search for prototypes within the pattern 
data set X, i.e., V ⊆ X. This approach drastically reduces 
computing burden, especially in case of high 
dimensionality of feature space. Moreover, it seams 
quite logical that typical represent of the cluster is not 
imaginary pattern, but existing pattern x ∈ X that 
reflects further to the existing physical object q ∈ Ω .  

As it is shown below, SCM has no a priori 
prescribed number of clusters that has to be identified, 
instead, heuristic criteria is established to accept/reject 
new cluster and halt the clustering process. This criteria 
is based on a priori defined set of parameters that 
governs clustering process in such a way that should be 
avoided generation of too small or too many clusters, as 
well as, too close clusters.  

Step I Given an input pattern X; normalize input pattern 
   Set all initial parameters (ra, rb, εupper, εlower) 

For each xk calculate potential )1(
kP =P(xk, xj),  k, j 

= 1, ... ,n  
   Select the first cluster center using  

( )1(*P , xi)= max( )1(
1P , ... , )1(

nP ) → v1 = xi 

Step II Reduce potential for each xk using  
)2(

jP = )1(
jP - )1(*P P(v1, xk),  k = 1, ... ,n   

Identify candidate for the second cluster center 
using  
( )2(*P , xi)= max( )2(

1P ,..., )2(
nP ) → v2 = xi ,  set l=2 

WHILE ( )(* lP  > εupper 
)1(*P  and )(* lP  <  εlower 

)1(*P ) 

Calculate the dmin = shortest distance between 
current candidate cluster and all previously 
idetfied clusters 

   IF  (dmin / ra) +( )(* lP  / )1(*P ) ≥ 1  

    accept candidate cluster and set vl = xi 
   ELSE 

set )(* lP  = 0 and identify new candidate for 

the cluster center using  
( )(* lP , xi)= max( )(

1
lP , ... , )(l

nP ) → vl = xi 

   END IF 
Step IV Reduce potential for each xk using 

)1( +l
jP = )(l

jP - )(* lP P(vl, xk),  k = 1, ... ,n   

Identify candidate for the next cluster center 
using  
( )1(* +lP , xi)= max( )(

1
lP , ... , )(l

nP )i 

END WHILE 
SCM Algorithm 

Although the SCM algorithm is simple and efficient 
there are some drawbacks that avoid its real potentials 
to be exploit to the maximum extent. First, cluster 
generation process is governed by a priori given set of 
parameters, and no relation with pattern data set is 
established at all. According to that, there are no 
inherent abilities of the clustering process to adjust itself 
to the specific properties of the pattern set that has to be 
clustered. Second, generation of partition matrix is not 
well related to the given pattern set in term as it was 

made in various iterative clustering algorithms (6), (11), 
(12). In order to overcome these drawbacks, SCM 
algorithm is modified and new non-iterative algorithm 
is generated, following the basic idea of original SCM 
algorithm. 
 
2.3 . Further extension of SCM 

Suppose the given pattern data set: X = (x1, ...., xn) is 
normalized i.e., fitted into a unit p-dimensional 
hypercube that represents feature space. The presence of 
a pattern deforms that feature space. Measure of this 
deformation may be any real-valued positive function 
defined as:  

)),,(( 2 θxxdPP kk =  ,                        (13) 

where θ is the set of real valued parameters. The 
relation (13) defines potential field around the pattern 
xk..  

Taking into account whole pattern set, one can 
define a total deformation of the feature space as a 
function of the pattern set distribution: 

2

1
( , ), ,     1, ,

n
k

k
P d x x k n

=

 = θ = ∑Φ …  ,           (14) 

This is an additive function that superimposes partial 
fields generated by each pattern existing in the feature 
space.  
 In general, any radial basis function may be a 
candidate for potential function P (13). Here Gaussian 
exponential function is proposed: 

2 2exp ( ) ,     ( 1,..., )G kP d x x k n = − − σ =   ,           (15) 

and generalized bell function: 
11

2 2 11 ( ) ,  ( 1,..., );   1mB kP d x x k n m
−

−
   = + − σ = ≥    

. (16) 

