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Structural Optimization of Journal 
Porous Metal Bearing 
 
Selflubricating sliding bearings production and investigations are still in 
great expansion because of their very practical maintenance and very long 
operating life. This is probably a very important reason for their common 
use in most of modern machines and mechanisms, where porous metal 
bearings take a leader position. With some new simulation methods and 
software tools it is possible to make qualitative analysis of sliding bearing 
behavior taking elastic deformations in account. This paper presents 
structural optimization of journal porous metal bearing under complex 
load distribution. Surface of porous metal bearing is loaded inside with 
pressure distribution that is calculated by hydrodynamic lubrication 
theory. Besides, there is also frictional force loading inner surface and 
nonuniform temperature distribution on bearing volume. The structure 
analysis is made for each kind of load separately and for complex load 
distribution of bearing. This analysis is realized by finite elements method 
(FEM) in structure analysis module of CATIA V5R11 software. Based on 
analysis results, in the second part of the paper is given parameter 
optimization of porous metal bearing with taking elastic deformations of 
bearing shell into account. These simulations, analysis and optimizations 
realized in CATIA are covered and illustrated with corresponding pictures 
and diagrams. 
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1. INTRODUCTION  
 
 Sliding bearings are so much in use today, which 
means they are applied to most of machines that we 
need and meet in whole our life. This can be 
understandable because of some advantages that this 
sort of bearing has compared with rolling bearings. 
Generally, their production is not so complicated, which 
makes the price lower, for simple mounting they can be 
made in parts, and in operating they produce less noise 
and vibrations. In case of correct lubrication, all sorts of 
sliding bearings are very practical for maintenance and 
they have long operating life, which are probably most 
important reasons for their common use. Especially, 
selflubricating sliding bearings are very useful in the 
new age and there are two different sorts of them: 
 Sliding bearings that work without using any amount 
of oil or grease. These bearings are made of plastics, 
graphite or ceramics materials. 
 Sliding bearings that contain lubricant, either in 
special storage or in their own material structure. The 
best example and best-known in this group are porous 
metal bearings made by sintering process and they are 
the product of powder metallurgy [1]. 

 In the world today, it's essential to design a new 
"best system", or to optimise some existing one, which 
means efficient, unique and cost effective system.  
Increases with the Human expenses lead to an increase 
of machine automation and thus to new trends and 
methods application. At the same time, with this 
increase due to the energy cost increase a need to make 
a friction coefficient as low as possible. The goal of the 
emission minimization requires the employment of as 
little a lubricant as possible and/or the avoidance of 
emissions from porous metal bearing as a tribosystem. 
The tendency to minimize the price leads to as 
comprehensive standardization with few construction 
units as possible and, on the other hand, to the necessity 
of optimization of the systems. It is common to all 
trends that the load universe for Tribosystems can be 
constantly intensified and often mastered only by the 
employment of new technologies and the following 
trends [2]: 
• Development of materials of some hydrodynamic 

and/or elastohydrodynamic lubrication with lowest 
friction coefficient at high temperatures if possible. 

• Development and use of formulas, models and tools 
for methodical specifying and optimization of the 
tribological construction, as a support for the design 
and designer. 

• Rising the necessity to unite tribological and 
ecological requirements e.g. the lubrication with 
lubricants will increase development of guidance on 
water basis. 
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• Development of guidance, where only more arises a 
smallest temporary discrete contact between the 
friction bodies (magnetic, aerodynamic or 
hydrodynamic bearing). 

Concerning these trends, optimum design concepts 
and methods [3] help us to design such “best” system of 
journal porous metal bearing, as one of typical 
engineering applications. Developments of well known 
software tools for analysis and optimization which last 
for years are additional help to reach this objective. 
Using software CATIA for stress analysis by Finite 
elements method (FEM), it is also possible to make 
parameter optimization by taking elastic deformations 
of bearing shell in account. Besides hydrodynamic 
lubrication theory that is common in use for calculation 
of journal bearings, this way of analysis presents a very 
qualitative step towards elasto-hydrodynamic 
lubrication model of porous metal bearing. In this paper 
only bearing shell is analysed, because it is most 
important and interesting for structural optimization. 
This can be done, even real porous metal bearing works 
in assembly with shaft (white) and housing (black), like 
a group of bearing testing machine, as shown in Fig. 1. 

