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A Method for Determination of Axial 
Residual Stresses in Drawn Bars 
 
The paper describes a genuine deflection method based on correlation 
between non-homogenous yielding and residual stresses, obtained by 
monitoring of “attached sample halves” balance. Results obtained by this 
method enabled generation of (square parabola) elastic line equation. 
Estimated error justifies the implementation of linear stress distribution 
over cross-section in testing range 330 – 550 MPa. 
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1. INTRODUCTION 

 Metal products manufacturing is often characterized 
by non-homogenous processes, which are permanently 
accumulated in the material producing residual macro 
and micro stresses. Macro stresses are balanced in 
volume and they may be considered as a tensor that 
represents space or plane stress state. If the stresses are 
generated by strain, their tensor components are 
determined by material flow. Cold drawing process in 
bars typically generates radial (σr), axial (σz) and hoop 
(σθ) stresses [1-4]. 

Residual stresses, generated by drawing process, are 
the consequence of non-homogenous flow due to shape 
of deformation zone and contact phenomena at the 
interface. Typically, when bars are concerned, residual 
stresses caused by cooling after hot rolling may become 
significant. Thus, a simple and reliable evaluation of 
residual stresses in bars is important for their safe 
service life. Of special concern is the axial component 
of residual stresses. 
 In this paper the experimental method using attached 
specimen halves has been used to evaluate axial residual 
stress distribution in drawn bars. 
 
2. EXPERIMENTAL PROCEDURE 

2.1. Sample preparation 
 

The two sample halves are joined in appropriate way 
and submitted to drawing. Samples were drawn on a 
production drawing machine. By detaching two halves, 
sample shape as shown in Fig. 1a is obtained. Samples 
have to be long enough to provide lag determination 
according to Peiter’s formula, l/D>10 [5], where l is bar 
length and D bar diameter. 

After detaching the distances between two halves at 
different z positions are measured. Test scheme with 
sample bar dimensions and basic drawning data is 
presented in Table 1. Three different steels were used, 
also defined in Table 1. 

 a) 

   b) 
Fig. 1. Samples for residual stress determination 

 
2.2. Results and analysis 
 
 Measured distances between two bar halves in (0,l) 
range for sample 2.1 are shown in Table 2. Due to 
symmetry, elastic line for one sample half equals to the 
half of distances. 

Detaching of “attached” samples may be linked with 
disruption of axial residual stress balance. Bending of 
sample halves may be considered as bar having 
constraint in undetached state. Since stress distribution 
in cross-section remains constant lengthwise bending 
moment appears to be constant, as well. Therefore, 
elastic line equation may be presented as follows: 

* 2( / )y f z l= ,                             (1) 

where *f denotes the maximum deflection, and z/l the 
relative distance from the undetached bar end. 

Verification of equation (1) is done through 
comparison with test results, as shown in Fig. 2. 
Although differences are relatively small they are still 
significant. Therefore, test results are fitted also by the 
following equation: 

* 2
1 / ( / )y c z l f z l= +                    (2) 

 Results obtained by using Eqn. (2) are plotted in Fig. 
2. High correlation of results with the entire elastic line 
indicates that the approximation error falls below test  
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Table 1. Axial residual stress testing scheme 

Drawing conditions 
Material Sample 

No 

Input 
Diameter 

(mm) 

Output 
Diameter 

(mm) 
Speed 
(m/s) Lubricant Die angle 

(rad) 
1.1 21.2 20.2 0.35 Oil 0.314 Steel 1 

(0.2% C, 1.3% Mn, 0.32% S) 1.2 17.9 16.1 0.35 Oil 0.314 
2.1 15 Steel 2 (0.12 – 0.18% C) 

