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Selflubricating sliding bearings production and investigations are still in
great expansion because of their very practical maintenance and very long
operating life. This is probably a very important reason for their common
use in most of modern machines and mechanisms, where porous metal
bearings take a leader position. With some new simulation methods and
software tools it is possible to make qualitative analysis of sliding bearing
behavior taking elastic deformations in account. This paper presents
structural optimization of journal porous metal bearing under complex
load distribution. Surface of porous metal bearing is loaded inside with
pressure distribution that is calculated by hydrodynamic lubrication
theory. Besides, there is also frictional force loading inner surface and
nonuniform temperature distribution on bearing volume. The structure
analysis is made for each kind of load separately and for complex load
distribution of bearing. This analysis is realized by finite elements method
(FEM) in structure analysis module of CATIA V5RI1 software. Based on
analysis results, in the second part of the paper is given parameter
optimization of porous metal bearing with taking elastic deformations of
bearing shell into account. These simulations, analysis and optimizations
realized in CATIA are covered and illustrated with corresponding pictures
and diagrams.

Keywords: Porous metal bearing, structure analysis, finite element
method, elastic deformations, structural optimization

1.INTRODUCTION

Sliding bearings are so much in use today, which
means they are applied to most of machines that we
need and meet in whole our life. This can be
understandable because of some advantages that this
sort of bearing has compared with rolling bearings.
Generally, their production is not so complicated, which
makes the price lower, for simple mounting they can be
made in parts, and in operating they produce less noise
and vibrations. In case of correct lubrication, all sorts of
sliding bearings are very practical for maintenance and
they have long operating life, which are probably most
important reasons for their common use. Especially,
selflubricating sliding bearings are very useful in the
new age and there are two different sorts of them:

Sliding bearings that work without using any amount
of oil or grease. These bearings are made of plastics,
graphite or ceramics materials.

Sliding bearings that contain lubricant, either in
special storage or in their own material structure. The
best example and best-known in this group are porous
metal bearings made by sintering process and they are
the product of powder metallurgy [1].
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In the world today, it's essential to design a new
"best system", or to optimise some existing one, which
means efficient, unique and cost effective system.
Increases with the Human expenses lead to an increase
of machine automation and thus to new trends and
methods application. At the same time, with this
increase due to the energy cost increase a need to make
a friction coefficient as low as possible. The goal of the
emission minimization requires the employment of as
little a lubricant as possible and/or the avoidance of
emissions from porous metal bearing as a tribosystem.
The tendency to minimize the price leads to as
comprehensive standardization with few construction
units as possible and, on the other hand, to the necessity
of optimization of the systems. It is common to all
trends that the load universe for Tribosystems can be
constantly intensified and often mastered only by the
employment of new technologies and the following
trends [2]:

e Development of materials of some hydrodynamic
and/or elastohydrodynamic lubrication with lowest
friction coefficient at high temperatures if possible.

o Development and use of formulas, models and tools
for methodical specifying and optimization of the
tribological construction, as a support for the design
and designer.

e Rising the necessity to unite tribological and
ecological requirements e.g. the lubrication with
lubricants will increase development of guidance on
water basis.

FME Transactions (2005) 33, 25-39 25



e Development of guidance, where only more arises a
smallest temporary discrete contact between the
friction bodies (magnetic, aerodynamic  or
hydrodynamic bearing).

Concerning these trends, optimum design concepts
and methods [3] help us to design such “best” system of
journal porous metal bearing, as one of typical
engineering applications. Developments of well known
software tools for analysis and optimization which last
for years are additional help to reach this objective.
Using software CATIA for stress analysis by Finite
elements method (FEM), it is also possible to make
parameter optimization by taking elastic deformations
of bearing shell in account. Besides hydrodynamic
lubrication theory that is common in use for calculation
of journal bearings, this way of analysis presents a very
qualitative ~ step  towards  elasto-hydrodynamic
lubrication model of porous metal bearing. In this paper
only bearing shell is analysed, because it is most
important and interesting for structural optimization.
This can be done, even real porous metal bearing works
in assembly with shaft (white) and housing (black), like
a group of bearing testing machine, as shown in Fig. 1.

