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Specific Sliding of Trochoidal Gearing
Profile in the Gerotor Pumps

The present paper considers the kinematic parameters of the trochoidal
gearing in gerotor pumps. The equations for the rolling and sliding
velocity at the contact point of the meshing gear profiles were first
determined and then the equations which define specific sliding of the
trochoidal profile were derived. After that, the conditions for the
phenomenon of the singular points of the specific sliding distribution were
analyzed. Based on the graphic interpretation of kinematic parameters of
trochoidal gear pair profiles in contact, conclusions can be drawn about
the influence of geometrical parameters on the sliding size, and
accordingly on the wear intensity of the tooth profiles too.
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1. INTRODUCTION

The gerotor pumps belong to the group of the
planetary rotating machines whose kinematics is based
on the principle of planetary mechanism with internal
gearing. The number of teeth of external gear is always
higher by one than the teeth number of internal gear. In
this kind of gearing, a moving circle is rolling without
sliding along a fixed circle, with the chosen point
drawing the tooth profile — trochoid [1]. A fixed circle
is, taken conditionally, a pitch circle of gear. The
meshing profile can be represented as the envelope of
successive positions of the basic profile at its relative
moving. Accordingly, the meshing profiles are
presenting the envelope curves, whose geometry is in
accordance with the fundamental law of gearing. In the
general case, the meshing envelope has the cusps which
are the unwanted phenomenon because they cause
intensive wear, and to avoid that phenomenon,
modification of the basic trochoid is introduced.
Trochoidal curves are modified by the increase of the
constant value of 7., which is drifting along the normal

of the given curve. In that way the curve is obtained that
is parallel to the given curve, and because their distance,
measured along the common normal, remains constant
the obtained curve is also called equidistant, and
constant increase of 7. can be defined as the radius of

equidistant.

On the basis of geometrical and kinematic models,
developed in papers [2], [3], [4], the formulae for
calculation of specific sliding and its distribution on the
trochoidal gearing profile will be defined in the present
paper. To this aim, the following coordinate systems are
introduced: generating, attached to generating point,
coordinate system of trochoide, coordinate system of
envelope, and fixed coordinate system. The moving of
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the profile point is observed in relation to different
coordinate systems and with the application of
coordinates transformation it is possible to realize the
most simple equations in matrix form. For kinematical
analysis of two profiles in contact, the moving of the
contact point of these profiles is considered.

2. GEOMETRICAL AND KINEMATIC RELATIONS OF
TROCHOIDAL GEARING

The basic geometrical relations by generating
unmodified and modified epitrochoid are illustrated in
the Fig.1. The epitrochoid is generated by a point D on

the plane attached outside to a circle of radius 7, which

is rolling on the outside of an enclosed circle of radius
r; . According to Fig. 1, the equations of the epitrochoid

are defined in the coordinate system of the epitrochoid
O, x, y,. In Fig 1. it is shown that during the relative

moving of pitch circles, when the point D is generating
epitrochoid, the point P is generating equidistant.

Y A Epitrochoid

Equidistant of
epitrochoid

Referent line

Figure 1: Generating of unmodified and modified
epitrochoid
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The angle signified as J is an angle between the
normal n-n and radius vector of the point D, and can be
defined as leaning angle [5]. Coordinates of the contact
point P in the coordinate system of epitrochoid can be
written as:

X e(coszg+Azcosg)—r, cos(¢+9)
i=|y, |=| e(sinzg+ Azsing)—r.sin(¢+5) |,(1)
1 1

where A is coefficient of trochoid by means of which
relations are defined between the values of the trochoid
radius and the radius of moving circle and A=d/ez,
[6].

Based on geometrical relations from the Fig. 1, the
formula for determination of angle & can be obtained:

sin(z—l) 1)
ﬂ+cos(z—1) v

J = arctan

2

For kinematic analysis of the meshing profiles, the
moving of the point F, on the profile of the internal

gear and of the point P, on the profile of the external
gear (Fig. 2) is considered.

Contact line

contact line

Meshing

profiles Contact line

Figure 2: Kinematic parameters of the trochoidal gear pair

During the meshing the profiles of the trochoidal
gearing are simultaneously rolling and sliding relative to
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each other. Rolling of the profile can be presented as its
rotation around the contact point, the rolling velocity
being equal to the relative velocity of the contact point
v,, of the internal and v,,of the external gear,

respectively. Sliding of the profiles at the contact point
is a consequence of the difference in the relative
velocities intensity of the points on the profiles of the
internal and external gear, respectively.

