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Numerical Modeling of Crack Growth 
Using the Level Set Fast Marching 
Method 
 
The Fast Marching method is a numerical technique for modeling 
arbitrary cracks, holes and material interfaces (inclusions) without 
meshing the internal boundaries. This technique is computationally 
attractivealternat for problems of strictly monotonically advancing fronts. 
The evolving interface is represented as a level contour of a function of 
one dimension higher. This technique is based on finite difference methods 
for hyperbolic conservation laws enabling the accurate and stable 
evolution of sharp corners and cusps in interface. 
The Fast Marching method assures the fully automated crack growth 
simulation. In this study the methodology, algorithm and implementation of 
the planar crack growth of the single crack is presented 
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1. INTRODUCTION 
 

The Level Set Method is a numerical scheme 
tailored, among others, to model arbitrary cracks, holes 
and material interfaces (inclusions), without meshing 
the internal boundaries. Osher and Sethian (1988) 
introduced the Level Set Method (LS method) to 
represent interface as the zero level surface of a function 
of one dimension higher. The LS method is established 
on Initial value formulation. This technique is based on 
finite difference method for hyperbolic conservation 
laws enabling the accurate and stable evolution of sharp 
corners and cusps in interface. 

In the context of the LS method, the Fast Marching 
Method (FM method) was introduced first by Sethian 
[1], and later was improved through papers of Sethian 
[2] and Chopp [3]. The FM method is established on 
Boundary value formulation. The FM method employs 
no time step, and hence is not subject to time step 
restriction (CFL conditions), unlike LS methods.  

These techniques have been used in a large variety 
of applications, including problems in: fluid interface 
motion, two phase flow simulation [3], combustion, 
dendrite solidification [4], etching and deposition semi-
conductor manufacturing [1], [5], robotic navigation and 
path planning [5], computation of seismic travel times 
[6], image segmentation in medical imaging scans. 

These techniques require an adaptive methodology 
to obtain computational efficiency. In the case of LS 
and FM methods this leads to an adaptive methodology, 
the Narrow Band Method [7]. The narrow band is a 
region surrounding the interface, and the FM 
computation needs only to be done in that region. In the 

case of the crack growth, the level set function is then 
updated only in this region called the narrow band. 

Using these techniques, simulation of planar crack 
growth is carried out in this study. 
 
2. EVOLVING THE INTERFACE WITH LEVEL 

CONTOUR 
 
In view of interface propagation the LS method 

approximates the solution of an initial value partial 
differential equation, while the FM method 
approximates the solution of a boundary value partial 
differential equation. Both techniques rely on viscosity 
solutions of Hamilton-Jacobi equation, using upwind 
schemes for hyperbolic conservation laws. In both 
methods, the evolving interface is represented as a level 
contour of a function of one higher dimension. 

In this paper we present the methodology for solving 
a boundary value partial differential equation for the 
problems of the crack growth, where the front speed F 
depends only on position. 

 
2.1. An initial and a boundary value formulation 

 
We suppose that the initial position of the front is 

the zero level set of a higher dimension function ψ . We 
can then identify the evolution of this function ψ  with 
propagation of the front itself through a time dependent 
initial value problem. At any time, the front is given by 
the zero level set of the ψ  [8] in all points in the 
computational domain. 

In order to derive an equation of the motion for this 
LS-function ψ , we note that the zero level set always 
matches the propagating hyper-surface. It means that: 

( ( ), ) 0t tψ =x .     (1) 

In order to derive the partial differential equation for 
the time evaluation of ψ , one can use the chain rule: 
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( ( ), ) ( ) 0t t t tψ ψ ′+∇ =x x .   (2) 

Then it follows: 

( )t F′ ⋅ =x n .      (3) 

In eqn. (3) F is a speed in the outward normal direction, 
where the outward normal direction is obtained from the 
level set function ψ , namely: 

ψ
ψ
∇=n .       (4) 

The equation (2) then becomes:  

0t Fψ ψ+ ∇ = ,     (5a) 

( , 0) d( )tψ = = ±x x ,    (5b) 

where the right hand side of the second equation is 
given. The term d( )± x  is the signed distance from x to 
initial front. Eqn. (5b) is the level set equation 
introduced by Osher and Sethian [6], [8]. This 
formulation can be applied for the arbitrary speed 
function F . As it is analyzed by Sethian [8], the 
efficient solution of these front propagation problems 
requires the use of upwind difference schemes borrowed 
from the solution of hyperbolic conservation laws. 