 

 
 

Figure 1. Assembly of bearing, shaft and housing 

2. BEARNIG STRESS AND DEFORMATION 
 
 The main supposition for all stresses (σ , τ ) and 
deformations (ε , γ) analysis is their linear dependence: 

Eσ = ε  and Gτ γ= .     (1) 

 Deformations in transversal direction of radial force 
are taken into account using Poisson coefficient ( pν ) 
and deformations by temperature variation is 

t t Tα= ∆ε . If we are analyzing stresses and 
deformations on bearing volume with known main 
directions, it is possible to write equations of stresses in 
these directions [4]: 
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and equations for deformations in these main directions: 
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 These relations could not be directly used for stress 
and deformation calculation values of porous metal 
bearing because of complex bearing load. For such 
problems it is very useful to apply Finite element 
method (FEM) that could be realized using numerous 
software tools. 
In general, the (FEM) analysis consists of three main 
phases: 
 Preprocessing or problem definition phase, 
 Process or calculation phase, 
 Post processing or results analysis phase. 
 
2.1. Preprocessing phase 
 
 In this phase of problem definition, the first task is to 
form such net of proper finite elements dimensions and 
form in order to cover object mass, volume or surface  
with satisfying accuracy. The choice of finite elements 
form and dimensions certainly depends of analyzed 
object shape and it should follow the expected stress 
distribution. 
 Here porous metal bearing with dimensions 

30 / 20 20∅ ∅ ×  mm is analyzed, where linear elastic 
tetrahedron is chosen for finite element, as four nodes 
isoparametric solid element [5]. This element has three 
degrees of freedom (translations) per node (N1,....,N4), 
with gravity center P1, as showen by Fig.2. 

 
Figure 2. Linear tetrahedron finite element 
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 The porous metal bearing volume consists of 9153 
tetrahedrons with dimensions of 1.88mm, which means 
there are 2208 nodes, as shown in Fig.3. 
 For modeling porous metal bearing, it is to be taken 
in account physical and properties of bearing material 
that are of importance for analysis process. In this case 
bearing is made of bronze alloy with mechanical and 
other properties given in Table 1.  

 
Figure 3. Porous bearing as finite elements net 

 After that, of great importance in preprocessing 
phase is correct definition of complex bearing load. 
Radial load on bearing is defined by nonuniform 
pressure distribution of lubricant on the inner surface of 
bearing. Starting from a well known Reynolds equation 
for porous metal bearing (8), following hydrodynamic 
lubricating theory [6], nonuniform pressure distribution 
of thin oil layer is calculated (9): 
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Table 1. Bearing material properties 

Properties of material  
CuSn10 value dimens. 

E - Young modulus 1,12 ·105 N/mm2 

pν - Poisson ratio 0,341 - 

lρ  - Density 6500 kg/m3  

tα  - Therm. expans. coeff. 17,8·10-6  K-1 

[ ]Tσ  - Yield Strength 
          ( depend of alloy) 

85 
(80 - 120) N/mm2 

 
 This nonuniform load distribution on the inner 
porous metal bearing model surface is shown in Fig.4. 

with  rotation direction and lines that present different 
radial load values.  
 Caused by friction, the temperature field of porous 
metal bearing, homogeneous and isotropic material is 
defined by energy equation in polar coordinates: 
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which defines thermics flux through elementary bearing 
surface [7]: 
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Figure 4. Load distribution from radial force 

 Starting from the solution of this thermal flux 
equation and also using experimental results [8], 
temperature field for porous metal bearing (Fig.5) is 
defined. 

 

 
Figure 5. Temperature field of porous metal bearing 
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2.2. Processing or calculation phase 
 
 To calculate correct stress values in all bearing 
model nodes, elastic balance equations are to be 
defined. Equations that connect stress and external load 
values in a model node (x, y, z), can be written in the 
matrix form: 

                          [ ] { } { } 0TB Fσ + = , (12) 

where [ ]TB  is transponded matrix of differential 

operators. Partial differentiation of stress vector { }σ  
gives equations system that is to be solved: 
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where FX , FY  and FZ  are external forces 
components. Because of symmetric stress tensor, it is: 

ij jiτ τ= ij jiτ τ= , ( , , ,i j x y z= ). 
 Processing phase of calculation of these equations 
could take a lot of time, depending on finite elements 
number and how complex external load is. Over the past 
years this problem can be solved in a reasonably short 
time regarding new computers and software 
possibilities. Calculation of this problem is done using 
structure analysis modulus of software CATIA V5 R11. 
In this case of complex bearing load, but relative low 
number of finite elements, the calculation process  
measured in dozens of minutes. 
 