Figure 1. Assembly of bearing, shaft and housing

2. BEARNIG STRESS AND DEFORMATION

The main supposition for all stresses (o, 7) and
deformations ( €, y) analysis is their linear dependence:

oc=F€ and t=Gy. (N
Deformations in transversal direction of radial force
are taken into account using Poisson coefficient (v,)

and deformations by temperature variation is
¢ =0,AT. If we are analyzing stresses and
deformations on bearing volume with known main
directions, it is possible to write equations of stresses in
these directions [4]:

E

l—vp

o) = 2[(1—vp)q+vp(€2+e3)}, ®))

26 = VOL. 33, No 1, 2005

E
0y = 3 |:(1_Vp)€2 +Vp (63 +€1):|, 3)
l—vp
Tp =73 =731 =0,
E
0'3=1 % [(l—vp)€3+vp(€l+€2)]. 4)
“VYp

and equations for deformations in these main directions:

1
€1=E[0'1—Vp(02 +03)J, ®)

& =i[0'2 -V, (03 +0'1)],

E
N2=r3=r31=0, (6)
1

€ 25[0'3—\’,7(0'1 +0'2)] (M

These relations could not be directly used for stress
and deformation calculation values of porous metal
bearing because of complex bearing load. For such
problems it is very useful to apply Finite element
method (FEM) that could be realized using numerous
software tools.

In general, the (FEM) analysis consists of three main
phases:

Preprocessing or problem definition phase,

Process or calculation phase,

Post processing or results analysis phase.

2.1. Preprocessing phase

In this phase of problem definition, the first task is to
form such net of proper finite elements dimensions and
form in order to cover object mass, volume or surface
with satisfying accuracy. The choice of finite elements
form and dimensions certainly depends of analyzed
object shape and it should follow the expected stress
distribution.

Here porous metal bearing with dimensions
@30/ 220%x20 mm is analyzed, where linear elastic

tetrahedron is chosen for finite element, as four nodes
isoparametric solid element [S5]. This element has three
degrees of freedom (translations) per node (NT1,....,N4),
with gravity center P1, as showen by Fig.2.

N4

N1 Edgef N2

Figure 2. Linear tetrahedron finite element
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The porous metal bearing volume consists of 9153
tetrahedrons with dimensions of 1.88mm, which means
there are 2208 nodes, as shown in Fig.3.

For modeling porous metal bearing, it is to be taken
in account physical and properties of bearing material
that are of importance for analysis process. In this case
bearing is made of bronze alloy with mechanical and
other properties given in Table 1.
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Figure 3. Porous bearing as finite elements net

After that, of great importance in preprocessing
phase is correct definition of complex bearing load.
Radial load on bearing is defined by nonuniform
pressure distribution of lubricant on the inner surface of
bearing. Starting from a well known Reynolds equation
for porous metal bearing (8), following hydrodynamic
lubricating theory [6], nonuniform pressure distribution
of thin oil layer is calculated (9):

3 3 sk
O p +i  op :6U8_h+122 P .(8)
ox| n ox| dz\ n oz ox nl\ dy i
. 2
ol e ),
re” | (1+ecos@)’ +12 | 4

Table 1. Bearing material properties

Properties of material value dimens
CuSnl0 )
E - Young modulus 1,12 -10° N/mm?
Vp- Poisson ratio 0,341 -
©; - Density 6500 kg/m’
O - Therm. expans. coeff. 17,8-10°° K
[O'T] - Yield Strength 8;'0 12 N/mm?
( depend of alloy) (80-120)

This nonuniform load distribution on the inner
porous metal bearing model surface is shown in Fig.4.
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with rotation direction and lines that present different
radial load values.

Caused by friction, the temperature field of porous
metal bearing, homogeneous and isotropic material is
defined by energy equation in polar coordinates:

9°T 10T 1 90*T 9°T
—t——t——+—=0, 10
ol ror ra0* oz (1o

which defines thermics flux through elementary bearing
surface [7]:

) 302
g =pvu= 2’7{
re

egsinf )
(1+£cos0)’ +12¢

>,
-T—z M +ppol. (11)

Figure 4. Load distribution from radial force

Starting from the solution of this thermal flux
equation and also using experimental results [8],
temperature field for porous metal bearing (Fig.5) is
defined.