 
Figure 1. Setup for the Boundary Value formulation 

 
We suppose that the initial position of the front is 

the zero level set of a higher dimension function ψ . We 
can then identify the evolution function ψ  with 
propagation of the front itself through a boundary value 
problem. At any time, the front is given by the level set 
of the time ψ  [8] in all points in the computational 
domain. One way to characterize the position of this 
expanding front is to compute the arrival time ( , )T x y  
of the front as the crosses of each point ( , )x y  [9]. The 
equation that describes this arrival surface ( , )T x y ) is 
derived using: distance=rate*time, ( x F t∆ = ∆ ), see 
Fig. 1 and: 

d1
d
TF
x

=  .      (6) 

In multi dimension, the spatial derivative of the 
solution surface T becomes the gradient, and hence we 
have: 

1T
F

∇ = .      (7) 

Equation (7) represents the boundary value partial 
differential equation describing the interface motion [9]. 

By solving the eqn. (7) one can obtain the crossing time 
mapping, the front arrival time that corresponds to each 
point x. If the speed F depends only on position, then 
the equation reduces to the familiar Eikonal equation. 

If ψ  is a signed distance function so that:  

1ψ∇ =       (8) 

is one of the eqn. (7) solutions. The function ψ  remains 
the signed distance function for all time in all regions 
where ψ  and F are both smooth [10], [11] if: 

0F ψ∇ ⋅∇ = .     (9) 
Equation (9) assures that function ψ  remains the signed 
distance function that satisfies eqn. (7) for all the time. 
Solution of eqn. (9) gives the extension velocity F. 
Also, with (9) it is assured that constF =  along the 
normal direction on the front. 

For the boundary value problem, with relations (8) 
and (9), the front motion is characterized as a solution 
of the eqn. (7) [12]. 

The boundary value perspective is restricted to the 
front that always moves in the same direction, i.e. 
outward, because it requires crossing time (T=ψ ) at 
each grid point, and hence a point cannot be revisited.  

For certain speed F, eqn. (5) or (7) reduces to some 
familiar equations. For example, for F=1, the equation 
becomes the Eikonal equation for a front moving with 
the constant speed. For 1F ε κ= − ⋅ , where κ  is the 
curvature of the front, eqn. (5) becomes a Hamilton-
Jacoby equation with parabolic right-hand-side, as it is 
discussed in [10]. For F κ= , eqn. (5) reduces to the 
equation for the mean curvature flow. The curvature κ  
may be determined from level set function ψ , from 
divergence of the unit normal vector to the front, i.e. 

( )
2 2

3
2 2 2

2xx y x y xy yy x

x y

ψ ψ ψ ψ ψ ψ ψ
κ

ψ ψ

− +
=

+
.  (10) 

Therefore, depending on option of the speed F, eqn. (5) 
or (7) has been used in a large variety of applications, 
including the problems in: fluid interface motion, 
combustion, dendritic solidification, etching and 
deposition semi-conductor manufacturing, robotic 
navigation and path planning, computation of seismic 
travel times, image segmentation in medical imaging 
scans. In this paper, we have made assumption that the 
front velocity F depends only on the front position as it 
is referred to in [13], [14]. 

Solving equations (7) and (8) can be done by using 
the FM method which is the optimal technique for 
solving Eikonal equation, coupled with a bicubic 
interpolation scheme for initialization.    

 
3. THE ZERO LEVEL SET FOR LOCATING THE 

CRACK FRONT 
 
The zero value level set function represents the 

location of the interface [15]. It is necessary for 
initialization of the FM method that will be described 
below. 
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We consider an elliptical planar crack with semi-
major (a) and semi-minor lengths (b), with axes 
oriented along the local 1̂x , 2x̂  axes, respectively. Let 
ˆ = ⋅e R e  be the mapping between the global and the 
local unit base vectors. Now, the coordinates of a point 
in the local orthogonal coordinate system, with the 
origin at the center of the ellipse, are given by: 
ˆ ( )c= ⋅ −x R x x , where cx  is the center of the ellipse.  