2.3. Post processing or results analysis phase 
 
 The stress values calculation in most of FEM 
software is based on using Huber, Misses and Hencky 
hypothesis about potential energy of deformations 
where: 

      ( ) [ ]22 2 2
1 2 3 1 2 2 3 3 1σ σ σ σ σ σ σ σ σ σ+ + − + + ≤ .  (16) 

After getting stress and deformation values,  analysis is 
to be made,which is of great importance for making 
proper optimization model. 
 The FEM application makes possible to analyze 
every component separately is influence of complex 
load, such as in the case of porous metal bearing are 
radial force, sliding friction force and nonuniform 
temperature field. But the main advantage of FEM is to 
have a summary effect of all these components that 
make a complex load. This summary stress values on 
bearing volume is given here (Fig.6.), where one can see 
significant influence of temperature load component 
compared with stresses made by radial force operating.  
 A very important parameter for bearing is also 
changing of clearance caused by its complex load. 

These values are shown in Fig.7., where the maximum 
displacement node at bearing model can be seen. 
 The shown results give very important conclusion 
about taking elastic deformations in account in 
calculation based on hydrodynamic lubrication theory. 
This means that porous metal bearing, even at points 
with maximum displacement values (4.3µm) could not 
reach mounting clearance value during its work under 
operational bearing life conditions. This result 
demonstrate the evidence of safety journal porous metal 
bearing work, also with elastic deformations taking in 
account, which prevents it from shaft contact in whole 
working life. 
 

 
Figure 6. Summary von Misses stress values 

 

 
Figure 7. Displacement values of FEM model 
 
3. OPTIMIZATION MODEL DEFINITION 
 
 To define every optimum design problem, one 
should start with identification of variable vector 
components, thereafter comes the objective function 
choice and it is also to set a task of necessitous 
constrains.  
 In this optimization model definition for porous 
metal bearing based on the results from structural 
analysis, a variable vector should have main bearing 
dimensions to get optimal geometric parameters [9]. 
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 Besides dimensions, yield strength is taken here as 
variable that represents the influence of bearing 
material. This variable vector can be written as follows: 

                [ ]1 2 3 4( , , , ) ( , , , )s Tx x x x R H b σ= =x , (17) 

where / 2sR D=  is outer bearing radius, 

s( ) / 2H D d R r= − = − -bearing wall thickness, b- 
bearing length and [ Tσ ] - yield strength of bearing 
bronze alloy. 
 In this model some parameters are taken that are 
constant in optimization process, such as radial bearing 
load 550 NW = , number of rotations -11350 minn = , 
and also ”pv” characteristic values measured by own 
experiments. 
 For correct operation of porous metal bearing in 
elastohydrodynamic conditions, the values of 
deformations are very important. In structural analysis 
elastic deformations and potential energy of 
deformation were clearly correlated, which was the 
reason for taking this energy as objective function: 

               [ ]( )def defmin ( ) min , , , TE E R H b σ=x . (18) 

The main supposition in stress analysis was that 
deformations are only elastic, which makes constraint: 

                         [ ]1( ) 0T ig σ σ= − >x , (19) 

where Misesiσ σ=  is maximal stress value according to 
the Misses hypothesis.  

Admissible set of solutions D for this constrained 
optimization problem: 

               [ ]def defmin ( ) min ( , , , )T
x D x D

E E R H b σ
∈ ∈

=x , (20) 

can be now written in the form of equation: 

                        { }opt 1| ( ) 0nD R g= ∈ >x x . (21) 

4. SOLUTION OF THE PROBLEM 
 
 Searching for the solution of defined optimization 
problem is the process of searching for optimal value of 
variables vector in the frame of admissible solution set 
Dopt. Additional problem in this structural optimization 
is a fact that every testing for potential solution of 
variables vector is to make a completely new structural 
analysis with calculation of all stresses and deformation 
energy values. This complex structural optimization 
problem was solved using modulus for one-dimensional 
optimization in CATIA V5 software. Besides standard 
gradient method, this tool can use Simulated-annealing 
method (SA) [10]. As a relative new stohastic method, 
SA has been commonly in use over the last years for 
solving constrained nonlinear optimization problems. 
The main advantage of using SA is the possibility for 
missing local minimum and also in case of complex 
optimization problems the objective function that can 
have any mathematic form makes no problem in finding 
optimal solution [11].  

