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The Comparison of the Accuracy of 
two Mathematical Models, concerning 
Dynamics of the Slewing Cranes 
 
Nowadays the mathematical simulations of the real-world problems can be 
and are expected to be very accurate. The mathematical models used for 
such simulations must be therefore of the appropriate complexity. On the 
other hand the number of degrees of freedom and related number of the 
equations of the model must be preserved on the fairly low level, insuring 
the acceptable processing times which are, of course, different for different 
purposes of the simulations. In the paper the basic and the enhanced 
mathematical models of a slewing crane during slewing motion are 
presented and the development of the enhanced model from the basic 
model is described including the procedure of reduction of the degrees of 
freedom. The results of the simulations and of the measurements are 
compared and in the case of the enhanced mathematical model an obvious 
improvement of the agreement is estimated.    
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1. INTRODUCTION 
 

A study of slewing cranes and possible 
improvements to their performance is a study with a 
real-life application, because these types of crane are 
widely used in everyday transport operations. The 
operation of slewing cranes involves three main 
motions: the slewing motion of the jib, the radial 
movement of the load suspension point and the hoisting 
of the load. In this paper, the slewing motion of a crane, 
during which the spatial motion of the suspended load is 
introduced [1], was looked at in more detail. 

The majority of published papers and conference 
contributions on payload dynamics deal with control 
strategies and techniques for load-swing suppression 
where the mathematical models [2-8] (for the list of 
other models see [9] and [10]) can be simplified to a 
great extent.  

Although the dynamic loads caused by the crane’s 
accelerations and decelerations represent an important 
part of the loadings of the crane’s steel structure [10], 
studies of the dynamics of the payload and the influence 
of payload-swinging on the loading (either those that 
consider the linear motion of the load suspension point 
[11-16] or those that consider the curved motion of the 
suspension point [17-24]) have not been investigated to 
the same extent.  

In order to determine the dynamic loads, more 
complex models must be used. Recent reports suggest 
the use of more complex models for control purposes 
too [10].  For these reasons, a mathematical model of a 

general-type slewing crane was developed [9], taking 
into account most of the frequently neglected features.   

In the paper the basic and the enhanced 
mathematical models of a slewing crane during slewing 
motion are presented and the procedure of the 
development of the enhanced model from the basic 
model is described as is the procedure of reduction of 
degrees of freedom. The results of the basic and 
enhanced mathematical model are compared with the 
measured results and an obvious improvement of the 
agreement of the simulated and measured results was 
estimated. 

 
2. THE MATHEMATICAL MODELS 
 
2.1 The basic mathematical model 
 

The basic non-linear mathematical model of the load 
sway during the slewing motion (Fig. 1) which has no 
restriction with regard to small angles of the load sway 
is briefly introduced. For details see [9]. The model is 
based on the following assumptions: the influences of 
the masses of the crane’s structure are represented by 
point masses im  and the moment of inertia 1J ; the 
elements connecting the masses are weightless. Their 
stiffness and damping [25] are represented by the 
corresponding stiffness and damping coefficients ik  
and id ; the time-velocity profile of the motor’s driving 
shaft 0 ( )tϕ is used as a system input; the friction in the 
slewing ring is represented by the moment of friction 

FRM ; the air resistance is represented by the forces of 
the proper magnitudes and directions acting on the point 
masses 2m  and 3m . 

Second-order Lagrange equations were used for 
deriving the system of seven non-linear differential 
equations of motion with non-constant coefficients. The 
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system was solved numerically by using the Runge-
Kutta method.  

 

Figure 1. The basic mathematical model of a general-type 
slewing crane 

For the numerical solution of the basic non-linear 
mathematical model a computer program was 
developed. In order to confirm the model, also a 
materialized model of a crane was built [9] and the 
measurements of seven different quantities were carried 
out (the radial and tangential angle ( Rα and Tα  in Fig. 
1) of the swinging of the load were measured at MP 1 
and 2 (see Fig. 2), the bending moments on the jib, 
around the y-axis and around the z-axis (MP 3 and 4), 
the torsion moment on the torsion shaft (MP 5), the 
angles of rotation of the driving shaft (MP 7) and of the 
slewing platform (MP 6)).  

 

 

Figure 2. The materialized model of a slewing crane 

The results of the simulations (with the input data 
from the material model) and measurements were 
compared. Although the agreement of the results is 
fairly high, especially when the qualitative agreement is 
considered, the quantitative differences of some of the 
peek values show that the model should be enhanced 
(see next chapter and [9]). 
 