Figure 5. Temperature field of porous metal bearing
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2.2. Processing or calculation phase

To calculate correct stress values in all bearing
model nodes, elastic balance equations are to be
defined. Equations that connect stress and external load
values in a model node (x, y, z), can be written in the
matrix form:

(8] {a}+{F}=0. (12)

where [B]" s transponded matrix of differential
operators. Partial differentiation of stress vector {o}

gives equations system that is to be solved:

90 9% 0% |y, (13)
ox dy 0z F=

d 0 )

T DO | O +Yp =0, (14)
ox dy 0z

e , 97 +9%2 7 g (15)
ox dy 0z Fo

where Xp, Yr and Zp are external forces
components. Because of symmetric stress tensor, it is:
Tl" :le' Tl] = le-, (l,j = x,y,z).

Processing phase of calculation of these equations
could take a lot of time, depending on finite elements
number and how complex external load is. Over the past
years this problem can be solved in a reasonably short
time regarding new computers and software
possibilities. Calculation of this problem is done using
structure analysis modulus of software CATIA V5 R11.
In this case of complex bearing load, but relative low
number of finite elements, the calculation process
measured in dozens of minutes.

2.3. Post processing or results analysis phase

The stress values calculation in most of FEM
software is based on using Huber, Misses and Hencky
hypothesis about potential energy of deformations
where:

of +03 + 03 — (0105 + 0,03 + 0301 ) < [o]>. (16)
After getting stress and deformation values, analysis is
to be made,which is of great importance for making
proper optimization model.

The FEM application makes possible to analyze
every component separately is influence of complex
load, such as in the case of porous metal bearing are
radial force, sliding friction force and nonuniform
temperature field. But the main advantage of FEM is to
have a summary effect of all these components that
make a complex load. This summary stress values on
bearing volume is given here (Fig.6.), where one can see
significant influence of temperature load component
compared with stresses made by radial force operating.

A very important parameter for bearing is also
changing of clearance caused by its complex load.
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These values are shown in Fig.7., where the maximum
displacement node at bearing model can be seen.

The shown results give very important conclusion
about taking elastic deformations in account in
calculation based on hydrodynamic lubrication theory.
This means that porous metal bearing, even at points
with maximum displacement values (4.3um) could not
reach mounting clearance value during its work under
operational bearing life conditions. This result
demonstrate the evidence of safety journal porous metal
bearing work, also with elastic deformations taking in
account, which prevents it from shaft contact in whole
working life.

N_m2
9.64e+007
B.852+007
B.0Se+007
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£.452+007
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4.852+007
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Figure 6. Summary von Misses stress values
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Figure 7. Displacement values of FEM model
3. OPTIMIZATION MODEL DEFINITION

To define every optimum design problem, one
should start with identification of wvariable vector
components, thereafter comes the objective function
choice and it is also to set a task of necessitous
constrains.

In this optimization model definition for porous
metal bearing based on the results from structural
analysis, a variable vector should have main bearing
dimensions to get optimal geometric parameters [9].
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Besides dimensions, yield strength is taken here as
variable that represents the influence of bearing
material. This variable vector can be written as follows:

X =(x1,%,X3,%4) = (Rs, H,b,lor ), (17)

where R;=D/2 is outer bearing radius,
H=(D-d)/2=R,—r-bearing wall thickness, b-
bearing length and [or] - yield strength of bearing

bronze alloy.
In this model some parameters are taken that are
constant in optimization process, such as radial bearing

load W =550 N, number of rotations n =1350 min'l,

and also ”’pv” characteristic values measured by own
experiments.

For correct operation of porous metal bearing in
elastohydrodynamic  conditions, the values of
deformations are very important. In structural analysis
elastic ~deformations and potential energy of
deformation were clearly correlated, which was the
reason for taking this energy as objective function:

min Eger (X) = min Eger (R, H,b,[07]) . (18)

The main supposition in stress analysis was that
deformations are only elastic, which makes constraint:

gi(¥)=[or]-0;>0, (19)

where 0; = O)jjs0 15 Maximal stress value according to
the Misses hypothesis.

