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Empirical Control Strategy for
Learning Industrial Robot

Today’s industrial robot systems intensively include external sensors like
cameras used for identification of objects in the working environment of
industrial robot. Including cameras in the system of an industrial robot,
the control problem of such learning industrial robot is set. Using
empirical control strategy based on application of artificial neural
networks system, the learning industrial robot can realize adaptive
behaviour in the sense of flexible adjustment to changes in the working
environment. Unlike natural systems which could learn on the basis of
experience, artificial systems are thought to be unable to do so for a
long time. However, the concept of empirical control realizes the ability
of machine learning on the basis of experience. This paper aims to show
that it is possible to realize the empirical control strategy for learning
industrial robot using camera and system of artificial neural networks.
Results obtained by the system of neural nets have shown that the robot
can move the end-effector to the desired location of the object, even in
the case where the location differs slightly from the learned patterns.

Keywords: Learning industrial robot, Robot vision system, Empirical

control strategy, Artificial neural networks

1. INTRODUCTION

Robot vision systems are available from major robot
vendors that are highly integrated with the robot’s
programming system. Capability ranges from simple
binary image processing to more complex edge and
feature based systems capable of handling overlapped
parts [1,2]. The feature in common with all of these
systems is that they are static. Robots that incorporate
vision system are usually designed for task level
programming, and such systems are generally
hierarchical. The highest level is capable of reasoning
about the task. So, visual servoing is no more than the
use of vision at the lowest level, with simple image
processing to provide reactive or reflexive behaviour.
The task in visual servoing is to control the pose
(position and orientation) of the robot’s end-effector,
using information from camera (features), extracted
from the image. The camera may be fixed or mounted
on the robot’s end-effector. If the camera is mounted on
the robot’s end-effector, there exists a constant
relationship between the pose of the camera and the
pose of the end-effector. The image of the object is a
function of the relative pose between the camera and the
object. The distance between the camera and object of
interest is referred to as depth or range.

Some relevant poses for experimental system of the
learning industrial robot used in this paper are shown in
Fig. 1. Experimental robot vision system is created to
carry out the assembly task. This experimental system
consists of three major components: IBM PENTIUM
PC platform equipped with a data acquisition card
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(,,AVIATOR” - FAST), ,,Lynxarm” anthropomorphic
robot with four degrees of freedom, and ,,Sony” CCD-
TR512E camera. Thus, camera captures a two-
dimensional image including objects 4 and B. After
objects identification and determining of their poses,
robot has to fulfill the assembly task, which considers
grasping of the object 4 and placing the same object on
the object B.

Z

w.es.
A

Figure 1. Experimental robot vision system

External sensors (cameras) are used to obtain the
location of objects. The use of vision to acquire the
location of objects requires robust recognition
algorithms [1,2,4]. The camera captures a two-
dimensional image, from which the vision processing
software must extract image features. These features are
compared to models of the objects to identify the object
of interest, and the location of robot’s grasp points.
Visual servoing approaches based on neural networks,
and general learning algorithms, have been used to
achieve robot hand-eye coordination [2,11,16]. Camera
observes objects and the robot within the workspace,
and robot vision system can learn the relationship
between robot joint angles and 3D pose of the end-
effector. Such systems require training, but the need for
complex analytic relationships between image features
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Figure 2. Binary images of objects of interest

and joint angles is eliminated. So, this paper presents
empirical control strategy for learning robot based on
the prototype artificial neural network system developed
to perform pattern recognition, i.e. identification of
objects, and to determine the robot joint angles.
Artificial neural network system consists of two neural
nets: ART-1 which is used for identification of objects,
and feedforward which is used to determine the robot
joint angles.

2. IMAGE PRE-PROCESSING

The image obtained by the camera has a resolution
of 640 by 480 pixels and 2* colours, and a buffer store
of 300 Kbytes per image. Information about colour is
stored as well as intensity information. This image is
changed in two steps. The first step considers
transformation of the image into grey-scale, and the
second one transforms the image into binary image
consisting of pixels that are either black or white. To
obtain a good binary image, a high contrast between the
object and its background is established. The camera is
placed so as to point straight down to get the best view
of the object.