It is known from the gearing theory that only pitch
circles can realize rolling without sliding. Based on this,
it results that the sliding of profiles is inevitable because
they are formed by the curves which are differentiating
in relation to pitch circles. In this case the sliding
velocity of the meshing profiles at the observed contact
point is velocity of the contact point by the relative
moving of the profiles.

Fig. 2 shows the disposition of the velocity at the
contact point of the two meshing profiles, where [7]:

e Vis vector of the absolute velocity of the
meshing profiles at the contact point P;

v Dt > v pa are vectors of the transfer velocities of
the contact point £, P, ;

e YV, V,, are projections of the transfer velocity

on the common normal and v, v, on the

tangent at the contact point F,, P, ;

e Vv, , Vv, are vectors of the relative velocities of

ra
the contact point £, P, but their intensity is
equal:

1
Vyy = ez(1+/12 +2/1cos,6’)2 - (1+8) 0., (3)
Vg =180, 4)
where:

548 _ (z=1)[1+Acos(z-1)¢]

=__ = 5
d¢ 1+/12+2/100$(z—1)¢ ®

e w.=w —-w, 1is angular frequency of the
epitrochoid in relation to the envelope;
e v, Iis vector of the sliding velocity of the

internal gear profiles in relation to external gear
profiles;

e v, 1is vector of the sliding velocity of the

external gear profiles in relation to internal gear
profiles.

Intensity of the sliding velocity at the contact point
of the profile is:

1
vr=|\7m|= ez(l+/12+2/1cos,6’)5—rc .. (6)

Apart from the sliding velocity, summary rolling
velocity is important for the analysis of the phenomenon
of wear. Intensity of summary rolling velocity can be
written in the form:
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1
vy = ez(1+/12+2/1cos,5)2—rc(l+25') w,. (7)

On the basis of realized equations, the formulae for
determination of the specific sliding of the meshing
profiles at the contact point can be defined.

3. SPECIFIC PROFILE SLIDING

The sliding velocity of meshing profiles during the
motion changes; from maximal value on the top of the
tooth it decreases abruptly to minimal value at the
bottom of the tooth and then increases again. The
presence of sliding in the meshing profiles process
causes their wear, the sliding velocities defining the
wear forces direction and intensity which act on the
meshing profiles of the gears. The wear force is in the
direction opposite to the relative motion velocity at the
contact point. So the direction of the sliding velocity
V;, 1s in agreement with the direction of the wear force
which acts on the profile of the external gear, and the

direction v,, with the direction of the wear force on the
trochoidal profile (Fig. 3).
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Figure 3: Sliding velocities, wear forces and normal forces
in the contact point of the meshing profiles

For the analysis of sliding of the meshing profiles, it
is necessary to know, apart from the sliding velocity at
the contact point, its distribution in relation to
corresponding relative velocity of the contact point.
Relation between the sliding velocity and relative
velocity of the contact point of the meshing profiles is
specific sliding and is given by the formula:

g=to=r ®)
Vit Vit
for internal, and for external gear:
% v

g =t Ve ©

Vra Vra

After the substitution of corresponding formulae for
velocities, the following relation is obtained for specific
sliding on the gear profile of the internal gear:
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1
z(1+ﬂu2 +22cosﬁ)2 -c
& = ] (10)

21442 +24c0s B)2 =c(1+5)

and analogically for the external gear:

z(1+/12 +2ﬂcosﬂ); —c

= s 11
a o (11)
where:
c=le. (12)
e

At the profile point, where the directions of sliding
and relative velocities are in agreement, specific sliding
is positive, and where they are not in agreement it is
negative.

