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Modal analysis, realized by application of finite elements method, results 
as a rule in a large number of modal shapes (frequencies) of natural 
oscillation. They are possible shapes and frequencies of oscillation. In real 
conditions, only some of them are excited. Determination of ways 
(mechanisms) of excitation and conditions under which a modal shape will 
be excited is the central question of this paper. For the purpose of 
elaboration of procedure and conditions of excitement, i.e. for the purpose 
of defining rules of excitation, we have used the results of modal analysis 
by applying FEM using the method of direct integration within FEM and 
and results of modal testing. The subject of analysis and examination is a 
gear housing. Modal activity of housing walls is in direct relation with the 
structure and intensity of noise emitted by the gearbox into the 
surrounding. Therefore, research of modal activities is of general 
importance for modelling the process of generation of noise in mechanical 
systems.   
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1. INTRODUCTION 
 

Gearbox noise is sound waves emitted from the 
housing walls into the surrounding. The housing surface 
emits the sound which penetrates from the inner space 
through the walls, as well as the sound generated by the 
housing with its natural oscillation. From this aspect, the 
housing walls have a double role: to be an obstacle to 
penetration of sound waves from the inside, i.e. to be 
the insulator of inner (internal) sound sources and the 
generator of tertiary sound waves due to natural 
oscillation. Insulation properties of sound of acoustic 
partitions, i.e. the housing walls are also in direct 
relation with modal properties (natural frequencies and 
shapes of oscillation). Therefore, it is very important to 
find an answer to the question what are possible modal 
shapes of oscillation of the housing walls and under 
which conditions each of them can be excited. The way 
and conditions of excitation of natural oscillation are, in 
this sense, of special interest. They are important, before 
all, because they will offer answers to many questions 
relating to penetration of sound waves through the 
housing walls. On the other hand, the "mechanism" of 
excitation of natural oscillation represents an 
unexplored field, which is the main aim of this paper. 

 For the time being, the available literature does not 
provide a direct answer to the question in which way 
and under which conditions certain modal shapes are 
excited. The author’s experiences so far clearly point to 

the necessity of applying modal analysis for the purpose 
of solving that important question. However, in many 
practical cases, when harmonic excitations are close to 
structural frequencies, standard identification techniques 
fail. Therefore, the Mohanty and Prasenjit [8 and 9] 
suggest, on the example of a steel plate, a technique 
based on the Ibrahim Time Domain method which 
explicitly includes the harmonic frequencies known a 
priori. Therefore, the modified technique allows proper 
identification of eigenfrequencies and modal damping 
even when harmonic excitation frequencies are close to 
the natural frequencies of the structures. By applying 
the Finite Elements Method, modal analysis is used in a 
computer motherboard in [7], gears [10],  and a gearbox 
[4] for the purpose of defining modal parameters, 
determination of amplitude-frequency characteristics, 
main shapes of oscillation, etc. In the field of low 
frequencies, the FEM application in modal analysis 
gives excellent results. However, modeling and 
vibration analysis by FEM and modal analysis become 
more difficult as the frequency becomes higher, and 
some approximations and hypotheses that have not yet 
been proven to be accurate are used in SEA (statistical 
energy analysis). In [6]  a vibration analysis method 
based on modal analysis and the statistical method 
which enables analysis of the high-frequency vibration 
is presented. Example results are shown for a single-
plate structure and an L-shaped structure. Gardanio, 
Ferguson and Fahy deal with the examination of  plane 
wave transmission characteristics of circular cylindrical 
sandwich shell of the type used in aerospace industry in 
[2]. They have developed a model for prediction of the 
structural response and transmitted noise when a 
number of discrete masses are applied to cylindrical 
plate structures. Simulations show the effect of the 
number of structural and acousic modes included on the 
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calculated frequency response, and indicate the number 
necessary for an accurate prediction of the resonant and 
non-resonant sound transmission through the structure. 
It is shown that restricting the acoustic and structural 
modes to those having natural frequencies within an 
interval of ±40 Hz and ±60 Hz, respectively, of the 
excitation frequency produces acceptably small errors in 
transmission estimate. 
 