 Based on the results of optimization process, Table 
2. shows variables vector values and values of objective 
function. Because of easier analysis and compison the 
starting case of bearing is given here, whose stresses 
and deformations were analyzed before optimization 
process. The next row shows values of calculated 
optimal bearing solution that can be compared with 
starting. By comparing these one can conclude that: 
 Optimal (minimum) objective function gives 5% 
reduced value of potential deformation energy 
compared with the starting case. 
 As for optimal values of geometric variables, it is to 
say that all bearing dimensions are a little bit smaller. 
 If analyzed variable represents bearing material, 
optimal values show that bronze alloy is to be chosen, 
which has Yield Strength that satisfied constraint. 
 
Table 2. Variable vector and objective values 

Variables Objective 
function 

1 sx R= 2x H= 3x b=  [ ]4 Tx σ=  
defmin E  M

od
el

 
mm mm mm N/mm2 J 

starting 15 5 20 85 0,3213 

optimum 14,48 4,82 19,61 100 0,304 

 Here, it can be said that definition of bearing 
optimization model can take minimum value of Misses 
stresses as the objective function instead of potential 
deformation energy, but this would give similar or the 
same vector for optimum solution according to the 
hypothesis for stresses values calculation in structural 
analysis. 
 
5. CORRELATION ANALYSIS 
 
 This analysis is conducted to complete the results of 
optimization shown in Table 2., where it can not be seen 
how variables are correlated and their influence on 
deformation energy, value of stresses or, for example, 
bearing mass as an external parameter [5]. 
 Compared with other variables, it is interesting to 
show the influence of bearing wall thickness on 
calculated Misses stress. Average Misses stress values, 
its maximum and minimum response  with dependence 
of wall thickness are shown in Fig.8.  
 Besides this dependence, in Fig.9. is presented the 
influence of outer bearing radius on Misses stress values 
calculated in structural analysis. 
 As a result of this analysis, it is clear that bearing 
dimensions have no strict influence on Misses stress 
values, but it is easy to see that wall thickness has a 
rather small influence on stress. A significant influence 
has outer radius of bearing, where minimum stress value 
is reached for s 13 mmR = . 
 Because of using SA as a stochastic method in 
optimization process, in the above Fig. 8. and Fig. 9., 
besides average, are also given responses from 
minimum to maximum stresses. This means that stress 
has a normal distribution in admissible set of solutions, 
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where over 99% of values are in response between 
shown max. and min. lines. 
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Figure 8. Stress dependence of the wall thickness 
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Figure 9. Stress dependence of outer diameter 
 

  After this correlation analysis between stress and 
geometric parameters, in case of structural optimization 
based on stress and deformation FEM analysis, the 
influence of finite element dimension on calculated 
results can be also analyzed. Preprocessing phase 
explains and in Fig. 2 gives linear tetrahedron as a finite 
element for bearing stress analysis. In addition, Fig. 10. 
shows that smaller size of finite element fills much 
better bearing model volume that makes some higher 
stress values. 
 Mean slope of the lines in correlation analysis could 
be also a useful parameter for making some conclusion 
about the influence of some variables in admissible 
solution set. Such example could be the slope of the line 
in tetrahedron size responses (Fig.10.), which shows 
that influence on Misses stress value is lowest for finite 
element with dimensions between 1,5 and 2mm. That 
fact proves a proper choice of finite element size 

(1.88mm) in preprocessing phase of porous bearing 
structural analysis and also confirms very good ability 
of SA method applying in optimization problems 
solving against its stochastic character. 
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Figure 10. Influence of tetrahedron size on stress 

  
6. CONCLUSION 
 
 The main idea of this paper was to make a 
contribution to porous metal bearing research and to 
present qualitative new approach to optimization of 
bearings. This approach has some advantages and with 
presented results it could be concluded the following: 
• Structural analysis using FEM with stresses and 

elastic deformation calculation gives additional 
possibilities in approach to make an 
elastohydrodynamic model of porous metal bearing. 

• Presented optimization model based on structural 
analysis, resulted in variables vector optimal values, 
where minimum deformation energy is used as the 
main objective function in optimization process. 