Both are radially symmetric functions of the squared 
distance between the pattern xi and xk and valued in the 
interval Φ∈[0,1]. As it is well known, Gaussian func-
tion has one parameter, σ, that shapes decay rate and 
wideness in the same time (see Fig. 4a). Generalized 
bell function has two parameters, σ and m. Parameter σ 
defines wideness, exactly; it determines the distance at 
which potential has a half of the maximum value. 
Opposite to Gaussian function, parameter σ controls 
wideness of the generalized bell function only. Decay 
rate is controlled by another parameter, m. When m = 1 
decay rate has its maximum value and function takes a 
rectangular pulse shape (all points grater then σ will 
have zero value). For m≈1.5 generalized bell function is 
approximately the same as Gaussian function. For grater 
values of m the top area become more concentrated 
while decay rate becomes lower, that results in the 
widening of basis area (see Fig. 4b). In both cases 
parameter σ is related to the resolution parameter of the 
potential functions (16) and (17), but its real nature may 
not be considered as the same. In general, the 
generalized bell function is more controllable and 
appears better suited for the problem at hand. 



80  ▪  Vol. 31, No 2, 2003        FME Transactions   
 

Intensity of the potential field will follow the pattern 
distribution so the high potential intensity will occur in 
dense areas, while low intensity will be in the areas 
where density of patterns are low or there are no 
patterns at all. Following this property, the maximum 
intensity of potential field will coincide with center of 
the densest region in feature space. The highest 
deformation of the feature space is located where the 
most of the presented patterns are concentrate. 

 

 
Figure 4. Gaussian (a) and generalized bell (b) potential 
functions for various values of shaping parameters. 

Consequently, one can adopt the point with 
maximum intensity of the potential field as a center of 
the first cluster. Following the original idea of Mountain 
method, the second cluster may be found if the 
influence of the first cluster on the potential field is 
removed and after that another point, having maximum 
potential is selected within remaining potential field. 
For that purposes it is necessary to construct field 
suppressor function in the form: 

SR DΦΦ =                               (17) 
such that: 

2
1( , )S S d v x =   , and 1( ) 0R v =Φ  .           (18) 

where S is the suppressor function and v1 is the center of 
the first identified cluster. Again, a candidate for 
suppressor function may be radial basis function, PG or 
PB and in that case, following the relation (17) and 
restriction (18), suppressor may be formulated as: 

2
11 ( , )S P d v x = −   ,                          (19) 

The procedure may be further repeated until the last 
cluster center is identified. Figure 5 shows an example 
of the whole process on the synthetically generated 
pattern set. It is easy to recognize how the pattern set 
deforms two-dimensional feature space, and how 
this deformation follows the cluster centers (they 
can be visually identified). It is quite logical that 
maximum deformation belongs to the most 
representative pattern. 

 

 

 
Pattern vector set: 220 randomly generated pattern vectors 
concentrated within 2 well separated classes. 
Cluster #1: center: (0.6046, 0.3804); pattern vectors: 155 
Cluster #2: center: (0.3650, 0.7522); pattern vectors: 65 

Figure 5. An example of two well separated pattern 
classes (top) and two iterations of proposed continual 
potential field clustering algorithm. 

Clustering process is performed using generalized 
bell potential function, (σ=0.15, m=1.5) and generalized 
bell suppressor function, (σ=0.5, m=1.5). Generated 
initial potential field and corresponding feature space 
deformation Fig. 5b. Following the deformation of 
feature space the first cluster center is assigned to the 
maximum deformation point, i.e., v1=(0.6046, 0.3804) 
(belongs to the larger cluster). Remaining potential field 

a) 

b) 

a) 

b) 

c) 
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after first potential suppression is performed and 
corresponding deformation of feature space is shown in 
Fig. 5c. Now, applying the same procedure, it is 
possible to identify the second cluster center, i.e., 
v2=(0.3650, 0.7522) (belongs to the smaller cluster). 
Since the pattern vectors are generated randomly, 
identified cluster centers well correlate with centers 
used in generation process of pattern vectors, i.e. (0.6, 
0.3) and (0.4, 0.7).  