2. MODAL ANALYSIS  
 

The research was realized on the example of a 
housing shown in Figure 1. It is a cast housing of a two-
degree gearbox, reinforced with ribs and rings for 
increasing stiffness. A complex shape was thus obtained 
having small sensitivity to excitation. As such, it offers 
a possibility for detection of all important details in 
clarification of excitation mechanisms and nature of 
natural oscillation of each structure. Modal analysis of 
the given housing was performed by applying the finite 
elements method. The linear 3D-brick finite element 
with 12 degrees of freedom (three translations per each 
node) was used. The finite elements mesh shown in 
Figure 1 contains a total of 6385 finite elements, 12950 
nodes with 38850 degrees of freedom. 

 

 
 

Figure 1. Discretized model of the chosen gearbox housing 

The model from Figure 1 was used for calculation 
of 88 natural frequencies and determination of as many 
modal shapes of oscillation for the frequency range of 
0-3000 Hz. Figures 2,3,4 and 5 show only some of the 
chosen shapes of oscillation for different frequencies. 
With increase in natural frequency, the shape of 
oscillation, i.e. deformations during oscillation become 
more complex. Distribution of stresses and strains in the 
housing walls at modal oscillation was determined by 
using the program for static in the finite elements 
method and by introducing displacements during 
oscillation. These distributions are shown in Figures 2-
5. Several conclusions that characterize modal 
oscillation of this housing and other structures can be 
deduced from these presentations. The first 
characteristic of modal oscillation is that, at a certain 
modal frequency. The structure is divided into a certain 
number of zones which oscillate separately from one 
another with the same frequency. Waves propagate from  
 

 

 
Figure. 2. Distribution of deformations in  modal shape of 

oscillation with frequency f =155 Hz:  
a) axonometric presentation,  
b) chosen section 

 

 

Figure 3. Distribution of deformations in  modal shape of 
oscillation with frequency f =359 Hz:  
a) axonometric presentation,  
b) chosen section 
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Table 1.  Natural frequencies and relative amplitude of maximal displacements for 88 modal shapes obtained by FEM 
 

i inf , Hz max/ia a  i inf , Hz max/ia a

1 155 0.7464 23 1246 0,7246 
2 350 0.8478 24 1287 0,7246 
3 359 0.7246 25 1310 0,7536 
4 460 0.7391 26 1399 0,9420 
5 503 0.7464 27 1407 0.7536 
6 523 0.7391 28 1412 0.7971 
7 674 0.8333 29 1429 0.7246 
8 693 0.7246 30 1448 0.949 
9 753 0.7246 31 1512 0.7246 
10 767 0.9565 32 1546 0.7391 
11 819 0.7246 33 1615 0.7319 
12 842 0.7246 34 1617 0.7246 
13 844 0.7609 35 1639 0.7536 
14 945 0.7246 36 1661 0.7319 
15 977 0.7464 37 1695 0.7319 
16 1042 0.7246 38 1735 0.7319 
17 1076 0.7246 39 1743 0.8188 
18 1106 0.7609 40 1769 0.7391 
19 1125 0.7391 41 1788 0.7319 
20 1162 0.7246 42 1867 0.7536 
21 1178 0.7319 43 1927 0.7971 
22 1212 0.8188 44 1930 0.7246 

 

 
every zone and get into "collision" at points which 
represent "partitions" between these zones. By analogy 
with the laws of physics, this oscillation represents a 
"stationary wave", and the partitions represent nodes of 
the stationary (standing) wave. The second 
characteristic is that the number of modal zones 
increases with increase of natural frequency. Their 
number does not depend only on frequency but on the 
complexity of shapes, arrangement of ribs and other 
reinforcements, their thickness of walls, total 
dimensions of the housing, shape and size of the 
opening, etc. The third characteristic is that the sources 
of waves of natural oscillation are at points of the 
greatest displacements, and that at points of nodal 
partitions (nodes) displacements are close to zero. It is 
opposite to stresses. Stresses are greatest at points of 
nodal partitions which act as clamping (constraining), 
and they are smallest at points of wave sources, where 
displacements are greatest. This analysis leads to the 
following conclusion. If any disturbance, for example 
an impact, introduces potential energy into a structure, it 
is released from the structure by natural oscillation. The 
points from which that energy is released are the points 
from which these waves propagate. The subject of this 
paper is the question which of the oscillation shapes will 
be excited to release that energy. 