Based on the formulae (10) and (11), it can be
concluded that the values of specific sliding become
infinitely great when the values of relative velocities are
equal to zero. These points are singular for the
distribution of specific sliding of the meshing profiles.
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Figure 4: Polygon of velocities in singular contact point

Analysis is first done of the conditions when
& —ooand when v,, =0, respectively. Starting from

the relation (3) and making it equal to zero we obtain:

z(1+ A% + 24 cos %
( /)

= ) 13
‘ z+ﬂ.2+/1(z+1)cos,b’ (13)

The obtained equation shows that & is not defined

when the value of equidistant radius is equal to the
curve radius of the base epitrochoid [2]. As the value of
equidistant radius is chosen to be less than minimum
value of curve radius of the epitrochoid, it means that
the phenomenon of singularity for & is excluded.
However, to avoid the extremely great values of specific
sliding,, as shown in Fig. 5 (a), it is reccommendable the
choice of the equidistant radius value considerably less
than limited.
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On the profile of external gear there exists the point
with infinitely great specific sliding. The position of this
singular point is defined by critical angle £, , the
common normal of the meshing profiles at the contact
point being in agreement with the contact line on the
kinematic circles (Figure 4.) At this point there occurs
the change of sign of relative velocity and v,, =0,
therefore, based on relations (4) and (5), the critical
value of angle can be determined in reference to:

1
B, = arccos [—zj,

and it is corresponding to the last point of the active part
of profile of the meshing envelope, to the point with the
maximum of the leaning angle J,,y -

(14)

4. MATHEMATICAL MODEL TESTING OF SPECIFIC
SLIDING

On the basis of developed mathematical model
computer programs were designed in a standard
program language Auto LISP for automatic drawing of
the specific sliding diagrams. The programs were tested
for the chosen values of the input parameters, and the
results are given in the diagram form of specific sliding,
depending of the referent rotation angle 3.
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Figure 5: Specific sliding of the contact point of the
modified epitrochoidal profile for the tooth number z =7,
at the different values of coefficient ¢ and trochoid
coefficients: a) A =1.5 andb) 41 =2
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From the Figure 5 it results that on the profile of the
internal gear the specific sliding does not have singular
points. Also, it can be shown that &, grows abruptly on
the convex part of profile and reaches the maximum
value around the point with the greatest curve of the
profile (By,.). Based on the Figure 5, it comes out that
with the same teeth number, increase of the coefficient A
leads to decrease of &, on the convex part of profile,
but on the concave part of profile there comes to its

insignificant increase. The increase of the values of
equidistant radius has the opposite effect.

45 90
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Figure 6: Specific sliding of the contact point of circular
profile for the tooth number z =7, at the different values
of coefficient c and trochoid coefficients: a) A =1.5and b)
A=2
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From the Figure 6 it comes out that with the same
teeth number on the top part of the circular profile,
increase of the coefficient A leads to the growth of the
value of the equidistant radius and has opposite effect.

From the Figure 7(b) it can be concluded that with
the same values of the other parameters, teeth number
has not significant influence on the change of values

Ea-

45 90 13s B g0
| | |
0
=3 =2
24
-4
b)

Figure 7. Specific sliding of the contact point of the circular
profile: a) for the teeth number z =7, c = 3¢ and different
values of coefficient 4 ; b) for the different teeth number,
A =1.5 and different values of coefficient c
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In general, based on the graphical interpretation of
the obtained results, shown in the Figures 5-7, it can be
concluded as follows:

o Teeth number has not significant influence on the

specific sliding;

o With the increase of coefficient of trochoid A
the specific sliding on trochoidal profile grows,
and on the circular profile it falls;

o Increase of the equidistant radius leads to the
decrease of &,, and also to the increase of &,
however, on the convex part of profile this
influence is not significant.
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Figure 8: Diagram of kinematic parameters for one of the
chosen gear pairs

For one of the chosen gear pairs the parameters of
the meshing profile were determined and presented in
the Figure 8, on the basis of which it can be concluded
as follows:

» Rolling velocity of the contact point of the trochoidal
profile v,, has the trend of monotonous decrease to
the value corresponding to the critical angle /3, and

then it abruptly increases to the value corresponding
to the bottom of the profile;