• This structural optimization problem with stresses 
analysis is solved in CATIA V5 software tool using 
“Simulated annealing” (SA) method with advantages 
that allow its applying for every objective function 
form in optimization. 

• Presented correlation analysis makes possible a 
qualitative new  access to optimization, where apart 
from interaction analysis, the influence of variables 
on some external parameters could be analyzed. 

• The finite element size analysis and its influence on 
bearing characteristics makes possible some 
corrections in the starting phase of structural 
optimization. This makes choosing the right finite 
element size much easier in achieving the lowest 
possible error, where SA method applying gives its 
own contribution. 
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NOMENCLATURE 
 

[ ]B  - matrix of differential operators 

[ ]TB  - transponded matrix of diff. operators 
b - bearing length 
c  - radial clearance 
D - outer diameter of bearing 
[ ]D  - matrix of elasticity 

d - inner bearing diameter (shaft diameter) 
Dopt - domain of optimum design solutions 
E - Young elasticity modulus  
defE  - energy of deformations 

{ }F  - matrix of load in nodes 
G - slith modulus 

( ) 0g <x  - unequality functional constraints 
H  - bearing wall thickness 

( ) 0h =x  - equality functional constraints 
[ ]K  - matrix of stiffness for finite elements 

n - number of shaft rotations 
p - fluid pressure (lubricants leyer) 

bp  - barometric pressure 
R - inner bearing radius 
R - shaft radius 
RS - outer bearing radius 
v  - sliding velocity 
W - radial bearing load 

FX  - external force component in x direction 
x  - variables vector  in optimization 
FY  - external force component in y direction 

FZ  - external force component in z direction 
 
  

Greek symbols  

tα  - Thermal expansion coeffitient 
γ  -  angle deformation 
{ }δ  - matrix of nodes displacement 
ε - relative excetricity 
ε  - linear deformation 
{ }ε  - matrix of deformations 
ρ  - density of fluid (lubricant) 
ρ1 - density of porous bearing material 
η  - dinamic viskosity of fluid 
Ψ  - constructive parameter of bearing 
Φ  - permeability of porous bearing material 
µ - friction coefficient 
θ  - angle coordinate 
σ  - normal stress 

1 2 3, , iσ σ σ  - stresses values in main directins 

[ ]Tσ  - yield stregth of bearing material 

Misesσ  - stress calculated by Misses hypothesis 

i jσ  - stresses in directins i,j= x,y,z 
τ  - shear stress 

i jτ  - shear stresses in directions i,j= x,y,z 
ν - kinematics viskosity of fluid 

pν  - Poasons coefficient 
 
 

СТРУКТУРАЛНА ОПТИМИЗАЦИЈА 
ПОРОЗНИХ РАДИЈАЛНИХ КЛИЗНИХ 

ЛЕЖАЈА 
 

Александар Маринковић 
 
Производња и истраживање самоподмазујућих 
клизних лежаја су у сталној експанзији због своје 
особине да су погодна за одржавање и имају дуг 
радни век. Ово је вероватно веома важан разлог за 
њихову уобичајену употребу код већине савремених 
машина и механизама, где порозни клизни лежаји 
заузимају лидерску позицију. Са новим методама 
симулације и софтверским алатима могуће је 
сачинити квалитативне анализе понашања клизних 
лежаја, узимајући у обзир њихове еластичне 
деформације. У овом раду представљена је 
структурална оптимизација радијалних порозних  
клизних лежаја који су сложено оптерећени. Као 
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оптерећење на унутрашњој површини порозног 
клизног лежаја узета је расподелом притиска 
израчуната по хидродинамичкој теорији 
подмазивања. Поред тога постоји и сила трења 
клизања, као и неравномерна расподела температура 
по запремини лежаја, које такође треба узети у 
обзир. Структурална анализа је урађена за свако од 
наведених оптерећења појединачно, као и за 
сложено оптерећење ових лежаја. Анализа је 

обављена методом коначних елемената (МКЕ) у 
модулу за структуралну анализу софтвера CATIA 
V5R11. На основу резултата ове анализе у другом 
делу рада је дата параметарска оптимизација 
порозног клизног лежаја, узимајући у обзир 
еластичне деформације чауре лежаја. Симулације, 
анализе и оптимизација, које су реализоване помоћу 
CATIA V5R11 су у овом раду представљене и 
илустроване одговарајућим сликама и дијаграмима.

 