The level set function for elliptical planar crack front 
is [16], [17]: 

( ,0) ( )fψ ξ=x ,      (11) 

where: 

2 2 1 2
1 2

ˆ ˆ
( ) 1,      , .x xf

a b
ξ ξ ξ ξ

 
= + − =   

 
   (12) 

The zero level set function (11) represents elliptical 
planar crack front. Note that eqn. (11) is a level set 
function but not a signed distance function. 

Now, consider a polygonal planar crack front, which 
consists of p segments: 

1 1 2 2 2 3 1[ , ], [ , ],..., [ , ]p pI I I= = =x x x x x x . 

The level set function for polygonal interface is given 
by: 

min min min( ,0) sgn(( ) )ψ = − − ⋅x x x x x n , (13) 

where: 
1 0,

sgn( )  
1 0,

if
if
ς

ς
ς
≥

= − ≥
 

min i

1,2,..,

min
i iI

i p
∈
=

− = −
x

x x x x . 

In eqn. (13) minx  is the orthogonal projection of x  
on the interface and minn  is outward normal to the 
interface at minx . If no unique normal is defined at 

minx , the sign is positive if min−x x  belongs to the 
cone of normal at minx  and negative otherwise.  

Level set function for a polygonal planar front and 
an elliptical planar front are shown in the Fig. 2. The 
zero value of the level set functions (11), i.e. (11-12), 
represents crack front in the finite element mesh. 

The level set functions (11) or (13a) are used to 
obtain the one-dimensional segment of the crack 
(interface, void, etc.), which intersect element e (Fig. 3). 
The edges of the element e are intersected with the 
crack (interface, void, etc.) when LS-function for the 
nodes I and J satisfy the condition 0t t

I Jψ ψ < . Then the 
intersection point xp is determined by: 

( ),
t

t t t I
p I J I t t

J I

ψξ ξ
ψ ψ

= + − = −
−

x x x x .  (14) 

The intersection points of the crack segment are 
found using the above relation. The above approach is 
accurate and feasible in two dimensions, since 
discretization of the crack into linear segment is readily 
performed. 

The values of the level set functions are stored only 
at nodes. The functions are interpolated over the mesh 
by the same shape functions as the displacement in 
FEM: 

( , ) ( ) ( )j j
j J

t t Nψ ψ
∈

=∑x x ,   (15) 

where jψ  is the value LS-function at the thj  node and 

jN  is the shape function at the thj  node. 

 
a) 

 
b) 

Figure 2. The distance value from 0 to 3 of LS-functions for 
a) polygonal and b) elliptical planar front 

 
Figure 3. The linear segment of the crack on the elemente 

 
4. THE FAST MARCHING METHOD 

 
The functions for a polygonal planar front (13) and 

an elliptical planar front (11-12) are level set functions 
but are not signed distance functions. In order to obtain 
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the signed distance function ϕ  for arbitrary planar 
front, one applies the FM method, which optimally 
solves an Eiconal equation of the form (7). 

 
4.1. Upwind construction for boundary value 

problem 
 
Consider a two-dimensional version of Eikonal 

equation, where the boundary value is known. We 
analyze a numerical scheme to approximate the eqns. 
(7-9). It is known that central difference approximation 
to the gradient produces the wrong weak solution, so we 
exploit the technology of hyperbolic conservation laws 
in devising schemes that maintain sharp corners in the 
evolving hyper-surface and choose the correct entropy-
satisfying weak solution [14]. Let n

ijψ  be the numerical 
approximation to the solution ψ  at the point ,i x j y∆ ∆  
and at time n t∆ , where x∆ and y∆ is the grid spacing 
and t∆  is the time step. One of the simplest schemes for 
correct weak solution of eqn. (5) is given in [1], namely: 

( ) ( )
( ) ( )

1/ 22 2

2 2

min( ,0) max( ,0)

min( ,0) max( ,0)

x ij x ij
ij ij

y ij y ij

D D
f

D D

ψ ψ
ψ

ψ ψ

− +

− +

 + + 
∇ ≈ = 

 +  

. (16) 

Here, it refers to the backward difference in the x-
direction: 

, 1,
,

i j i j
x i jD

x
ψ ψ

ψ −− −
=

∆
.     (17) 

The other difference operators are defined similarly.   
Eqn. (16) is an upwind scheme. Choosing grid 

points in the approximation, depends on the direction of 
the flow information [14]. Upwind means that if a wave 
progresses from left to right, then one should use a 
difference scheme which reaches upwind to the left in 
order to get information to construct the solution 
downwind to the right [6].  