Admissible set of solutions D for this constrained
optimization problem:

min Edef (E) = min Edef (R,H,b,[O'T ]) , (20)
xeD xeD

can be now written in the form of equation:

Doyt :{)_ce R" |g1(§)>0}. 1)

4. SOLUTION OF THE PROBLEM

Searching for the solution of defined optimization
problem is the process of searching for optimal value of
variables vector in the frame of admissible solution set
Dy Additional problem in this structural optimization
is a fact that every testing for potential solution of
variables vector is to make a completely new structural
analysis with calculation of all stresses and deformation
energy values. This complex structural optimization
problem was solved using modulus for one-dimensional
optimization in CATIA V5 software. Besides standard
gradient method, this tool can use Simulated-annealing
method (SA) [10]. As a relative new stohastic method,
SA has been commonly in use over the last years for
solving constrained nonlinear optimization problems.
The main advantage of using SA is the possibility for
missing local minimum and also in case of complex
optimization problems the objective function that can
have any mathematic form makes no problem in finding
optimal solution [11].
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Based on the results of optimization process, Table
2. shows variables vector values and values of objective
function. Because of easier analysis and compison the
starting case of bearing is given here, whose stresses
and deformations were analyzed before optimization
process. The next row shows values of calculated
optimal bearing solution that can be compared with
starting. By comparing these one can conclude that:

Optimal (minimum) objective function gives 5%
reduced value of potential deformation energy
compared with the starting case.

As for optimal values of geometric variables, it is to
say that all bearing dimensions are a little bit smaller.

If analyzed variable represents bearing material,
optimal values show that bronze alloy is to be chosen,
which has Yield Strength that satisfied constraint.

Table 2. Variable vector and objective values

Variables Objegtlve
function
©
B .
S |m=R{|x,=H| x=b |x,=[0,]| minE,,
mm mm mm N/mm’ J
starting 15 5 20 85 0,3213
optimum| 14,48 4,82 19,61 100 0,304

Here, it can be said that definition of bearing
optimization model can take minimum value of Misses
stresses as the objective function instead of potential
deformation energy, but this would give similar or the
same vector for optimum solution according to the
hypothesis for stresses values calculation in structural
analysis.

5. CORRELATION ANALYSIS

This analysis is conducted to complete the results of
optimization shown in Table 2., where it can not be seen
how variables are correlated and their influence on
deformation energy, value of stresses or, for example,
bearing mass as an external parameter [5].

Compared with other variables, it is interesting to
show the influence of bearing wall thickness on
calculated Misses stress. Average Misses stress values,
its maximum and minimum response with dependence
of wall thickness are shown in Fig.8§.

Besides this dependence, in Fig.9. is presented the
influence of outer bearing radius on Misses stress values
calculated in structural analysis.

As a result of this analysis, it is clear that bearing
dimensions have no strict influence on Misses stress
values, but it is easy to see that wall thickness has a
rather small influence on stress. A significant influence
has outer radius of bearing, where minimum stress value
is reached for R, =13 mm .

Because of using SA as a stochastic method in
optimization process, in the above Fig. 8. and Fig. 9.,
besides average, are also given responses from
minimum to maximum stresses. This means that stress
has a normal distribution in admissible set of solutions,
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where over 99% of values are in response between
shown max. and min. lines.
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Figure 8. Stress dependence of the wall thickness
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Figure 9. Stress dependence of outer diameter

After this correlation analysis between stress and
geometric parameters, in case of structural optimization
based on stress and deformation FEM analysis, the
influence of finite element dimension on calculated
results can be also analyzed. Preprocessing phase
explains and in Fig. 2 gives linear tetrahedron as a finite
element for bearing stress analysis. In addition, Fig. 10.
shows that smaller size of finite element fills much
better bearing model volume that makes some higher
stress values.