Today, most systems capture grey-scale information
and, if a binary image is required, they generate that
image by comparing it pixel by pixel to a threshold
value [1,2]. This is an advantage of grey-scale vision as
it allows the binary threshold to be easily adjusted. The
advantage of this technique is that the threshold level
can be set to discriminate between the object in the
foreground and the background. Threshold level in our
case is usually set to 128 (maximum 255). Placing the
threshold in the valley produces the closest match to a
binary vision with a good lighting. Based upon this
procedure, the filtration of the image is done as follows:

Fori=0 To 639
For j=0 To 479
k = BackInGrey(aNizl(j, 1))
If k >= nThresholdLevel Then
aNiz2(j,1) =1
Else
aNiz2(j,1) =0
End If
Next j
Next i,
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where aNiz1 is 2D matrix with the colour, and aNiz2 is
2D matrix with black/white region.

The next step in the image pre-processing procedure
defined the subfield of the image, including part 4 and
part B. The binary images of parts 4 and B are obtained
in a subfield of 80 by 80 pixels, as shown in Fig. 2.
Now, the vision system wants to recognize objects of a
known shape in any position and orientation in the
image. Also, the vision system wants to obtain their
positions and orientations. Features that capture this
information are the centroid, the moments, and angle 6.
To determine these data, the following equations are
used:

AREA:
2 & 1, aNiz2(x,y) =1
A= B(x,y), B(x,y)= 1
Z Z (x.7), B(x,y) {O’ aNiz2eyy=0 D
x=l y=k
CENTROID:
C 1 n m
Ky =— >3 x-B(x,y),
x=l y=k
C 1 n m
Ky == y-B(x,y) )
4“4
x=l y=k
MOMENTS OF INERTIA:
1 n m
L==22 (y-K$) B(x,) 3)
x=l y=k
1 n m C 2
Iy:Z-ZZu—Kx) B(x,y) (4)
x=l y=k
1 n m C C
Ly=—2 2 (=KOW=K{)B(y) ()
x=l y=k
ORIENTATION:
2-1
0= lalrctg ad (6)
2 I, -1,

These data are used as input values of the
feedforward neural network discussed in the following
sections of the paper. Binary images of objects 4 and B
obtained by image pre-processing present input vectors
for two ART-1 neural networks (for each object
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separately), which carry out the identification of objects
A and B.

3. IMAGE UNDERSTANDING USING ART-1
SIMULATOR

Artificial Neural Network ART-1 (Adaptive
Resonance Theory neural network paradigm ART-1)
was introduced by Carpenter and Grossberg (1987) on
the basis of the idea of coding and competitive learning
[6]. The mechanism of recurrent connections between
the competitive and the input layer is used in ART-1
ANN for the retention of old when learning new
information. The architecture of ART-1 neural network
is given in Fig. 3. Two main ART-1 neural network
subsystems are the attentional subsystem and orienting
subsystem. The attentional subsystem includes F; and
F, layers which by activation of their neurons (nodes)
create ANN associative conditions in a short duration
(Short Term Memory - STM) for each input pattern.

Attentional Subsystem Orienting
GAIN F, Layer Subsystem
CONTROL (G)
NG R
102000000,

BOTTOM - UP  LTM Signal
Similarity
Y Check
Iy kD +(A)

T‘OP—DOW'N L™ S
D
OOOOOOOD
GAIN A+  F Layer

CONTROL (G)

+ Excitatory - Inhibitory 4
Connection Connection

INPUT VECTOR ?K

Figure 3. ART-1 System diagram

The weights associated with bottom-up and top-
down connections between F; and F, are called Long
Term Memory (LTM). These weights are the encoded
information that remains a part of the network for an
extended period. The orienting subsystem is needed to
determine whether a pattern is familiar and well
represented in the LTM or if a new class needs to be
created for an unfamiliar pattern.

For each neuron in F| layer we have three possible
input signals: input pattern (), vector gain control
signal (G) and the pattern created from F, layer (7, T )

and two output signals. The neuron in the F; layer

becomes active when at least two, out of three possible,
input signals are active ("2/3 rule"). As far as F; layer
neuron is concerned there exists similar condition of
input and output signals.