« Rolling velocity of the contact point of the circular
profile v,, is characterized by attaining zero value at

the point determined by the critical angle £, when it
comes to the change of the velocity sign;
o Sliding velocity v, decreases monotonously from the

maximal (on the top) to the minimal value (at the
bottom of the profile);

o Summary rolling velocity vs increases abruptly from

the point corresponding to angle 3, ,where it becomes
equal to sliding velocity and rolling velocity of the
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contact point of trochoidal profile, respectively
VE(IBO):VV (ﬁO):vrt (130);
o Specific sliding &, has a trend of monotonous

increase to the attaining of local extremum (around
the point with the minimum radius of the curve
profile), and then to the abrupt fall, approaching zero
value at the bottom part of the tooth;

o Specific sliding &, decreases monotonously from the

value corresponding to the moment of contact of two
top profiles to the attaining of local extremum (around
the point with the minimum radius of the curve
profile), and then asymptotically increases to oo,
when a singular point appears. During further
meshing, £, changes the sign, and from -e

continually increases to the value corresponding to
the moment of contact of the top and bottom part of
tooth.

5. CONCLUSION

The paper gives a detailed analysis of specific
sliding at the contact points of the meshing profiles, as
well as the relations for its determination. Specific
sliding is one of the more important limiting factors in
the choice of the geometrical parameters of the
conditions for appearing friction and wear of the contact
gear surface. Based on mutual relations of the sliding
and rolling velocities values, conclusions can be made
about the changing of the friction conditions during the
meshing of profiles.

On the profile part for Sy <f<fy; the

development of the fatigue pitting is expected. On the
other part of the profile the sliding velocity is greater or
equal to the summary rolling velocity, so that the
decrease of the lubricant layer thickness, increase of
temperature in contact and risk of the scoring
appearance are expected on this part.
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NOMENCLATURE

O,x1 coordinate system attached to the
generating point

O, x, v, coordinate system attached to the
internal gear
O,x,y, coordinate system attached to the

external gear

Oy xyyy fixed coordinate system

0,,0, center of the internal gear and the
external gear, respectively

C pitch point

D generating point

z teeth number of the external gear

z—1 teeth number of the internal gear

e center distance between the internal

and external gear (eccentricity)

7, radius of pitch circle of the internal gear
n=e (z - 1)

7, radius of pitch circle of the external gear
r, =ez

v, radius of equidistant

c equidistant coefficient

d distance joining the generating point D

B, P, contact point on the profile of the internal

gear and the contact point on the profile of
the external gear, respectively

v absolute velocity of the meshing profiles at
the contact point

Vit> Vig relative velocities of the contact point P,

and P,, respectively

Vpt>Vpa transfer velocities of the contact point P,
and P,, respectively
v, sliding velocity
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Vs summary rolling velocity

F, contact force

F, wear force

Greek symbols

[ generating rotation angle

£ referent rotation angle

A trochoid coefficient

0 leaning angle

o rotation angle of the internal gear about its
own axis

0, rotation angle of the external gear about its
own axis

@, angular frequency of the internal gear
about its own axis

@, angular frequency of the external gear
about its own axis

, relative angular frequency

& specific sliding on the tooth profile of the
internal gear

&, specific sliding on the tooth profile of the

external gear
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CIHEIIUO®OUYHO KJIN3AIBE ITIPOOUJIA
TPOXOUJHOTI O3YB/BEBA KO/J{
TFEPOTOPCKHUX ITYMIIN

HNBanosuh Jlozuna, Jocugosuh Januna

Y pamgy cy pasMaTrpaHd KHHEMAaTCKH IapaMeTpH
TPOXOUAHOT 03yOJbera KOJ TEPOTOPCKHX ITyMIIH.
Hajmpe cy onpelhern m3pa3u 3a Op3uHY KOTpJbama U
Op3uHY KITH3amba y TAYKH JOIUpa CIPETHYTUX Mpodua,
a 3aTUM Cy M3BEICHHM U3pasH Koju JeduHumry
cnemuduuHo Kiu3ame npoduna. AHaIM3UpaHU CY
YCIOBH 3a II0jaBy CHHTYJIapHMX Tadaka pacrozene
cnemuduyHOor  KiM3aka. Ha  ocHOBY rpaduuke
MHTEpPIpEeTalje KHHEMAaTCKUX Mapamerapa CIIPerHyTHX
npoduiia TPOXOUAHOT 3yIMYacTOr Mapa MOTY Ce€ M3BECTH
3aKJbYUlIM O YTHLAjy T'€OMETPHjCKHX Iapamerapa Ha
BEIMYMHY KIW3amba M, NPeMa TOME, Ha WHTEH3UTET
xabama npodua 3ydara.
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