 
4.2. The narrov band perspective 
 

Considerable computational speedup in the FM 
method comes from the use of the Narrow Band LS 
method, introduced by Adalsteinsson and Sethian [7]. 
The key is that the upwind difference structure of eqn. 
(16) propagates information in “one way” that is from 
smaller values of ψ  to larger values, because the time 
(T ψ= , which is solution of eqn. (16) for 1/ij ijf F= ) 
is monotonically increasing value. The FM method 
builds the solution from eqn (16) outwards from the 
smallest ψ  value. We may start the algorithm by 
marching “downwind” from the known value, 
computing new values at each neighboring grid points. 
We can step the solution outwards from the boundary 
condition in a downwind direction. The algorithm is 
again made fast by confining the “building zone” to 
narrow band around the front. The key is in the 
selection of which grid point to update in the narrow 
band. All points in the computational domain, called 
narrow band, we divide in to three zones: zone with the 

accepted values, zone with the trial, and zone with the 
faraway values (see Fig. 4) 

The close set nodes are set nodes of elements which 
are cut with front. The points with specified initial 
condition are first tagged as accepted set points. Then, 
we tag all neighbors of accepted grid points as trial set 
points. All points that do not belong to accepted and 
trial set points will be considered as a faraway set 
points. We can march the solution (from eqn. (16)) 
outwards always selecting the narrow band grid point 
with minimal trial value for T, and freezing the node 
with minimal trial value and remove this node from 
Trial set to Accepted set. Next step is bringing all 
freezing node neighbors from a faraway set to a trial set. 
Next step is re-computing values of T at all nodes from 
the trial set.  

 
Figure 4. Upwind construction of computational domain 

 
This algorithm works properly because the process 

of re-computing the T values at trial set nodes cannot 
yield a value smaller than any of the accepted set points. 

 
4.3 Initial condition 

 
In order to apply the FM method, the velocity field F 

itself must be defined on the entire domain of ψ , not 
just the zero level set corresponding to the interface 
itself. Thus, it is necessary to extend F from the 
interface into the domain of ψ . In [9], a technique was 
introduced for building this extension velocity field in a 
highly efficient and accurate manner. Construction of 
extension velocities need only be done to points lying in 
the narrow band, as opposed to all points in the 
computational domain. This can greatly reduce the 
computational time. 

In order to build extension velocity, it is necessary to 
construct signed distance function φ . We can use the 
FM method to compute the signed distance function 

tempφ  by solving Eikonal equation: 

1φ∇ = .      (18) 

The solution (18) will be our temporary signed 
distance function tempφ . The FM method is run 
separately for grid points outside (LS-function is 0ψ > ) 
and inside (LS-function is 0ψ < ) the front.  

The initialization stage of the FM method is 
computation of the approximate distances and extension 
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velocities of the close set nodes. The close nodes are a 
set of nodes of the elements that are intersected with the 
front, i.e. with zero level set function ψ . We must 
assign values at these points to approximate the 
distances to the front.  

In close grid points it is necessary to obtain values 
from extension velocity in order to begin the FM 
method. Our aim is to build an extension velocity extF  
such that if 1φ∇ =  then updating under this extension 
velocity maintains this unit gradient. This extension 
should extend the speed in a continuous manner close to 
the front. We want to construct a speed that satisfies the 
equation: 

temp
ext 0F φ∇ ⋅∇ = .    (19) 

The eqn. (19) is satisfied for all grid points, except 
the points along the front itself. 

For building extension velocities at grid nodes near 
the front, we take a weighted average of speed values at 
the points that are used in computing the signed 
distance. The weight is proportional to one over the 
square of the distance; this is equivalent to solving the 
equation (19) [9].  