In order make proposed algorithm suitable for real-
time application, continuous model have to be turned 
into the discrete one, considering the existing pattern 
data only. For that purpose, a new matrix function is 
formulated: 
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,  Φ ∈ Rnxn.  (20) 

Since the distance function d is symmetric (3), and 
potential function P is real-valued (13), matrix Φ is 
symmetric and positive-definite. For convenience, this 
matrix may be expressed as a column vector containing 
the sum of each row: 
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                       (21) 
First cluster center v1 is then the pattern vector that 
satisfies: 
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i
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Continuous suppressor function (19) is also modified 
and transformed into vector form: 

( ) ( )[ ]),(1),(1 2
1

2
nii xvdPxvdP −−= "S , 

  i = 1,...,c,  S ∈ R1xn                       (23) 
where c is a number of clusters that has to be identified 
or that has been identified. Then, remaining potential 
field will be calculated transforming general relation 
(17) into vector dot product: 

SΦΦ ⋅=R  .                             (24) 
Second cluster center v2 is the pattern vector that 

satisfies: 

kv
R
k xvΦ =→= 22maxΦ  .               (25) 

The procedure has to be repeated until cluster center vc 
is identified or appropriate objective function is 
satisfied. 

Discrete algorithm that is stated above is illustrated 
in Fig. 6 using the same example as that one which is 
used in case of continuous potential field calculation 
(actually there are slight differences that comes as 
consequence of random generator used in creation of 
pattern data). Clustering process is performed using the 
same parameters for potential and suppressor function 
as in previous case. Generated initial potential field and 
corresponding feature space deformation is shown in 
Fig. 6b. Maximum deformation of the feature space was 

occurred for the pattern xk = (0.5469, 0.2424) and 
consequently, this pattern is promoted to be the first 
cluster center. Remaining potential field after first 
potential suppression is performed is shown in Fig. 6c. 
Applying the same procedure, the second cluster center, 
v2 = (0.3827, 0.7103) is identified. 

 

 

 
Pattern vector set: 288 randomly generated pattern vectors 
concentrated within 2 well separated classes: 

Cluster #1: center: (0.5469, 0.2424); pattern vectors: 232 
Cluster #2: center: (0.3827, 0.7103); pattern vectors: 56 

Figure 6. An example of two well separated pattern 
classes (top) and two iterations of proposed discrete 
potential field clustering algorithm (note that the pattern 
data slightly defers from those one used in example 
shown in Fig. 5).  

Fuzzy partition matrix U defined by (4) will be 
generated using FCM approach (9), but with some 
modifications that follow properties of given pattern 
data set X. As it can be seen from examples given in 
Fig. 5 and Fig. 6, total potential of pattern vector xk that 
is selected to be a prototype vj for class j well coincide 
with the actual size of that class, i.e., it is clear that 
‘larger’ cluster generates higher potential field (and 

a) 

c) 

b) 
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larger deformation of feature space), while the ‘smaller’ 
cluster generates the lower intensity potential field (and 
smaller deformation of the feature space). This relation 
is introduced in (9) and on that way was obtained the 
new equation for calculation membership degree for 
each pattern vector: 
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where Φvk is the intensity of accumulated potential by 
prototype vk defined by (22) and (25), and w is the 
fuzzifier as in original fuzzy c-means algorithm. Since 
equation (26) preserves constraint (1) matrix U will be 
partition matrix of the pattern set X. Effectives of 
proposed partitioning equation (26) is shown in Fig. 7, 
where is given partition of the pattern set used as 
example in Fig. 6. This example is typical case where 
fuzzy c-means algorithm shows its tendency that portion 

 