The continuation of research was marked by the 
excitation of natural oscillation of the structure and the 
analysis of response to excitation. Numerical and 
experimental approaches were used.  In the numerical  
approach, the method of direct integration of the finite 
elements mesh with impulse excitation was used. Modal 
frequencies and modal shapes of oscillation obtained by 
means of the FEM are only the possibilities for 
realization of natural oscillation. Whether and how 

those possibilities will happen depends on a large 
number of conditions and influences which should be 
examined. Starting from the fact that modal (natural) 
oscillation is determined by the modal shape of 
deformations, modal; frequency and modal damping, 
the elaboration of mechanism of modal shapes 
excitation will be realized by the analysis of influences 
of exciting deformations, exciting frequencies and 
modal damping. 
 
3. INFLUENCE OF EXCITING DISPLACEMENT 
 

Deformations at modal oscillation can be in the form 
of pressure-tension when they are spread as longitudinal 
waves, then in the form of bending when they are 
spread by deflecting waves, in the form of shear when 
they are spread by deflecting waves and, at the end, 
torsional deformations which generate torsional waves 
(Fig.6).  Each type of waves, i.e. deformations has its 
corresponding speed of propagation wc , wave length 
during wave motion wλ ,  waving frequency 

/w w wf c λ=  and period of waves oscillation  
/w w wT cλ= . In a real structure of complex shape of a 

machine part such as the gearbox housing and its modal 
shapes of oscillation, all shapes of deformations are 
present depending on which of them is predominant, 
which space for forming of the modal zone for 
oscillation is available, etc. These waves combine with 
one another. The shape of oscillation and its final 
frequency depend on the combination. The number of 
possible combinations is great and hence the number of 
possible shapes of oscillation is also great. 

i inf , Hz max/ia a  i inf , Hz max/ia a  

45 1934 0.7246 67 2492 0.8551 
46 1962 0.7609 68 2504 0.7246 
47 2005 0.7536 69 2538 0.7391 
48 2009 0.7246 70 2576 0.9782 
49 2031 0.8768 71 2583 0.8261 
50 2084 0.7608 72 2599 0.8985 
51 2108 0.7246 73 2651 0.7246 
52 2128 0.7681 74 2663 0.7971 
53 2138 0.7391 75 2666 0.8188 
54 2161 0.7898 76 2718 0.9275 
55 2170 0.9130 77 2741 0.7319 
56 2199 0.7319 78 2751 0.7246 
57 2243 0.7319 79 2780 0.7753 
58 2250 0.7681 80 2811 1 
59 2256 0.9130 81 2818 0.8696 
60 2302 0.7753 82 2851 0.9783 
61 2360 0.8261 83 2882 0.7391 
62 2379 0.7464 84 2890 0.8768 
63 2417 0.8116 85 2905 0.7319 
64 2446 0.9782 86 2932 0.7681 
65 2448 0.7319 87 2961 0.8841 
66 2490 0.7246 88 2995 0.8623 
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Figure 4. Distribution of deformations in  modal shape of 

oscillation with frequency f =693 Hz: 
a) axonometric presentation,  
b) chosen section 

 
 

 
 

 
 

Figure 5. Distribution of deformations in  modal shape of 
oscillation with frequency f =2504 Hz: 
a) axonometric presentation,  
b) chosen section 