One goal is to simultaneously construct the signed 
distance using (18) and extension velocity using (19) at 
the same close node. The above expression assumes that 
the speed of the interface is given at the intersection 
points of the front with the grid lines. There are five 
possible cases that need to be considered, and are shown 
in Fig. 5. 

In Fig. 5.a, only one of the neighboring points from 
grid point ( , )i j  is on the other side of the front. The 
distance d from the point ( , )i j  to the intersection front 
point is: 

d s= ,       (20) 
where the meaning of s is shown in Fig. 5.a. The sign of 
the distance d depend on the sign of LS function ψ . 
That distance is positive if 0ijψ >  and distance is 
negative otherwise. 

 
Figure 5.  The initial conditions 

In this case extension velocity at grid point ( , )i j  
would be copying the speed of the closest front point 

( , )= ( , )f i j f i j s− .     (21) 

The value of the speed function at the closest point on 
the front ( , )i j s−  is used as the extension velocity at 
the grid point ( , )i j . 

In Fig. 5.b two of the neighbors are on the other side 
of the front. In this case the value is defined as the exact 
distance to the line segment between the intersection 
points. The exact distance d of point ( , )i j  satisfies: 

2 2
1d d

s t
   + =   
   

.    (22) 

The left-hand side is an upwind approximation to the 
gradient of the distance function, since distance is zero 
at the intersection points. 

In Fig. 5.b the extension speed is given by: 

2 2

2 2

1 1( , ) ( , )
s( , )=

1 1
s

f i t j f i j s
tf i j

t

+ + −

+
.   (23) 

In Fig. 5.c the distance d is the positive solution of   

2 2

1 2
1

min( , )
d d
s s t

   + =   
  

.    (24) 

The extension velocity for the case shown in Fig. 5.c is: 

2 2

2 2

1 1( , ) ( , )
s( , )=

1 1
s

f i t j f i j s
tf i j

t

+ + +

+
,  (25) 

where   1s s=  if 1 2s s< , 2s s=  otherwise. 
In Fig. 5.d, the distance d is: 

1 2min( , )d s s= .     (26) 

In this case the extension velocity at grid point ( , )i j  is: 

( , ) ( , )f i j f i j s= + ,    (27) 

where s  is chosen as in the term before. 
In Fig. 5.e, the distance d is positive solution of 

equation: 

2 2

1 2 1 2
1

min( , ) min( , )
d d
s s t t

   
+ =   

   
.   (28) 

The extension velocity for this case is: 

2 2

2 2

1 1( , ) ( , )
t s( , )=

1 1
s

f i t j f i j s
f i j

t

+ + +

+
,   (29) 

where s  is chosen as in eqn. (25), while t is chosen as 

1t t= , if 1 2t t<  and 2t t=  otherwise. 
With the above equations one has shown the 

approximate construction of signed distance and 
extension velocity at close grid points from the front. It 
is necessary for starting the FM method. The distance 
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value at trial set points is updated using the FM method 
on eqn. (18) and the extension velocity at trial set is 
chosen such that temp

ext 0F φ∇ ⋅∇ = , where the 

gradients of extF  and tempφ  are calculated using the 
same points that are used to calculate distance value. 

Let ( 1, )i j+  and ( , 1)i j −  be the points used in 
updating the distance at point ( , )i j , if ijF  is unknown 
extension velocity at this point, it then has to satisfy 
upwind version of eqn. (19): 

temp temp temp temp
, ,1, , 1,i j i ji j i j

h h

φ φ φ φ+ −
 − −
  ⋅
 
 

        

1, , , , 1, 0i j i j i j i jF F F F
h h

+ − − −
  =
 
 

.         (30) 

Since nodes ( 1, )i j+  and ( , 1)i j −  have been accepted, 
the above equation can be solved with respect to ijF : 

temp temp temp temp
1, , 1, ,1, , 1

, temp temp temp temp
, ,1, , 1

( ) ( )

( ) ( )

i j i ji j i ji j i j
i j

i j i ji j i j

F F
F

φ φ φ φ

φ φ φ φ
+ −+ −

+ −

− + −
=

− + −
.  (31) 

The speed at any point on the front can be precisely 
calculated. This speed is then extended onto the 
surrounding grid points. This leads to a more accurate 
detection of the front location.  