Input vector [, is given in a binary form and the
number of neurons in F; layer usually coincides with
the input pattern dimensions. The connections between
F; and F, layers are given through weight vector
Wi=[wj,wy ... w, ;1. The Fy layer also forms a

representative or an exemplar pattern
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T, =[tl,j,t2’j,...,tp,j]. When an input vector
Ij = [i1,0p,...,i,] 1s presented at the F; layer of the

ART-1 network, the gain vector G is initially set to
G =[1,1,...,1]. The output neurons compete next with

one another to respond to the input vector /;, and the

output neuron £* which has the closest weight vector to
the input vector identified as:

Wk*'[k: .max (Wj[k) (7)
Jel..q

Dot product is used as the metric to identify the
weight vector closest to the input vector. After

identifying the output neuron K, T i s fed back into
the input layer, and if any of the T i* components is ',
the gain vector G is then set to G =[0,0,...,0]. By the
"2/3 rule" the output of the Fy layer is then (/) AND
(T, e ), a new vector, whose elements are obtained by
applying the logical AND on the -corresponding
elements of the two vectors, giving the following
estimate of the similarity between 7,» and /; :

number of s in (I;) AND (T+)

number of s in I},

®)

similarity =

This similarity measure is compared with a
prespecified threshold called the vigilance parameter p.
If the computed similarity measure is greater than p,
then the stored representative pattern associated with the

output neuron K is changed to (/) AND (7T, e ). The

W is also changed to:

L ¢
* L-1+ Z C;
i=L...,p

)

where C; is the i-th component of (/) AND (Tk* ), and

L is the constant (usually set to 2). If the similarity is
not greater than the prespecified vigilance parameter,
then the output neuron with the next highest W;-I; is

selected, and the same procedure is repeated.

So, ART-1 neural network paradigm is selected for
identification of objects [8,10,12,14]. This architecture
of neural network has the capability of updating its
memory with any new input pattern without corrupting
the existing information. This is especially important in
automated assembly process where the product designs
change with time [8,10]. In a typical assembly process
the components are usually well defined, and the images
can be obtained fairly noise free. It is also necessary to
learn new components quickly to reduce set-up time.
The fast learning algorithm of ART-1 neural network is
used, because applications like robot assembly have
crisp data sets and require immediate learning [10,12].

This paper aims to show that it is possible to identify
objects using binary input vectors which represent
images captured by camera. ART-1  Simulator is
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developed for this purpose [14]. The software for
running the system is developed in Visual Basic [18].

The parameters of the ART-1 structure are in
accordance with images and learning procedure. ART-
1 Simulator sets all parameters for learning process
very easily. Learning process of the ART-1 neural
network is adopted for identification of objects. This is
because the machine vision operations include the ART-
1 neural network simulations for pattern recognition.
Input vector consisting of ls and 0Os represents the
image. In the learning process of the ART-1 net, the
number of neurons in the comparison layer, representing
input binary vector might be very large. The maximum
number of processing nodes required at any instant is at
the comparison layer and equals 10.000. The maximum
width W and maximum height H for any pattern in the
image are assigned the value of 500 pixels. In this
paper, the resolution of each input binary vector is
reduced by a factor of 6.25 from W x H and of 250.000
pixels to a grid of 80 by 80 pixels, i.e. of 6400 pixels.
The binary matrix of 80 x 80 is then presented to the
ART-1 neural network paradigm to determine the object
identity.

The parameters of the ART-1 Simulator structure
used are: 6400 comparison layer neurons (F1 layer),
initially 19 recognition layer neurons (F2 layer), and
vigilance parameter p=1.0. The bottom-up weights Zji,
and the top-down weights Zij within the network are
initialised by other parameters: Al=1, B1=1.5, C1=5,
D1=0.9, L=3. During the image understanding phase,
ART-1 Simulator used for pattern recognition and
identification of objects took several different numbers
of iterations, considering the most similar input vector,
for which ART-1 net is trained, in accordance with
required vigilance p, as shown in Fig. 4.