Real modal shapes are combinations of elementary 
shapes of wave motion shown in Figure 6. However, in 
each of them the participation of some elementary 
waves prevails and some deformations are more 
prominent than the others. In order to excite a certain 
mode, it is necessary to realize deformations at the point 
and in the direction where it is greatest in that mode.  
The phenomenon is similar to that in a music instrument 

when a wire is radially pulled and let to oscillate. If 
Figures 2b and 3b are seen, it can be noticed that these 
two modal shapes can be excited by the action of impact 
in horizontal direction in the zone of support for 
bearings. In the first case (for 155 Hz), this force 
(displacement) acts in the sense of slanting bending 
(turning over of the housing). Deformations are 
deflecting combined with compressive and shear ones. 
The same force in the second case (Fig. 3b- f = 359 Hz) 
creates deformations of predominantly shear character 
combined with deflecting. In the first case, the housing 
volume makes one modal zone, and in the second case 
(359 Hz), each of the walls forms one of nodal zones. 
Nodal partitions are at joints of the housing walls. 
Frequencies are different by 2.3 times mainly only 
because in both cases the second type of deformations is 
realized, oscillation zones are reduced, wave paths are 
shorter, which probably influenced the increase of 
modal frequency. These two shapes of oscillation could 
be excited by the action of force at the other points 
where deformations are  clearly seen. In Figure 2b, it 
would be possible for a horizontal force to act on the 
upper housing edge. In such a way, deformations 
corresponding to the frequency of 155 Hz could be 
removed from the equilibrium position. In the modal 
shape in Figure 3b, it is possible to apply a force 
(impact) vertically in the middle of horizontal upper 
plate. This wall would be thus removed from the 
equilibrium state and let to oscillate with the frequency 
of 359 Hz. 

 

 
Figure 6. Main shapes of deformations and waves in wave 

motion in the elastic environment: a) longitudinal 
(compression), b) deflect, c) shearing, d) torsional 

By analyzing the shapes of deformations for the 
frequency of 693 Hz (Fig.4) which is by further 1.9 
times higher than the one in Figure 3, the following 
conclusions can be made. The housing mass is 
distributed in several modal zones which oscillate with 
this frequency. Almost each housing wall has two 
modal zones of oscillation. Modal zones are 
approximately twice smaller, and shear deformations 
are dominant even in this shape of oscillation. The 
points where deformations (displacements) are greatest 
are not in the middle of the housing any more in this 
shape of oscillation. It cannot be excited by the impact 
in the middle of the wall. Impact should be moved to a 

a) 

b) 

a) 

b) 

a) 

b) 

c) 

d)
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zone which is to the left or the right of the middle where 
displacements are greatest (Fig. 4) By this analogy, the 
modal shape in Figure 4 should be excited by the action 
of force at the other points where relatively great 
deformations are present. This also holds for the modal 
shape in Figure 5 for 2504 Hz. In this case, the division 
into modal zones is very complex. The number of these 
zones is great and they are mostly distributed among the 
ribs and other zones of increased rigidity. Deformations 
of pressure and shear deformations to some extent are 
prevailing. These deformations and narrowed zones of 
oscillation contributed to the strong increase of the 
frequency of this type of oscillation (3.6 times in 
relation to the previous one). The values of 
displacement are extremely reduced. Besides, it is not 
possible to apply the excitation force in the zone of the 
greatest deformations in order to incite compressive 
displacements. The point where shear deformations are 
increased should be found and then a force vertical to 
the housing wall should be applied at that point. This 
modal shape is extremely difficult to excite. On the 
other hand, it is very favorable circumstance for this 
structure. The aim is not to excite modal shapes easily 
but, on the contrary, not to make them appear in 
operation. 

The previous analysis referred to the point and 
direction of action of excitation. Another question 
concerning the intensity of excitation follows. This 
energy should be at the level of energy which can be 
released by natural oscillation of a certain modal shape. 
The orientation value of the potential energy which is 
absorbed is  

 
2

2 2p
F cE δ δ= = . (1) 

where F is intensity  of the force applied, δ  is the 
displacement (deformation) in the direction of the force, 
and c is the stiffness at the point of force action. The 
absorbed potential energy can also be determined as the 
integral of stresses within the volume covered by those 
stresses which have different values at each point. A 
more suitable approach for determination of potential 
energy for this purpose is by means of stiffness and 
displacement, which is given through the mentioned 
formula. The problem of the level of disturbing, i.e. 
potential energy, which should be introduced into the 
system in order to excite a certain modal shape of 
oscillation, is complex and must be considered together  
with the other excitatation parameters, such as, before 
all, frequency and damping. 
 