2.2 The enhanced mathematical model 
 

In this sub-section the enhanced non-linear 
mathematical model of the load sway during the slewing 
motion (Fig. 3) is briefly introduced. The model was 
designed on the basis of the experiences with the basic 
mathematical model and the measurements. 

The differences of the results of the individual 
quantities were studied carefully and the conclusion was 
made that the description of the tower of the crane and 
the description of the effects of the counter-weight must 
be enhanced. For this reason the moment of inertia 4J  
and the point mass 5m  were added at the top of the 
tower (see Fig. 3). 

 
Figure 3. The enhanced mathematical model of a general-
type slewing crane 

By these changes, the number of the degrees of 
freedom of the model would increased by four and 
therefore the number of the equations of motion would 
increase respectively by four from 7 to 11. This increase 
in the number of equations would more than doubled 
the computing time of the numerical solution and 
therefore the reduction of the degrees of freedom was 
implemented in such a way that those with less 
influence were eliminated. 

 
2.3 Determination of the influence of the individual 

parameters and selection of the insignificant 
degrees of freedom 

 
For the estimation of the influence of the individual 

degrees of freedom the following procedure was 
implemented. The input data from the real-world tower 
crane was used. The corresponding parameters were 
selected, representing the properties of the crane’s steel 
structure: 
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• the stiffness characteristics 1k  and damping 
characteristics 1d  are the properties of the 
connecting elements between the motor shaft and the 
rotating platform in terms of torsion (around the z-
axis). Both of them are non-linear;  

• the stiffness coefficient 2k  and damping coefficient 

2d  are the properties of the rotating platform (or 
tower) and the bending stiffness of the jib, both 
around the z axis. These influences are combined 
together because both of them contribute to the shift 
of the mass 2m  in y direction of the local co-
ordinate system xyz ;  

• the stiffness coefficient xk  and damping coefficient 

xd  are the properties of the rotating platform (or 
tower) in terms of bending around the y axis and the 
stiffness of the jib in terms of the tensile deformation 
in x direction. These influences are combined 
together because both of them contribute to the shift 
of the mass 2m  in x direction of the local co-
ordinate system xyz ;  

• the stiffness coefficient zk  and damping coefficient 

zd  are the properties of the rotating platform (or 
tower) in terms of the tensile deformation in the z 
direction and the stiffness of the jib in terms of the 
bending around the y axis. These influences are 
combined together because both of them contribute 
to the shift of the mass 2m  in z direction of the local 
co-ordinate system xyz ;  

• the stiffness coefficient Lk  and damping coefficient 

Ld  are the properties of the payload-carrying rope 
in terms of the tensile deformation along the rope 
length; 

•  the coefficient dar 2
i of air resistance on mass 2m  in 

i -direction ( , ,i x y z= ) and the coefficient dar 3 of 
air resistance on mass 3m ; 
A wide variety of simulations with different 

combinations of the input parameters was executed. For 
every combination considered, more of the simulations 
were calculated where the observed parameter vary 
from the value (close to) zero to the double the nominal 
value (200%) whereas the other parameters stay 
constant. 

The following cycle was observed: constant 
acceleration ( 0 constϕ = ) of rotation from 0 to 7 
seconds, rotation with the constant rotating speed 
( 0 constϕ = ) from 7 to 19 seconds, constant 
deceleration from 19 till 26 seconds and finally 
observation of the cranes structure after the stopping of 
the rotation ( 00 =ϕ ) from 26 till 100 seconds. 

The results are presented in 3-D graphs (Figs. 4 till 
9) where the following quantities are plotted on the 
vertical axis against the time and against the changing 
value of the observed parameter: load swinging angle in 
the radial Rα  and tangential Tα  directions, the bending 
moment in the jib around the z-axis ( zM ), the bending 

moment in the jib around the y-axis ( yM ) and the 

torsion moment in the driving shaft ( tM ).  
When the stiffness characteristics k1 is varied, the 

following changes are observed. The values of the radial 
swinging angle αR (Fig. 4) are increasing in the phase of 
acceleration and are decreasing in the phase of rotation 
with the constant speed when the stiffness k1 is 
increasing. After the rotation stops the strong increase 
of the swinging angle is observed when the stiffness 
increases from 50 % to 100 % of the nominal value. 
Further increasing of the stiffness causes the decreasing 
of the swinging angle. 