Mean slope of the lines in correlation analysis could
be also a useful parameter for making some conclusion
about the influence of some variables in admissible
solution set. Such example could be the slope of the line
in tetrahedron size responses (Fig.10.), which shows
that influence on Misses stress value is lowest for finite
element with dimensions between 1,5 and 2mm. That
fact proves a proper choice of finite element size
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(1.88mm) in preprocessing phase of porous bearing
structural analysis and also confirms very good ability
of SA method applying in optimization problems
solving against its stochastic character.
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Figure 10. Influence of tetrahedron size on stress

6. CONCLUSION

The main idea of this paper was to make a
contribution to porous metal bearing research and to
present qualitative new approach to optimization of
bearings. This approach has some advantages and with
presented results it could be concluded the following:

e Structural analysis using FEM with stresses and
elastic deformation calculation gives additional
possibilities in  approach to make an
elastohydrodynamic model of porous metal bearing.

e Presented optimization model based on structural
analysis, resulted in variables vector optimal values,
where minimum deformation energy is used as the
main objective function in optimization process.

e This structural optimization problem with stresses
analysis is solved in CATIA V5 software tool using
“Simulated annealing” (SA) method with advantages
that allow its applying for every objective function
form in optimization.

e Presented correlation analysis makes possible a
qualitative new access to optimization, where apart
from interaction analysis, the influence of variables
on some external parameters could be analyzed.

e The finite element size analysis and its influence on
bearing characteristics makes possible some
corrections in the starting phase of structural
optimization. This makes choosing the right finite
element size much easier in achieving the lowest
possible error, where SA method applying gives its
own contribution.

REFERENCES

[1] Cheng J.A., Lawley A., Smith W.E., Robertson
J.M.: Structure property and performance relations
in selflubricating bronze bearings: commercial
premixes, The International Journal of Powder
Metallurgy, vol.22, No.3., 1986.

FME Transaction



[2] Marinkovi¢ A., Rosi¢ B., Pauschitz A.:
Multicriteria Optimization as a Tool for Tribology
(on sliding bearing example); International
Tribology Colloquium, Stuttgart / Ostfildern,
Germany, Proceedings, Volume II, pp.905 -910.,
2004.

[3] Arora J.S.: “Introduction to optimum design”,
McGraw — Hill, New York, USA , 1989.

[4] Kalajdzi¢ M.: Finite element method, Institute for
machine tools, Belgrade, 1978.

[5] Marinkovi¢, A.: Optimization of Journal Porous
Metal Bearing parameters, Ph. D. Thesis, Faculty
of Mechanical Engineering, University of
Belgrade, 2004.

[6] Murti P.R.K.: Squeeze films in full porous metal
bearings, International Journal Wear, Vol. 30, pp.
257-165, 1974.

[7] Jankovi¢c M., Vasiljevi¢ B., Marinkovi¢ A.,
Komatina M.: Temperature Field for Porous Metal
Bearings based on Hydrodynamic Lubrication
Theory, International Conference Balkantrib'96,
Thessaloniki - Greece, Proceedings, pp. 613-618,
1996.

[8] Marinkovi¢ A., Maneski T., Milosevi¢ V.: Porous

metal  bearing  temperature  problem, 1%
International ~ Conference on Tribology in
Environmental  Design, Bournemouth UK,

September, Proceedings, pp.79-86, 2000.

[9] Marinkovi¢ A., Rosi¢ B., Jankovi¢ M.: Optimum
design for porous metal bearing, 2™ World
Tribology Congress, Vienna, Proceedings on CD,
Abstracts of papers, pp. 425, 2001.

[10] Kirkpatrick, S., Gerlatt, C.D. Jr., Vecchi, M.P.:
Optimization by Simulated Annealing, Science
220, pp. 671-680, 1983.

[11] Tang, O.: Simulated Annealing in lot sizing
problems, International Journal of Production
Economics, Vol. 88, pp. 173-181, 2004.