4. INFLUENCE OF EXCITATION FREQUENCY 
 

In order to excite modal oscillation, it is not always 
enough to move the system out of the equilibrium state 
at the point and in the direction of the greatest 
deformations, as it is shown in the previous section. 
Sometimes it is necessary to realize excitation with a 
frequency which is equal to the natural frequency of the 
modal shape that should be excited. So, the deformation 
or the force should be changed with the same frequency. 
As modal testing is usually performed in order to 

identify modal frequencies, they are not known in 
advance. Therefore, excitation is achieved with all 
frequencies, and the system response is realized with 
natural frequencies. In that way, the response of all 
natural frequencies corresponding to the direction of 
deformation in which excitation is realized is obtained. 
The spectrum of the force F of all frequencies is applied 
on the system. If the response of all possible modal 
shapes were the same, the spectrum of vibrations 
obtained would contain equal responses for each 
frequency. As this is not the case, the intensities of 
responses are very different. It is necessary to find an 
answer to the question why some modal shapes do not 
react to the incitation caused by the same frequency.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Frequency response in the point No 7 (at the white 
side of the housing)  obtained by application of the FEM 
and direct integration 

 
For determination of response by direct integration 

of the FE structure, it is suitable to use sine excitation 
functions whose frequencies are equal to the frequencies 
of modal shapes whose response is determined. The 
frequency of excitation force should be varied so that it 
coincides with modal frequencies. Thus the response of 
the system for corresponding frequencies depending on 
the point of force action will be obtained (Fig. 7, 8). 
They show that there is a response to excitation only for 
some frequencies, i.e. only several of 88 shapes of 
oscillation are excited. Besides, intensities of responses 
are extremely different so that the effect of those 
extremely weak can be neglected. This phenomenom is 
common in comparasion with results of modal analysis 
performed by using the FEM and modal testing. 
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Fig. 8. Frequency response in the point No 8 (at the lateral 
side of the housing)  obtained by application of the FEM 
and direct integration 

If the excitation force acts at the point and in the 
direction of the greatest deformation and if it changes 
with the frequency equal to the corresponding natural 
frequency, it does not mean that only that modal shape 
will be excited. The excitation energy can be transferred 
to the other modal frequencies. It means that if 
excitation acts with a frequency which is not equal to 
any of natural frequencies some of them can be excited.  
The potential energy of excitation absorbed in the 
system structure is released by modal oscillation with 
the frequency which is most suitable for those 
conditions. This refers to transmitting energy from one 
frequency to another. During this "transferring", a 
considerable part of energy is "lost" so that the intensity 
of the response is considerably smaller in comparison 
with the state when the excitation frequency and natural 
frequency coincide. If a deformation of the value δ  is 
realized by deformation of the housing wall with the 
stiffness c, and if the excitation frequency is f, the 
absorbed energy in unit time, i.e. the excitation power 

pW . 
2

2p
cW fδ= ,  

2

2
n

n n
c

W f
δ

=  , za p nW W= , 

 n nf fδ δ= . (2) 

If all excitation energy in the same unit time is 
released by oscillations with the natural frequency fn, 
where the rigidity is the same, displacement during 
natural oscillation would be proportionally greater or 

smaller proportionally to the square root of the ratio 
between the excitation frequency and the natural 
frequency. These energies are not identical. A 
considerable part of energy is lost to internal damping, 
and these losses are certainly greater during 
transformation of energy from one frequency to another. 
Besides, the absorbed energy of excitation is dispersed 
to several modal shapes at the same time. It is not 
possible to determine the ratio in which energy is 
distributed into several modal shapes. These 
distributions and the quantity of energy absorbed by one 
modal shape of oscillation depends on the distribution 
of nodal zones, distribution of stresses and 
deformations, value of frequencies, etc. The potential 
energy of deformations of each modal shape of 
oscillation and their ratio can be the way of establishing 
the coefficient of transmission of excitation energy from 
one frequency to another. This is certainly one of the 
important details in the examination of mechanisms of 
modal shapes of oscillation of each elastic structure and 
hence of gearbox housing walls. 