Artifical Neural Network Simulator
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Figure 4. Working environment of the ART-1 Simulator

4. EMPIRICAL CONTROL STRATEGY

Learning robots [7] are able to carry out adaptive
behaviour based on experience (in a given
environment), without the man-operator to take part in
it, above all thanking to empirical control [8]. This
statement has to be verified, which means a scientific
challenge presented in this paper. However, the
scientific goal is connected to carrying out the ability of
~empirical machine-robot” to learn, i.e. to be able to
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develop behaviour on the basis of its own experience.
The ability of ,,empirical machine” is in generating such
autonomous behaviour which allows searching for
special relations within its own environment as well as
its implementation into its future behaviour.

Empirical control strategy objectively has to realize
three steps in order to accomplish necessary behaviour
using its own ability of machine learning, and they are:

STEP 1: To produce certain behaviour under certain
conditions.

STEP 2: To measure (by testing) whether that
behaviour is carried out.

STEP 3: To produce the behaviour that has the
highest probability of successful realization
of the task according to given conditions.

On the basis of these three steps, the empirical
control algorithm (Alg. 1), defined by four rules, is
realized for learning industrial robot. These four simple
general rules of empirical control algorithm create the
growth, evolution, i.e. successful development of all
empirical systems, including the learning industrial
robot.

However, within conventional systems of visual
servoing of industrial robot, the application of empirical
control algorithm is complex, because it is already
complicated enough to impose relative position and
orientation of robot end-effector related to the object in
the environment. The concept of hierarchical intelligent
control [13,15,16,17] on the basis of empirical control
algorithm presented in this paper excludes particular
nonlinear transformations, because this robot control
strategy is based on the backpropagation (BP) learning
ability of the artificial neural network (ANN).

Alg. 1 Empirical control algorithm

Rulel: The empirical control system must select
the right output (after expected delay)
having the highest level of reliability,
according to its memory, for a specific given
input.

Rule2: If the output selected can be carried out,
memorized level of reliability of that output
for that given input must be increased, so
that the probability of later successful
selecting that output for that input has the
same increasing trend.

Rule3: If the output selected for a specific given
input cannot be fulfilled (because it is
inhibited, restricted, or something similar
interfered with by the environment or some
other outside influence such as a ,,teacher-
trainer” in training, or by some internal
signals, actuators, or structure of its own),
the level of reliability which is memorized
must be decreased, so that the probability of
the controller later successful selecting that
output for that input is increased.

Rule4: 1f some other new output is carried out,
memorized level of reliability of that output
for that given input must be increased, so the
probability of later successful selecting that
output for that given input is increased.

FME Transactions



Within the set up control strategy, position and
orientation of the object in relation to the robot world
coordinate system is not known. However, through the
robot learning the desired relative pose of the robot end-
effector in relation to the object is well known (Fig. 5).
Relations between the object data obtained from the
recognition system and robot joint angles for the desired
pose of the robot end-effector are extremely nonlinear.
Developed empirical control system is self-organized in
solving this nonlinearity in such a way where it uses the
abilities of artificial neural networks (ART-1 and BP
nets) which can overcome the problem of nonlinear
corelations through the learning process [5]. So, the
realized intelligent control system directly integrates
visual data information of the object into servo-control
system of the robot. The described empirical control
algorithm supports hiararchical intelligent robot control
through development of artificial neural network system
(ANNS) for object recognition as well as for sensor-
motor coordination in approaching to the recognized
object and its manipulation. Fig. 5 shows the robotic
assembly process with object 4 and B, i.e. manipulation
of object A. The robot usually carries out this process in
three phases:

Phase 1: Robot gripper approach to the recognized
object A.

Phase 2: Grasping the object 4.

Phase 3: Moving the object 4 in order to solve
assembly task.