E = 191.4 GPa 2.2 
2.3 

16 
14.5 

0.35 Oil 0.314 

Steel 3 (0.18% C, 0.8% Cr) 
E = 210.9 GPa 

3.1 
3.2 32 30 0.35 Paste 0.314 

 
Table 2.  Measured distances between meridian surfaces with sample 2.1 

Position   0 25 50 75 100 125 150 175 200 225 250 

Deflection 0 0,80 2,00 3,64 5,80 8,40 11,40 14,84 18,90 23,40 - 
 

 
   SAMPLE - 1 drawn 

x  -  test result 
A  - calculated according to:  2

1 ny a z=  

B  - calculated according to:  2
2 3n ny a z a z= +  

Elastic line equation MSE 2 2d / dy z  
214,96 ny z=  0,62 4,79⋅10-4 

22,62 11,49n ny z z= +  0,01 3,68⋅10-4 

Fig. 2 - Comparison of results for elastic line 
 
error. It may be noted that scatter of results obtained by 
Eqn. (1) is more significant near z=0 position where 
influence of linear term appears to be rather strong. 
More thorough analysis shows that departures are not 
caused by inappropriate approximation model but the 
reason may be found in imperfect joint. It may be 
assumed that the joint gets loose after drawing thus 
changing elastic line in the vicinity of the of the joint 
[6]. Therefore, in following calculation both equation 
will be applied in further considerations. 
 
3. BALANCE AFTER DEFLECTION  
 

Moment causes elastic bending of detached sample 
halves after detaching samples at one end. Since stress 

values appear to be constant lengthwise the bending 
moment arising after balance disruption remains 
constant, as well. General relation for bar bending 
subject to constant moment is: 

1
x sE I M=
ρ

, 

where: 
E  - Young modulus,  
Ix  - Moment of inertia for bending axis,  
ρ  - Curvature radius of elastic line. 

If Ms=const. lengthwise and assuming elastic line 
inclination significantly less than 1, one gets 

*

2
2 x

s
E I f

M
l

= , 

where *f  represents deflection rate at joint free bar end. 
To link residual stresses and bending state for 

detached barit is necessary to determine relation for 
moment arising from internal stress balance disruption. 
Taking into account the facts that residual stresses have 
constant value in z direction and the axial symmetry in θ 
direction, their distribution reduces to R direction. Axial 
symmetry also simplifies space distribution of residual 
stresses enabling changeover to equivalent external 
moment or parallel equal counter-directed forces 
exerting on barelement (Fig. 3). 

The analysis starts from the balance of the bending 
moment and moment induced by residual stresses. 
Assuming linear distribution of residual stresses over 
radius R, ‘zero stress’ radius is located at 2/3Ro, where 
Ro is the outer raduus. The following relations may be 
obtained: 

24
27 o pF R= π σ    ;    8

9 ol R=
π

  ;  

3
2

2 2
12s o p

E I fM R
l

= σ =  

and in turn: 

2
812( )

8 9
o

p
R E f

l
π

σ = −
π

, 
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with σp denoting residual stress at the surface. 
From Fig. 3b it comes out:  

3
2

p KI

o

I
m

R
σ

=  

with IKI denoting inertia moment of R0dϕ, leading to the 
same expression for σp. 

 (b) 
Force in ring: 

( )
2

0

2 d
o

n

R

p
r

F r A
π

= σ∫ ∫  

Force in ring:  

( )
2

0 0

2 d
nr

pF r A
π

= σ∫ ∫  

FFF jp ==  
Ring mass center:  

1 dp C
p A

X X A
F

= ∫  

Core mass center: 
1 dj c

j A

X X A
F

= ∫  

Mass centers distance: 
p jl X X= −  

Bending moment: 
sM F l=  

Overall moment: 
 

2

0

2 sin ds oM m R
π

= ϕ ϕ∫ , 

 
where m - denotes 
moment of R0dϕ element 
constraint free from 
adjacent elements in  
θ-direction 
 

2s oM m R=  

Figure 3.  Changeover from residual stress effects to 
external stress load: a — constraint substitution like in 
experiment; b — for residual stress removal. 

Linear distribution model, being the initial 
assumption, determines residual stress value at each r-
location. Coefficients in the linear model may be 
reckoned out of the stress balance in the entire sample 
half. Another possibility is to accume the parabola of n-
th order as a more general solution: 

( )n
z p nC r Bσ = σ +  

with σz denoting axial component of residual stresses, 
σp axial component of residual stresses at the surface, 
rn=R/R0  relative radius. 

At bar surface:  

1 , , 1 ;n z pr C B= σ = σ + =  

and balance condition in overall volume:  

( )
1

0 0

d d 0p n n nC r B r r
π

σ + ϕ =∫ ∫ . 