 
 
5. INFLUENCE OF DAMPING 

 
The frequency equation is obtained by omitting the 

member which refers to damping forces and the member 
which refers to excitation forces from the equation of 
dynamic equilibrium (equation of oscillation). The rest 
is the frequency equation which enables determination 
of frequencies with which the system or the structure 
can oscillate. A great number of natural frequencies 
which would be noticeable if there were no damping 
and if excitation were appropriate is this obtained. In 
reality, dispersion of energy always exists, and 
excitation can be realized so that only some modal 
shapes are excited. Dispersion of excitation energy can 
be the consequence of damping (conversion of energy 
into heat) or the consequence of certain re-distributions 
whose effect is a reduced response of the system, i.e. 
similar effect as that of damping is realized. 

The mechanism of damping natural oscillation is far 
more complex in comparison with the complexity of 
shapes of deformation and with creation of natural 
frequencies. Modal damping is the consequence of 
internal resistance in the material. However, this 
resistance acts very differently depending on shapes of 
oscillation, frequency, point and way of excitation 
action. That is why results of measurement are different 
depending on how the excitation is realized and how 
and where the response is measured. When diagrams of 
the system response at a certain point are obtained for 
the corresponding mode n, with the frequency nf , the 
non-dimensional factor of modal damping is 

 
2n

nf
σζ
π

= . (3) 

 
Figure 9 gives designations of double strip width of the 
frequency range σ  at the distance 3 dB from the 
extreme value of modal output. The ordinate, i.e. the 
output must be expressed in logarithmic units, i.e. 
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decibels. Thus obtained non-dimensional factor of 
damping can be within the limits ζn=0...1. When this 
coefficient approaches one, damping is great enough to 
prevent response that is modal oscillation with that 
frequency. 

The internal damping b in the material can, in some 
cases, be sufficient to prevent response of a certain 
modal shape, and in another case not. In discrete 
systems, these ratios are the following: 

 2 c
m

ω = ,     2 b
m

ζω = ,     
2

b
cm

ζ = . (4) 

Depending on the rigidity c and the mass m, the 
damping b can be sufficient to create ζ   close to one 
and prevent response of the modal shape, and in other 
case it can be insufficient. 

If the state in elastic structures is similar, the 
following effects are possible. Firstly, by varying the 
ratio of points, directions and frequencies of excitation 
as well as the point and direction of determination of 
response, the diagram shown in Figure 8 can be very 
different. Due to this, the non-dimensional factor of 
damping ζ  varies. By the rule, it is greater in higher 
modal frequencies. If these frequencies have arisen as a 
consequence of greater modal rigidity, then according to 
the given formulae, the coefficient ζ  should be smaller, 
and the response should have greater intensity. But, this 
is not the case in reality. The explanation for this 
illogicality can lie in the formulae (2). If the same 
potential energy (power) nW  is always introduced 
during excitation, in higher frequencies that power can 
result in a considerably smaller response than in a lower 
frequency. Thus reduced value of response in the form 
of the displacement nδ  , according to the diagram in 
Figure 9 and according to the formula (3), gives a high 
value of the non-dimensional factor of damping ζ .. The 
illusion of increased damping which alleriates the 
response of high frequencies of oscillation is thus 
created. It refers to common action of damping and the 
"lack" of potential energy of excitation to provide 
enough energy for increasing the amplitude of 
oscillation in higher frequencies of oscillation. 

dB
3dB2σ

ffn
 

Fig. 9. Empiric determination of modal damping 

In the continuation of these considerations, it should 
also be pointed out that, during noise generation at high 
frequencies, considerably smaller displacements of 
elementary surfaces of the housing walls are necessary, 

so that a certain quantity of acoustic energy could be 
transferred to the environment according to the same 
principle. From this point of view, the magnitude of 
amplitude of displacement during modal oscillation is 
relativised in relation to the frequency. The basic value 
for comparison must be the oscillation energy, which 
means the potential energy of excitation, the kinetic 
energy of vibrations and the acoustic energy of sound 
waves which are transmitted to the environment. 