 
Figure 4. The load swinging angle in the radial direction αR, 
when the influence of the parameter k1 is observed 

The values of the tangential swinging angle Tα  
(Fig. 5) are, similar to the Rα , increasing in the phase 
of acceleration when the stiffness 1k  is increasing. 

 
Figure 5. The load swinging angle in the tangential 
direction αT, when the influence of the parameter k1 is 
observed 

The presented graphs clearly show the influence of 
the parameter 1k . The influence is even more 
noticeable, when the internal moments are observed. As 
an example  the bending moment zM  is introduced in 
Fig. 6. 

In the next few figures graphs of characteristic 
examples are shown for the other observed parameters. 
In Fig. 7 an internal bending moment zM  is introduced 
for the case of variation of the parameter 2k . The 
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influence of the variation is the most significant for the 
values of parameter around the nominal value. 
Therefore also this parameter must not be excluded. 

 
Figure 6. The bending moment zM , when the influence of 

the parameter k1 is observed 

 
Figure 7. The bending moment zM , when the influence of 

the parameter k2 is observed 

In Fig. 8 an internal bending moment zM  is 
introduced for the case of variation of the parameter zk . 
The influence of the variation is noticeable for the 
values of parameter lower than nominal value. For the 
nominal value of the stiffness zk  and higher values the 
influence of the variation is insignificant.  

 
Figure 8. The bending moment zM , when the influence of 

the parameter kL is observed 

The same insignificant influence of the variation is 
noticeable on the graphs (not shown) of other output 

quantities as are Rα , Tα , yM  and tM . For this reason 
the assumption of non-deformability of the crane’s 
tower in  z-direction is appropriate. 

Similar graphs can be shown for the parameters xk  
and Lk  and the same conclusion can be made about the 
non-deformability of the jib in x-direction and of the 
load carrying rope along its lenght.  

The influences of the damping coefficients and 
coefficients of the air resistance ( 1d , 2d , xd , zd , 1d , 
dar 2

i and dar 3) are also negligible. The sample graph is 
shown in Fig. 9. 

The introduced graphs clearly show the influence of 
changes of the individual parameters on the dynamic 
response of the crane’s structure. Therefore these graphs 
can be used as a tool for the selection of the parameters 
which have enough insignificant influence that they can 
be neglected. 

 
Figure 9. The load swinging angle in the radial direction αR, 
when the influence of the parameter d2 is observed 

On the basis of this selection the following degrees 
of freedom are chosen to be excluded from the 
enhanced model: extension of the tower in z direction 
(parameters zk  and zd ), extension of the jib in x 
direction (parameters xk  and xd ) and extension of the 
load carrying rope (parameters Lk   and Ld ). 

With this action the number of degrees of freedom 
and related number of the equations of the enhanced 
mathematical model is preserved on the fairly low level 
(11 3 8− = ) and the acceptable processing times is 
ensured without losing the accuracy. 

  
3. THE RESULTS 

 
In this chapter the results of simulations with the 

basic and with the enhanced mathematical model are 
shown in the single graphs together with the measured 
results enabeling direct comparison. The main aim of 
the comparison in this case is to confirm the hypothesis 
that the enhanced mathematical model (Fig. 3) is more 
accurate than the basic model (Fig. 1). Therefore, both 
mathematical models were used for the simulations and 
the physical model was used for the measurements. To 
allow a comparison between these three models, the 
input data from the physical model were used for the 
simulations. 

The following part of the crane's working-cycle was 
observed: the acceleration of the rotation of the jib from 
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zero to the maximum angular velocity in time 1t ; the 
rotation of the platform with constant angular velocity 
in time 2t ; the deceleration of the platform's rotation 
from the maximum angular velocity to zero in time 3t ; 
the observation of the crane after the stopping of the 
rotation in time 4t . A payload was suspended from the 
jib during the entire cycle. 

The simulations and the measurements were carried 
out with a range of load masses ( 20 Qm =  to 50 kg), 

different radii of the suspension point ( 0 1R =  to 2 m), 
and different lengths of the load-carrying rope 
( 0 0.5L = to 2 m). The effects of the various types of 
acceleration and deceleration on the trajectory of the 
suspended load were also studied, including the changes 
to the acceleration time and the average acceleration. 
The results for four examples, defined by tables 1 and 2, 
are shown in the figures below. From the chosen length 
of the load-carrying rope 0 2 mL = , the period of 
oscillation of the suspended payload, looked at as a 
mathematical pendulum, can be calculated as 

2.84 sQt = . 