NOMENCLATURE
[B] - matrix of differential operators
[B]" - transponded matrix of diff. operators
b - bearing length
c - radial clearance
D - outer diameter of bearing
[D] - matrix of elasticity
d - inner bearing diameter (shaft diameter)
Doyt - domain of optimum design solutions
E - Young elasticity modulus
E,.; - energy of deformations
{F} - matrix of load in nodes
G - slith modulus
g(x)<0 - unequality functional constraints
H - bearing wall thickness
h(x)=0 - equality functional constraints
[K] - matrix of stiffness for finite elements
n - number of shaft rotations
P - fluid pressure (lubricants leyer)
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- barometric pressure

- inner bearing radius

- shaft radius

- outer bearing radius

- sliding velocity

- radial bearing load

- external force component in x direction
- variables vector in optimization

- external force component in y direction

NiEuXsc x>

- external force component in z direction

Greek symbols

Q, - Thermal expansion coeffitient
/4 - angle deformation
{5 } - matrix of nodes displacement

- relative excetricity
- linear deformation

- matrix of deformations

- density of fluid (lubricant)

- density of porous bearing material

- dinamic viskosity of fluid

- constructive parameter of bearing

- permeability of porous bearing material
- friction coefficient

- angle coordinate

- normal stress

—_—
AT /EIdD>2NN

0,,0,,10; - stresses values in main directins

[o,] - yield stregth of bearing material

O'pies - stress calculated by Misses hypothesis
o, - stresses in directins i,j=x,y,z
T - shear stress
47 - shear stresses in directions i,j= x,y,z

v - kinematics viskosity of fluid
v, - Poasons coefficient

CTPYKTYPAJIHA OIITUMMU3ALINJA
ITOPO3HUX PAIMJAJTHUX KIIM3HUX
JEXAJA

Anexcannap Mapunkosuh

[pousBoama W HCTpaKHBambe camomoamasyjyhux
KIIM3HUX JIeXKaja Cy Yy CTalHO] eKCIaH3Wju 300r CBoje
0COOHMHE Ja Cy IIOTO/HA 32 OAPXKaBarkbe M HMMajy AyT
panau Bek. OBO je BepOBaTHO BeOMa BakaH pasjior 3a
BUXOBY yoOH4ajeHy yrnorpedy koj BehrHe caBpeMeHnX
MalliHa U MeXaHW3aMa, TJe MOPO3HU KIIHM3HU JIeKajH
3ay3uMajy Jmaepcky mosumnujy. Ca HOBHM Meromama
CUMyNamdje W CcOPTBEpCKUM amatuMa Moryhe je
CaYMHHUTH KBAJUTATUBHE aHAJM3E¢ MMOHANIAmka KIU3HHUX
nexaja, y3umajyhu y o003Mp HHXOBE eNacTH4HE
nedopmammje. YV 0oBOM paay TpelncTaBjbeHA  je
CTPYKTYpaJHa ONTUMH3AIMja paJUjaIHUX TOPO3HUX
KIM3HUX JIeXaja Koju cy cioxeHo ontepehenu. Kao
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ontepehere Ha YHYTpAIlhOj I[MOBPIIMHA OPO3HOT
KIM3HOT JIeKaja y3eTa je paclolelioM MpPUTHCKA
U3pavyHaTa 1o XUIPOJUHAMUYKO] TEOpHjH
noaMasuBama. llopex Tora HoCTOjU M cuila Tpema
K/IN3aBka, Kao 1 HepaBHOMEpHA paclofieia TeMIeparypa
10 3alpeMUHM JIeXaja, Koje Takohe Tpeba y3eTH y
003up. CTpyKTypanHa aHanu3a je ypalheHa 3a CBako of
HaBeAeHUX onrtepehema MMOjeAMHAYHO, Kao U 3a
cioxkeHo onTepehieme oOBHX Jexaja. AHamm3a je

32 = VOL. 33, No 1, 2005

obaBjreHa MeTogOoM KoHauHHX enemeHara (MKE) y
MOJyJly 3a CTPYKTypanHy aHanu3y codreepa CATIA
V5R11. Ha ocHOBY pe3yiTaTa OBE aHAJIHU3€ y APYyroM
Jeny paja je Jara mapamerapcka ONTHMH3aluja
MOPO3HOT  KIW3HOT Jiexkaja, y3uMmajyhm y o03up
enactuuHe nedopmanuje daype nexkaja. Cumynanuje,
aHaJIM3€e W ONITHMU3alHja, Koje Cy pearn3oBaHe nmomohy
CATIA V35RII cy y OBOM paay HpEACTaBIbEHE H
WIYCTPOBaHE ONTrOBapajyhmuM ciimkama M AHjarpamuMa.

FME Transaction