 
  Cluster #1 (larger cluster):   
     center:   (0.5469, 0.2424) 
     center_FCM:  (0.6170, 0.2450) 
  Cluster #2 (smaller cluster):  
     center:   (0.3827, 0.7103) 
     center_FCM:  (0.4580, 0.5900) 

Figure 7. Partition of pattern set given in Fig. 6 - shown 
are the cluster centers connected with lines to their 
respective member patterns (cluster flower). Partition 
generated by proposed algorithm (above) and generated 
by fuzzy c-means algorithm (below). 

of the larger cluster is apt to be drawn into the small 
one, when large and small clusters are close. Shown are 
the cluster centers connected with lines to their 
respective member patterns. Note, that all patterns are 
correctly classified by proposed partitioning algorithm 
(Fig. 7). Partition of the same pattern set generated by 
fuzzy c-means algorithm is given in Fig. 7 below, where 

above-mentioned tendency is evident and lot of patterns 
is misclassified. Proposed partitioning algorithm is able 
to control the size of cluster in accordance to the real 
distribution of patterns.  

The proposed pattern recognition algorithm is 
essentially one-pass algorithm, although within its 
structure there are some parts that are repeating itself. 
This repetition is governed by the number of pattern 
classes that are exist in a given pattern set, in this way it 
may be addressed to one of the major problems with any 
classification algorithm, namely, the need to know the 
number of classes. Instead of using a priori number of 
fuzzy clusters c, the partitioning may be optimized by 
introduction additional criteria that correlate with the 
structure underlying the pattern set. This problem is 
discussed in literature and several validity measures my 
be found in [7], [20], [10], [2], [3], [6], [5], [16] and [4], 
but no single measure was proven as general one. 
Common problem for all of them is monotonicity of 
validity function. As a general rule it should be 
emphasized that multi criteria approach is the one who 
possess sufficient robustness to cover various cases that 
may occur in practice. 
 Total variance of fuzzy partition of pattern set 
may be a good candidate for validity criteria, since 
it was used as an objective function in fuzzy c-
means algorithm (6). Minimum total variance means 
that identified partition is optimal. Dividing total 
variance by size of pattern set, in [4] compactness of 
the fuzzy partition was introduced:  
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while in [16] the same relation is interpreted as within-
fuzzy cluster-fluctuations (the only difference is that the 
total sum of variances is not divided by the size of 
pattern set). This criterion is generally governed by idea 
that the similar patterns should be as close as possible, 
so the partition that has more compact clusters will be 
better then the other one having lower compactness. 
However, compactness alone has no sufficient potential 
to completely describe fuzzy partition of pattern set. In 
order to solve this problem, one more criterion has to be 
added - the criterion that is able to measure dissimilarity 
between clusters.  

It is clear that the partition having compact but too 
close clusters (too close cluster centers) is not a good 
partition. Potential answer to this problem may be to 
introduce another criterion, this one that controls the 
distance between the clusters. This leads to the criterion 
named separation [4]: 

∑
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i
ikki
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where the squared distance between clusters are 
suggested to be a feature that represents quality of the 
partition.  

An alternative approach is presented in [16]. As 
appropriate feature that can control distance between 
clusters is introduced a sum of so called between-fuzzy 
cluster-fluctuations, i.e., the pattern fluctuation between 
clusters:  
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Above given criteria, i.e., those one that consider 
compactness and those one that consider separation of 
the clusters, are opposite in general, so their 
combination obviously leads to the composite criterion 
that do not possess monotonicity, although its 
constituents are monotone functions. This composite 
criterion may be local minimum of the function: 
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where in the both cases optimal partition is that one 
which has minimal Val(U, V). For the example shown in 
Fig 6. the following is obtained: Comp = [NaN 0.0527 
0.0373], Sep = [NaN 0.5761 0.1662], that leads to: 
Val_1 = [NaN 0.0916 0.2242] and accordingly, optimal 
number of fuzzy clusters is: Opt_Clust_No = 2. The 
same is confirmed by the second criterion (31). 