Table 1. Selected values of the acceleration time t1 

 Exam- 
ple 1 

Exam-
ple 2 

Exam-
ple 3 

Exam-
ple 4 

1t  
[s] 

/ 4Qt =

0.71 
/ 2Qt =

1.42 
Qt =  

2.84 
3 / 2Qt =

4.26 

Table 2. Values of the other parameters 

Parameter Value 
2t  8 s  
3t  1t=  

1 2 3 4t t t t+ + +  14 s (18 s) 
0.maxϕ  0.738 rad/s 

Qm  50 kg 

0R  2 m 

0L L0 2 m 
acceleration/ 
deceleration type constant value 

 
From Figs. 10 and 11 the pendulum motion of the 

suspended payload for Example 1 can be seen. Figures 
12 to 14 introduce the crane's dynamic loading. In these 
figures, and in Figs. 15 to 20, the thin, continuous line 
represents the graph of measured values, whereas the 
bold continuous line represents the simulated data, 
created with the enhanced mathematical model. The 
data created with the basic mathematical model are 
marked with an asterisk and represented on the graph 
with a dashed line. The graph representing the angle 0ϕ  
of rotation of the driving shaft is also shown, 
introducing the phases of the input angular velocity 

( )0 tϕ . 
In Fig. 11 the tangential angle αT of the load sway is 

introduced. This angle can be compared with the in-
plane load sway under the conditions of the translation 
of the payload's suspension point. In the acceleration 
phase a degree of payload lag can be observed. The 

maximum lag is observed immediately after this phase. 
The simulated value of the lag is 25.4% greater than the 
measured one. This is an improvement in comparison 
with the previous model, where the deviation was minus 
6.5%. 
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Figure 10. Radial (αR) angle of the load sway with respect to 
time for Example 1 
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Figure 11. Tangential (αT) angle of the load sway with 
respect to time for Example 1 

The quantitative improvement is upgraded because 
the actual simulated value is greater than the measured 
one, so representing a conservative solution. The phase 
of moving with a constant speed is denoted by 
oscillations, the mean value of which is close to the 
static equilibrium. In the deceleration phase the payload 
is forestalling the suspension point, and finally, after the 
rotation stops, damped oscillations develop around the 
static equilibrium. The maximum positive peak value is 
encountered right after the rotation stops. The simulated 
value of this peak is nearly the same as the measured 
one (-3.0 %). In the case of the basic model, the 
deviation is much bigger. 

In Fig. 10 the radial angle Rα  of the load sway is 
introduced; this angle is initially a consequence of the 
centrifugal force, which is caused by the rotation of the 
crane. The radial angle Rα  is therefore unique to 
slewing cranes. The oscillation of its value with respect 
to time is a consequence of the fact that this angle is 
coupled with the tangential angle, and is therefore 
influenced by it. In addition, the radial angle also has an 
influence on the tangential angle. In the first moment of 
the acceleration phase, an apparent shift of the payload 
in the radial direction is encountered (a negative value 
of Rα ). This is the result of the rotation of the local 
coordinate system ξηζ  and of the movement of its 
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origin, which is located at the payload’s suspension 
point. This effect is noticeable in the measured and in 
the enhanced simulated cases. The difference in the 
peak values is 7.5%. In the case of the basic simulation 
the apparent shift was not detected. The positive peak 
value of the radial angle ( Rα ) is achieved in the phase 
of rotation with constant speed. The comparison shows 
that the simulated peak value is about 40% higher than 
the measured one. The quantitative difference is, in this 
case, greater than it is in the case of the basic 
mathematical model. On the other hand, the simulated 
value is now greater than the measured one, so 
representing a conservative solution. In addition, the 
overall qualitative and quantitative agreement is much 
better in the case of the enhanced model. The 
comparison shows that there is no phase shift between 
the simulated and measured curves. In addition, the 
maximum negative peak value, which occurs after the 
deceleration, differs by 16.8% in comparison with the 
measured one, whereas the difference in the case of the 
basic mathematical model is 57.7%.  
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Figure 12. Bending moment in the jib around the z-axis 
( zM ) for Example 1 
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Figure 13. Torsion moment in the driving shaft ( tM ) for 
Example 1 