Camera

Object B

Object A

Robot plane

Learning industrial robot must carry out the
necessary relative pose of the gripper in relation to the
object A, which can be in a totally arbitrary position and
orientation. This means that if the robot end-effector is
in desired relative pose in relation to the object 4 after
phase 1, phase 2 and phase 3 of object manipulation, the
assembly process will be done easily and successfully,
because small position errors can be tolerated and
sometimes compensated for by using the system with
adaptive behaviour. Owing to visual feedback and
machine learning on the basis of artificial neural
network system, robot end-effector can take the final
pose in relation to the recognized object A4, i.e. B.
According to this observation, the experimental system
is realized which confirms this statement for the
physical model of anthropomorphic robot called Don
Kihot [16,17] (Fig. 5).

4.1 Empirical control strategy based on feedforward
neural network

In situations where the structure of the robot and the
geometrical features of the object are exactly known,
the position and orientation of the end-effector and the
object can be calculated by a geometric method.
However, the accuracy of the geometric method largely
depends upon camera and image memory resolutions
and lens linearity, but also upon camera system
parameters, such as focal length and image center
offsets [2,11]. In the established approach presented in
this paper, the amount of movement of the

Figure 5. Relative pose of the robot end-effector in relation to the object in order to solve robotic assembly task
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robot is determined using image data and system of
neural networks. The proposed and described empirical
control strategy is based on two mechanisms, as shown
in Fig. 6. One is feedforward controller, and another is a
neuro-vision feedback controller based on the
feedforward neural network.

FEEDFORWARD CONTROLLER

| FEATURE | s
CAMERA [ gf| EXTRACTION OBIBCT MODEL

Plane
oT
0. ROBOT MODEL] wes.
— (KINEMATIC ee. N
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_y @, [roBOT MODEL TRANSFORMATION
Oe2t] ONVERSE e Sd__ |
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AO | LEARNING VISION

ROBOT

AB NEURAL
NETWORK

SYSTEM

SYSTEM

NEURO-VISION FEEDBACK CONTROLLER

Figure 6. Neuro-vision control block diagram

Feedforward controller is based on the camera
system, robot model, and object model. The camera
system is used as a recognition observer. The relative
position between the robot’s end-effector and object in
its environment (Fig. 5) can be decomposed into some
non-linear transformations.

The co-ordinate transformations are needed in order
to determine the control inputs to the joints angles from
visual data. Thus, the transformation matrix from the
object frame to the camera frame is represented in terms
of the homogeneous co-ordinate {7, and the position
and orientation of the end-effector can be represented by

w.C.S.

the homogeneous co-ordinate ", ,7 . The position and

orientation of the object with respect to the world co-
ordinate system (w.c.s.) is calculated by the

homogeneous co-ordinate T , as follows:
wesp - Wiy ear.r (10

where ““T is the transformation matrix from the

camera co-ordinate system to the end-effector.

The desired position and orientation of the end-
effector with respect to the world co-ordinate system is
calculated as follows:

mesr = e gl eert

After all of these co-ordinate transformations,
inverse kinematics is solved to determine the joint
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angles ©; of the robot from the desired position and the
desired orientation of the robot’s end-effector. However,
control A® to the robot generated by computing the
difference between the desired joint angles ®, and the
current joint angles ®.. In the present paper, a control
strategy is proposed to control the robot without any co-
ordinate transformation, which needs a lot of
calculation. So, the control strategy for our robot is
based on learning capabilities of the feedforward neural
net.

Feedforward neural net is developed to determine
the robot joint angles. This neural net has a capability to
learn to map a set of input patterns (location of object)
in a set of output patterns (robot joint angles). The
learning algorithm used in this non-linear mapping is
backpropagation [3]. The learning process is off-line. A
neural network learns the area in the neighborhood of
the object for adjusting object location misalignment.
The non-linear relation between the image data and the
control signals for the changes in the joint angles is
learned by fedforward neural net. Developed BPnet-
software [16,17], based on backpropagation learning
algorithm [3], is used as a neural simulator. Simulation
program package BPnet uses a gradient search
technique to minimize error function, called generalized
delta rule [5]. BPnet-software is developed in Visual
Basic [18], and its working enviroment is shown in Fig.
7.