The proposed pattern recognition algorithm may be 
summarized by the algorithm that follows: 

Step I Given an input pattern set X; normalize input 
pattern 

   Set all initial parameters (σ, m, w) 
Calculate 
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Step II Reduce potential field by 11 SΦΦ ⋅=R  
Identify the second cluster center using 

kv
R
k xvΦ =→= 22maxΦ ,  

Set validity criterion ]NaN[)1( =Val , set l = 2 
Calculate partition matrix U(l) using Eq. (26) 
 Calculate validity criterion Val(l) = Val(U, V)  

WHILE (Val(l) < Val(l-1)) 
Step III Reduce potential field by l

R
l

R
l SΦΦ ⋅= −1  

Identify the next cluster center using 

kllv
R
l xvΦ =→= ++ 1)1(1maxΦ  

Calculate validity criterion Val(l) = Val(U, V)  
END WHILE 

Poposed Feature Space Deformation (FSD) Algorithm 
 
3. EXPERIMENTAL VERIFICATION 

In this section presented are three examples that 
illustrate proposed pattern recognition algorithm. In all 
of the following examples, the parameter values used in 
the experiments are provided together with appropriate 
plots. 

A. Example I: Butterfly  

This is the well known example widely used as a 
benchmark test for various clustering algorithms. The 

pattern set consists of 15 points such as shown in Figure 
8. The pattern vectors create in 2-dimensional feature 
space visually symmetric figure having two dense 
regions and one pattern that bridge those regions. The 
identified clusters should be symmetric and the pattern 
‘between’ should have equal membership degree in both 
clusters. The same is identified by proposed clustering 
algorithm. Identified cluster centers as well as partition 
matrix well correlate with those one identified by FCM 
clustering algorithm.  
Experimental data: 

 Pattern vector set:   
  15 pattern vectors 

data_x =[0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.4, 0.5, 0.6, 0.7, 0.7, 
0.7, 0.8, 0.8, 0.8]; 
data_y =[0.3, 0.5, 0.7, 0.4, 0.5, 0.6, 0.5, 0.5, 0.5, 0.4, 0.5, 
0.6, 0.3, 0.5, 0.7]; 

 Potential function type and parameters:   
potential field →  Generalized bell (σ = 0.25, m = 1.5) 
suppressor  →  Generalized bell (σ = 0.5,  m = 1.5) 

 ValS = [NaN   0.1860    0.2361]  →  c_opt = 2 
 Cluster #1:  center:   [0.3000    0.5000]  
    center_FCM: [0.2850    0.5000] 
 Cluster #2: center:  [0.7000    0.5000] 
 center_FCM: [0.7150    0.5000] 

B. Example II: Modified butterfly 
Es an extension of the previous example here is 

considered modified butterfly pattern set where 
simmetricity is no longer preserved since one of the 
wings is scaled by a factor 0.5 (Figure 9). In this way 
two clusters close to each other and with the same 
number of patterns but with different density are 
generated in respect to the original butterfly set.  
Experimental data: 
 Pattern vector set:   
 15 pattern vectors 

data_x = [0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.4, 0.5, 0.55, 0.6, 
0.6, 0.6, 0.65, 0.65, 0.65]; 
data_y = [0.3, 0.5, 0.7, 0.4, 0.5, 0.6, 0.5, 0.5, 0.5, 0.45, 0.5, 
0.55, 0.4, 0.5, 0.6]; 

  Potential function type and parameters:   
potential field →  Generalized bell (σ = 0.25, m = 1.5) 
suppressor  →  Generalized bell (σ = 0.5,   m = 1.5) 

 ValS = [NaN    0.1724    0.1771]  →  c_opt = 2 
 Cluster #1:  center:   [0.6000    0.5000]     
    center_FCM: [0.5940    0.5000]  
 Cluster #2: center:   [0.3000    0.5000] 
    center_FCM: [0.2680    0.5000] 
 