 
6. PROBABILITY OF MODAL RESPONSE 
 

The previously performed analysis shows that modal 
oscillation is a form of dissipation of absorbed 
excitation energy. The excitation energy pW  is 
dissipated within the elastic structure. One part of this 
energy is converted into heat, and the other part is 
transformed into the energy of natural oscillation. 
Which part will be converted into heat, and which one 
into the energy of natural oscillation depends on a series 
of conditions. It is a relation between excitation and 
natural frequencies, a relation between natural and 
excitation displacements (intensity, place and direction 
of incitation).  It also depends on damping whose effects 
vary depending on modal stiffness and modal masses. 
The number of possible combinations of these 
conditions is large. That fact shows that the probability 
of repeatability of responses at the same excitation is 
small. Each repeated excitation gives a response which 
is, in principle, different from the other responses.  The 
response primarily differs with respect to the relation of 
intensities of natural oscillation for a certain natural 
frequency. Two main groups of reasons for stochasticity 
of modal responses can be mentioned. One of them 
covers stochasticity of combinations of the mentioned 
excitation conditions (intensity, place and direction of 
incitation, frequency, damping, etc.). The other group 
refers to stochasticity in distribution of excitation 
energy to modal shapes of oscillation (natural 
frequency). Excitation energy is spread by means of 
waves of various shapes and speeds (Picture 6). The 
response in the form of natural oscillation is also 
realized by different combinations of these waves. The 
combinations also have to be stochastic.   

The mentioned analysis points to the fact that the 
most probable modal response at a certain excitation can 
be discussed.  The total modal behaviour can be covered 
by the application of stochastic functions and 
parameters for each modal frequency and excitation. 
 
7. CONCLUSION  
 

Modal oscillation of gearbox housing walls and 
other elastic structures is very important for the noise 
emitted by systems into the surroundings. The 
mechanism of excitation of modal oscillation which 
gives answers to many questions that could be classified 
in the following groups is elaborated. 

1. By modal analysis (e.g. by applying the FEM) only 
possible modal shapes can be obtained. In reality, 
conditions for these shapes excitation cannot be 
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fulfilled. Only several out of extremely large 
number of modes are usually active.  

2. Excitation of the chosen modal shape consists of 
selection of point and direction of force action, 
selection of frequency of excitation and selection of 
damping. This mechanism of certain modal shape 
excitation is elaborated. 

3. Modal oscillation can also be excited when not all 
conditions are fulfilled. Excitation energy can be 
transmitted from one frequency to another. Energy 
losses during this transmission are veritable. 

4. In real conditions, the excited modal shapes are the  
result of combination: way of excitation action, 
excitation frequency, damping, transmission of  
exciting energy, etc. These combinations are 
random and modal responses are also random. 
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ПОБУДА МОДАЛНИХ ВИБРАЦИЈА У 
ЗИДОВИМА КУЋИШТА РЕДУКТОРА  

 
Снежана  Ћирић Костић, Милосав Огњановић 

 

Модалном анализом оствареном применом методе 
коначних елемената, по правилу се добија велики 
број модалних облика (фреквенција) сопственог 
осциловања. То су могући облици и фреквенције 
осциловања. У реалним условима побуђују се само 
неки од њих. Утврђивање начина (механизма) 
побуде и услова под којим ће неки модални облик 
бити побуђен је тежишно питање у овом раду. У 
циљу разраде процедуре и услова побуђивања, 
односно у циљу дефинисања правила побуђивања 
коришћени су резултати модалне анализе применом 
методе коначних елемената, коришћењем методе 
директне интеграције у оквиру МКЕ и резултата 
модалног испитивања. Објекат анализе и 
испитивања је кућиште зупчаног преносника. 
Модална активност зидова кућишта је у непосредној 
вези са структуром и интензитетом буке коју 
преносник емитује у околину. Стога су истраживања 
модалних активности од општег значаја за 
моделирање процеса генерисања буке машинских 
система. 

 
 