General solutions for coefficients enable equation 
formation, i.e. general distribution model for axial 
residual stress as a function of bardiameter: 

2 2(1 ) n
z p nrn n

 σ = σ + −  
 

Particular solutions up to parabola of fourth order 
show axial stress decrease ranging from -2σp (linear 
distribution) up to -0,5σp (fourth order parabola) while 
σp remains constant. Resulting force (F) at the same 
time decreases 1,54 times along with mass center 
distances thus resulting in moment decrease of 1,75 
times. 

If moment is considered constant, its value depends 
upon the order of parabola 

32
3(3 )s o pM R

n
= σ

+
, 

leading to the equation for surface residual stress: 

( )
2

2
9 64 3

24p o
fn R E

l
π −

σ = +
π

           (3) 

 This equation shows that surface residual stress has 
the increment of 25% for each increase of parabola 
order if moment is kept constant. 
 
3.1. Axial residual stress values in drawn bars 

 Stresses at barsurface, which have been calculated 
for sample 2.1 using linear distribution model (n=1), are 
shown in Fig. 4. Rather strong influence of linear term 
in Eq. (2) caused high stress values in the vicinity of 
rivet joint and their reduction lengthwise. Unlike that, 
stresses obtained from Eq. (1) remain constant 
lengthwise due to constant bending moment. It should 
be observed that stresses obtained by these two models 
become practically equal at the joint free end. 

 
Fig. 4. Calculated surface stress values along sample 2.1 
(x—experimental, o—model A, *-model B) 

     The scatter of calculated values is caused by errors 
made in deflection measurements, i.e. elastic line 
approximations. If the error is defined as mean square 
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error in relation to measured values, differences 
between measured values and values obtained by Eq. 
(2) become virtually negligible. Unlike that, the 
approximation error generated by Eq. (1) is larger, thus 
producing rather significant result dissipation. However, 
even in that case mean square error at the joint free 
barend falls beneath errors made in measurements. This 
conclusion provides confidence in obtained values and 
at the same time confirms the applicability of the 
method used if bar length is significantly higher than 
bardiameter. The experiments carried out [6] indicate 
that length to diameter ratio should be: 

12
o

l
R

≥  -  with sample diameter 15 mm and 

      10
o

l
R

≥   - with sample diameters 30 and 40 mm. 

 By using these criteria, stresses are calculated for 
deflection values at z=225 mm in the latter case. 
Calculated values are given in Table 3. 

 
Table 3. Surface residual stress values calculated for 
z=225 mm 

STRESS (MPa)    
z=225 mm SAMPLE Elastic line 

equation Linear 
distribution 

Experiment 432,8 
Model A 432,6 1.2 
Model B 432,1 

Experiment 338,1 
Model A 338,7 2.1 
Model B 337,6 

Experiment 564,4 
Model A 571,1 3.2 
Model B 523,9 

 

4. CONCLUSIONS 
 

Calculated surface stress values depend on accuracy 
of all terms in Eq. (3). Bardiameter after calibration 
drawing may be determined with high accuracy. The 
same applies to Young modulus and to elastic line 
determination. So, the major impact remains on stress 
distribution model. A quite reliable approximation is 
obtained when Eq. (2) is used. Deflection values from 
experiments that depart from Eq. (1) values within 
measurement error may be used for stress calculations 
only. Therefore, no matter initial differences due to 

linear term are present (arising from curve radius 
equation 31/ " ( 1 ')y yρ = + ; they may be disregarded 
if defined criteria for length-to-diameter ratio are 
respected in deflection measurements. 

Since above experiments undoubtedly justify the 
application of stress linear distribution model over cross 
section it may be concluded that axial residual stresses 
for test program given in Table 3 are in the range 330–
550 MPa.  
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МЕТОДА ОДРЕЂИВАЊА АКСИЈАЛНИХ 
ЗАОСТАЛИХ НАПОНА У ВУЧЕНИМ 

ШИПКАМА 
 

Милош Јелић,  Митар Мишовић,   
Нeбојша Тадић 

 
У раду је описана оригинална метода дефлекције, 
која је заснована на корелацији нехомогеног течења 
и заосталих напона, добијеној прецизним праћењем 
равнотеже »састављених половина узорака«. 
Резултати добијени применом ове методе омогућили 
су извођење једначине еластичне линије (облика 
квадратне параболе). Процењена грешка оправдава 
примену линеарног модела расподеле заосталог 
напона по попречном пресеку за програм 
испитивања у опсегу 330 до 550 MPa. 
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