C. Example III: Pattern set from Fig. 6 contaminated 

with 20% noise patterns  

In order to test the sensitivity of proposed recognition 
algorithm to noise, the pattern set that was used in 
example shown in Fig. 6 is contaminated with 20% 
noise patterns (Figure 10). Despite to such a high noise 
contamination the proposed algorithm behaves quite 
stable producing no misclassifications and exactly the 
same cluster centers are identifyed as in case of 
noncontaminated pattern set (compare the results shown 
in Fig. 6). At the opposite side FCM algorithm reacts 
clearly to the changes, producing different clustters then 
in original case. Although the same number of clusters 
is identified, cluster centers are not in the same location 
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and the number of misclassified patterns is enlarged. 
Proposed algorithm is robust to outliers and shows clear 
potential to classify such patterns in the correct way. 
Experimental data: 

Pattern vector set:  358 randomly generated patterns 
vectors concentrated within 2 well separated classes: 

 Cluster #1: center: (0.6, 0.3); radius: 0.25; pattern 
vectors: 227 

 Cluster #2:  center: (0.4, 0.7);  radius: 0.15;  pattern 
vectors: 73 
+ 58 randomly generated noise pattern over the whole 
feature space 

 Potential function type and parameters:   
potential field → Generalized bell (σ = 0.15, m = 1.5) 
suppressor  →  Generalized bell (σ = 0.5,   m = 1.5) 

 ValS = [NaN    0.1134    0.2572] →  c_opt = 2 
 Cluster #1:  center:   [0.6616, 0.2687] 
    center_FCM: [0.6230, 0.2580]  
 Cluster #2:  center:   [0.3900, 0.7034] 
      center_FCM:   [0.4170, 0.6380]  
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igure 8. Partition of ‘butterfly’ pattern set; a) Initial 
eformation of the feature space; b) Suppressed 
eformation of the feature space after identification of the 
irst cluster; c) Cluster centers connected with lines to 
heir respective member patterns (cluster flower) for 
roposed and FCM algorithm (note that in both cases 
iddle pattern has membership degree 0.5 and 
onsequently belongs to both identified clusters). 

 

 
Figure 9. Partition of asymmetric ‘butterfly’ pattern set; a) 
Initial deformation of the feature space; b) Suppressed 
potential field after identification of the first cluster and 
corresponding deformation of the feature space; c) 
Cluster centers connected with lines to their respective 
member patterns (cluster flower) for proposed and FCM 
algorithm. 

 

d) 



FME Transactions     Vol. 31, No 2, 2003 ▪  85 
 

 

 

 

 

Figure 10. Partition of data set used in experiment 
shown in Fig. 6 contaminated with 20% of noise 
patterns; a) Initial potential field and corresponding 
deformation of the feature space; b) Suppressed 
potential field after identification of the first cluster 
and corresponding deformation of the feature space; 
c) Flower diagrams for proposed and FCM algorithm. 

4. CONCLUSION AND DISCUSSION 

In this article a general discussion about the problem 
of classifying physical objects using mathematical 
pattern recognition is presented. Two specific stages in 

mathematical pattern recognition are identified, i.e., the 
transduction stage and the classification stage, as well as 
that the above mentioned stages are not independent 
each other. Classification is also present in transduction 
stage since feature extraction, as a part of transduction 
stage, is also classification (classification of features in 
order to generate appropriate feature set, necessary for 
any classification of physical objects).  Pattern 
recognition is hierarchically organized task, where 
classification lies in its background as a meta-problem.  

Mathematical pattern recognition, based on precise 
transparent algorithms is often mathematically 
intractable, making them intrinsically unsuitable for 
real-world application. Translating the Zadeh’s principle 
of incompatibility into the pattern recognition frame 
leads to conclusion that with increasing of system 
complexity, our ability to formulate transparent and yet 
effective algorithm for recognition of patterns 
diminishes, until precision and heuristic search become 
almost mutually exclusive, giving in this way a room for 
soft computing to prevails conventional approach.  