The bending moment in the jib around the z-axis is 
shown in Fig. 12, and the torsion moment in the driving 
shaft is shown in Fig. 13. The graphs for both moments 
are similar because they are both caused by horizontal 
inertial forces acting in a tangential direction. An 
improved qualitative agreement between the curves is 
observed in the case of the enhanced mathematical 
model. The quantitative agreement is not as good. The 
difference in the maximum negative peak value is 
bigger than in the case of the basic model; however, in 

the case of the maximum positive peak value this 
difference is almost unchanged. The results in the case 
of the enhanced mathematical model show higher 
values of the moment than is the case with the 
measurements and are therefore of a conservative 
nature.  

The bending moment in the jib around the y-axis is 
shown in Fig. 14. Its mean value is defined by the 
weight of the payload and the weight of specific parts of 
the crane. The oscillation of its value with respect to 
time is a consequence of the dynamic effects of the 
payload's spatial sway in the foreground. A very much 
improved qualitative agreement between the curves is 
clear in the case of the enhanced mathematical model. 
In addition, the quantitative agreement is also improved. 
The maximum difference in the peak values, which 
appear right after the acceleration phase, is 8.5%, 
whereas the difference in the peak values after the 
deceleration phase is almost zero. The conservative 
nature of the results is also clear.  
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Figure 14. Bending moment in the jib around the y-axis 
( yM ) for Example 1 

In the following figures the results for Examples 2 to 
4 are shown. Because they are more interesting, only the 
graphs of the bending moments are presented. For all 
the graphs, very similar remarks to those used for 
Example 1 could be written. A significant improvement 
in the qualitative agreement of the results is 
supplemented by a quantitative improvement and the 
conservative nature of the simulated results. In the case 
of the bending moment in the jib around the y-axis (My), 
another improvement is noticeable (Fig. 16): the 
definition of the moment's static value is enhanced and 
the error in its initial value is eliminated. 
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Figure 15. Bending moment in the jib around the z-axis 
( yM ) for Example 2 
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Figure 16. Bending moment in the jib around the y-axis 
( yM ) for Example 2 
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 Figure 17. Bending moment in the jib around the z-axis 
(Mz) for Example 3 
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Figure 18. Bending moment in the jib around the y-axis 
( yM ) for Example 3 
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Figure 19. Bending moment in the jib around the z-axis 
( zM ) for Example 4 
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Figure 20. Bending moment in the jib around the y-axis 
( yM ) for Example 4 

 
4. CONCLUSION 

 
Basic and enhanced mathematical models of a 

slewing crane are briefly presented. The enhanced 
model is developed on the basis of experiences with a 
basic model. Two additional mass elements enable a 
more realistic mathematical description of this real-
world problem. An increase in the number of degrees of 
freedom of the model was prevented by neglecting 
several of the less significant influences. Lagrange 
equations were used to derive the equations of motion, 
and a computer program was developed to solve these 
equations. 

For the purpose of evaluation, measurements were 
made on the physical model. A detailed comparison was 
carried out between the measured results and the results 
of the simulations with the basic model and the 
enhanced mathematical model. 

A large overall improvement in the qualitative and 
quantitative matching of the results for the case of the 
enhanced mathematical model was established. The 
improvement in the accuracy of the results is noticeable, 
especially during the deceleration phase of the crane's 
rotation, where in the case of the basic model larger 
differences were encountered. Now, the simulated 
results are also conservative in nature, because the 
simulated loads are very close to or bigger than the 
measured results. The biggest improvement is 
encountered in the case of the bending moment in the 
jib around the y-axis ( yM ), where its dynamic 
behaviour is much more realistic and the shift in its 
initial value is eliminated.    

As was the case with the basic mathematical 
model, also the newly derived model has no restrictions 
in terms of small angles of the load sway. This makes it 
possible to study of the crane’s behaviour under extreme 
conditions, as is the case in the examples shown, where 
the values of the radial angle ( Rα ) go up to 27O. 

By deriving the enhanced non-linear mathematical 
model and confirming its superiority in comparison with 
the basic one, the importance of selecting the 
appropriate model is shown. For an additional 
improvement of the results, efforts should be directed to 
redefine the elastic and damping properties of the 
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structure. The non-linear characteristics of the elements 
connecting the driving motor with the rotating platform 
should be in the first plane. 
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