 
5. CRACK GROWTH ALGORITHM 

 
The crack is assumed to grow in the direction 

normal to the crack front and in the plane of the crack. 
Fatigue crack growth is assumed to be governed by 
Paris law [12]: 

d ( )
d

ma C K
N

= ∆ ,      (31) 

where C  and m are material constants, N is the number 
of fatigue cycles, and K∆  is the stress intensity factor 
range. Mode I of the stress intensity factor (SIF) is the 
problem considered here, so we have IK K∆ = . The 
normal increment a∆  is computed at discrete points on 
the crack front. Let n be the number of points on the 
crack front at which the SIF is evaluated, and maxa∆  is 
the maximum user-specified increment normal to the 
crack front. Then: 

maxmax

mi
i I

I

a K
a K

 ∆
=   ∆  

,     (32) 

which gives the normal growth increment at any point 
( 1,2,..., )i i n=x  on the front. 
The crack growth may be explained algorithmically 

as follows: 
1. Initialization maxt t<  ( maxt  is user-specified) 

a) Define level set function ψ  of crack front at all grid 
points (where ψ =0 is value on the crack front, ψ <0 
in the crack interior, ψ >0 in the crack exterior). 

b) Define the intersection points crack front 0ψ =  with 
lines of grid. 

c) Computing the SIF by using Finite Element method, 
and increment crack growth according to eqn. (32) at 
all intersection points elements and front; 

d) Close points: Let Close be the set of all grid points at 
which the approximate values of: signed distance 
function, extension velocity and time T were 
determined. The Close nodes are set nodes of 
elements which are cut with the front, i.e. with zero 
level set function ψ . Close points will be the 
Accepted set for the next. 

e) Trial set: Let Trial be the set of all grid points which 
are neighbors of Accepted set nodes. 

f) Faraway set: Let Faraway be the set of all the rest of 
the grid points. 

2. Marching forwards 
a) Begin Loop: 

Compute (re-compute): signed distance function; 
extension velocity and crossing time map at all grid 
points from Trial set according to the eqn. (18), (19) 
and (16) respectively; 

b) Let min min( , )i j  be the point in Trial set with the 
smallest value for arrival time; 

c) Add the point min min( , )i j  to Accepted; remove it 
from Trial set; 

d) If any points in Faraway is neighbor to min min( , )i j , 
remove it from that set and add it to the Trial set. 

e) Return to the top of Loop. 
3. If  maxt t<  then increment ( 1)t t t← +  and go to 

step 2. 
 

6. RESULTS 
 
The results shown here were obtained by using 

developed numerical algorithm that is presented in 
previous chapters. In the Fig. 6, a polygonal edge crack, 
an embedded shape crack and an elliptical edge crack in 
the bi-unit cube are shown. All cracks are planar crack. 

 
Figure 6. Typical crack shapes 

Figure 7 shows arrival time (crossing time mapping) 
for the penny shape singular planar crack front, which is 
embedded in a bi-unit cube. For the Fast Marching 
method we used a narrow band with 12x8 elements in 
the plane of the planar crack with bilinear interpolation 
in each grid cell. The start position of the penny shape 
crack front is obtained by using LS-function of the 
crack front (11)-(12) where semi-minor and semi-major 
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lengths are a b R× × . The intersection points crack front 
with elements is given by using (14). The time 0T =  
denotes initial position of the crack front. In Fig. 7 the 
numerical simulation of the crack front evolution is 
shown for 10 time step. All intersection points of the 
crack fronts with elements have equal velocity (SIF is 
constant along the crack front), because the crack 
eventually grows to a penny-shape that is in accordance 
with [15]. 

 
Figure 7. The arrival time of planar penny shaped crack 
front  

We consider an initial elliptical planar edge crack of 
semi-major and semi-minor axes 1,5a = and 0,5b =  
respectively, which is embedded in a bi-unit cube. The 
parameters used are: max 0,05a a∆ = , 40n = . For the 
FM method, we used a Narrow Band with 48x32 
elements in plane of planar edge elliptical crack. 

 
Figure 8. The signed distance level set function of the edge 
planar semi- elliptical crack 

The arrival time is obtained by using eqn. (16). All 
intersection points of the crack front with the grid 
elements have velocities that are calculated with growth 
increments obtained by eqn. (32). In Fig. 9 the 
numerical simulation of the semi-elliptical edge planar 
crack front evolution is shown for 300 time steps.  