Further, several iterative and non-iterative 
approaches to fuzzy clustering are reviewed, giving a 
special attention to their suitability for real-time 
application. Furthermore, non-iterative algorithms were 
discussed, i.e., mountain algorithm and subtractive 
clustering algorithm that are based on using potential 
functions to discover prototype pattern vectors dispersed 
in a given feature space. It is observed that these 
algorithms has remarkable potential for real-time 
application but, there are some drawbacks which has to 
be removed:  
• First, cluster generation process is governed by a 

priori given set of parameters, and no relation with 
pattern data set is established at all. According to 
that, there are no inherent abilities of the clustering 
process to adjusts itself to the specific properties of 
the pattern set that has to be clustered.  

• Second, generation of partition matrix is not well 
related to the given pattern set in term as it was made 
in various iterative clustering algorithms.  

In order to overcome these drawbacks, SCM algorithm 
is modified and new non-iterative algorithm is 
generated, following the basic idea of original SCM 
algorithm. This algorithm is based on idea that each 
pattern deforms feature space and further, that the most 
deformed areas will coincide to the most dense areas of 
pattern population, i.e., the highest deformation of the 
feature space will be related to the most representative 
patterns – prototypes. This idea is formulated by 
appropriate set of analytical relations. Fuzzy partition 
matrix is generated using modified FCM approach. Size 
of cluster is related to the accumulated potential of the 
prototype and this information is entered in FCM 
relation for calculation of membership degrees. This 
modification provides partitioning process with ability 
to follows properties of pattern data set. Furthermore, 
the problem of cluster validity,  which  is especially 
important for the proposed algorithm, because it is 
related with algorithm ending condition is analyzed. 
Instead of using a priori number of fuzzy clusters, 
additional criteria that correlate with the structure 

b) 

c) 

a) 

d) 
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underlying the pattern set are introduced. In order to 
show potential of proposed algorithm, a number of 
experiments are provided, showing that algorithm 
possess better characteristics than FCM in term of 
robustness to outliers and tendency to combine or 
intersect close clusters different in size. 

The future work will be addressed to establish 
connection of a priori defined parameters in potential 
and suppressor function, as well as to further refine 
partitioning equations to establish better correlation with 
pattern set at hand. Furthermore, the future work will be 
addressed to the modification of proposed algorithm in 
terms of their capability to classify patterns that are not 
present in advance, but arriving into classifying machine 
sequentially in a time. 
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КОНЦЕПТ НОВЕ МЕТОДЕ ФАЗИ 

ПРЕПОЗНАВАЊA ОБЛИКА ПРИМЕНОМ 
ДЕФОРМАЦИЈЕ ПРОСТОРА ОСОБЕНОСТИ 
 

Петар Б. Петровић 
 

Способност препознавања облика је једно од 
најзначајнијих својстава која карактеришу интели-
гентно понашање биолошких или вештачких систе-
ма. Математичко препознавање облика представља 
формалну основу за решавање овог задатка приме-
ном прецизно форумулисаних алгоритама, који су у 
највећем делу базирни на конвeнционалној матема-
тици. Код комплексних система овакав приступ 
показује значајне недостатке, првенствено због 
захтева за обимним израчунавањима и недовољне 
робусности. Алгоритми који су базирани на 'soft 
computing' методама представљају добру алтерна-
тиву, отварајући простор за развој ефикасних 
алгоритама за примену у реалном времену, полазећи 
од чињенице да значење садржаја информација носи 
већу вредност у односу на прецизност. У овом раду 
излаже се модификација и проширење 'Subrtactive 
Clustering' методе, која се показала ефикасном у 
обради масивних скупова облика у реалном време-
ну. Нови приступ који је базиран првенствено на 
повезивању параметара алгоритма са информацио-
ним садржајем присутним у скупу облика који се 
обрађује, даје додатне степене слободе и омогућава 
да процес препознавања буде вођен подацима који 
се обрађују. Предложени алгоритам је верификован 
великим бројем симулационих експеримената, од 
којих су неки наведени у овом раду. 

 