Figure 10 shows enlarged configuration of the above 
crack front at the initial time 0T =  and the time step 

300T = . 

Figure 11 presents arbitrary edge planar crack whose 
initial shape is specified as three segment LS-function 
(13). The initial conditions for FM-method are obtained 
by using equations from Section 4.3. The signed 
distance LS function and arrival time in computational 
domain are obtained with eqn. (16) where 1ijf =  and 

1/ij ijf F= , respectively. In the Fig. 11 the numerical 
simulation of the crack front evolution is shown for 100 
time steps.  

For the FM method we used 48x32 elements in the 
plane of the planar crack. In this example all 
intersection points have equal velocities due to the fact 
that all lines of crossing time map are equidistant.  

 
Figure 9. The front configuration semi-elliptical edge crack 
until time step 0T = 30  

 
Figure 10. Semi-elliptical edge planar crack front at the time 
step 0T = and the step 0T = 30  

 
Figure 11. The arrival time of the planar edge polygonal 
crack  
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In the Fig. 11 crack front propagation of the planar 
edge polygonal crack is shown, when front velocities at 
intersection points are independent of the front position.  

In the Fig. 12, crack front propagation of the planar 
edge polygonal crack is shown, when the front 
velocities at the intersection points only depend on the 
front position. 

 
Figure 12. The front configuration of the planar edge 
polygonal crack until time step 0T = 25  

 
a) 

 

b) 

Figure 13. a) Quarter – elliptical corner crack b) Arrival time 
for quarter-elliptical corner crack until time step 0T = 15  

Figure 13.a presents a quarter–elliptical corner crack 
with / 0,85 / 0,5a b = . 

The enlarged part of the computational domain with 
quarter-elliptical corner crack front is shown in Fig. 

13.b. Also, Fig. 13.b shows arrival time (crossing time 
mapping) for a quarter–elliptical corner crack front.  
 
7. CONCLUSION 
 

The LS method is a numerical technique for tracking 
moving interfaces [11], [12], [13]. The related FM 
method is computationally attractive alternative for 
strictly monotonically advancing fronts. In both 
methods, the evolving interface is represented as a level 
contour of a function of one higher dimension (i.e., 

( , )t Cψ =x ). In the FM method, the motion of the 
interface is embedded in solution of an elliptic equation 
in terms of ( , )tψ x . A first-order upwind finite 
difference scheme [14], was adopted in the FM method. 
The performance of the new technique for planar 
arbitrary static crack was studied. We demonstrated that 
an initial penny-shaped crack remained circular in shape 
[15], [16]. In addition, we also studied the growth of an 
edge elliptical and edge polygonal planar crack.   

By using the present technique, a fully automated 
crack growth simulation is carried out without the need 
to remesh the crack during its evolution. This is in 
contrast to finite element method based on re-meshing, 
which engenders significant complexity in maintaining 
and describing the crack geometry during crack growth 
analysis [16], [17].  
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НУМЕРИЧКО МОДЕЛИРАЊЕ РАСТА 
ПРСЛИНЕ УПОТРЕБОМ LEVEL SET FAST 

MARCHING МЕТОДА 
 

Гордана Јовичић, Мирослав Живковић, Небојша 
Јовичић 

 
Fast Marching је нумеричка техника за математичко 
моделирање прслина произвољног облика, отвора, 
интерфејса два материјала, матријалних укључака, 
без потребе за меширањем интерних граница. Ова 
техника је прорачунски атрактивна за решавање 
проблема монотоно расућих фронтова. Развој 
интерфејса се репрезентује функцијом контурног 
нивоа која је у простору увек за ред виша од реда 
разматраног проблема. Ова техника се базира на 
коришћењу методе коначних разлика за 
хиперболичке конзервативне законе која омогућава 
прецизну и стабилну симулацију развоја оштрих 
ивица и врхова на интерфејсу.  
Fast Marching метод омогућава потпуно 
аутоматизовану симулацију раста прслине.  У овом 
раду приказана је методологија, алгоритам и 
имплементација развијеног софтвера за симулацију 
раста раванске прслине у 3Д простору. 
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