= Efrel v 1.0~ Seuth Aliica 1538 Condmenca. IHE E

Watking spece

Ll

o=

Figure 7. Working environment of the BPnet
4.2 BPnet-software and experimental results

Experimental results for the anthropomorphic robot
called Don Kihot (Fig. 5), with four degrees of freedom,
are shown in this section. Two four-layered feedforward
neural networks (3x10x10x4) for part A4, and
(2x10x10x4) for part B, are used in simulation. One
neural net maps the three inputs characterizing the
position and orientation of the object 4 onto the four
outputs, which are the robot joint angles used for
grasping of the object A. Another neural net maps the
two inputs characterizing the position of the object B
onto the four outputs, which are the robot joint angles
used for execution of assembly process by placing
object A on the object B. Positions and orientations of
the object 4, and positions of the object B are given in

FME Transactions



Table 1. Table 2.
Object A Object B Object A Object B
K€ K¢ 0 K¢ KS |6 |6 |6 |6 |6 6] e
1 26 31.3 -9.5 53.7 119.5 1| -11 [ -18 13 -20 | 12.5)-225]0 3 | -19
2 27.3 43.5 -4.2 49.5 122 2 -9 -17 14 | -20 14 | 21 |7.5] -15
3 29 64.5 -1 52.5 109 3 -2 -17 1 12.5 [-19.5( 10 | -23 |3.5]-16.5
18 52 36.8 -8 28.2 76.6 18 -10 [-23.5]) 11.5] 45 0 -11 [ 16 | -20
19 48.7 20.5 -12.2 21.6 56 19 | -13.5| -23 13 | -3.5) -6 -7 120 | -19
Table 3.
Object A Object B
Desired values Final values Desired values Final values
0, 0, 05 [N 0, 0, (O O, 0, 0, 05 Q4 0, 0, 05 [N
1 -11 -18 13 -20 -11 [ -175] 13 -19 | 12.5 | -22.5 3 -19 13 -23 3 -18.5
2 -9 -17 14 -20 || -85 | -17 14 |-195]| 14 -21 7.5 -15 13 -21 | 17.5 | -15.5
3 -2 -17 [ 125 1-195) -3 |-175] 13 |-195] 10 -23 35 |-165] 105 | -22.5| 2.5 [ -165
18 -10 [ -23.5( 115 | 45 || -10 [-23.5] 12 -4.5 0 -11 16 -20 || -0.5 | -10.5 | 16.5 | -20
19 | -13.5| -23 13 35| A3 | 23 | 125 | 4 -6 -7 20 -19 -6 -8 20 -19
Table 4.
Object A Object B
c c c c
KS | kS| 9 K¢ K¢
1 43 94 [ 125 21.6 56
2 45 56 -5 52.5 109
3 44 72 0 57.9 106.9
Table 5.
Object A Object B
Expected values Final values Expected values Final values
0, 0, 3 0, 0, 0, 0 O, 0, 0, 3 0, 0, 0, 0 0,
1 6 -18 15 |-10.5 7 |-21.5] 105 | -15 -6 -7 20 -19 -6 -8.5 20 -19
2 =55 1-195) 13 |-105) -7 =23 | 125 -7 10 -23 35 | -16.5( 105 | -23.5] 2.5 | -16.5
3 0 |[-195| 13 [-105| -1.5 | -23.5 8 -14 9.5 -25 0 -16 9 -24.5 1 -16

Table 1 (after using image pre-processing procedure,
described in section 2). Desired values of the robot joint
angles for successfully assembly process with objects A
and B are given in Table 2.

Experimental results obtained by BPnet-software,
present experimental results for learned patterns. After
20000 iterations in the learning process, the final errors
obtained by moving the robot using four-layered neural
network are about 1°. The accuracy of this feedforward
neural net is 99.6%. The final output vectors are given
in Table 3 (robot joint angles which are different from
desired ones are marked and underlined). It is observed
that the feedforward neural network lets the robot
approach the object. The end-effector can move to the
neighbourhood of the desired position and orientation of
objects 4 and B.

For experimental process with not-learned patterns,
the object location is slightly changed (Table 4). Several
experimental results for not-learned patterns are given
in this paper too (Table 5). The final errors in that case
are larger ( 5°), compared with the ones for the
learned patterns. Thus, maximum absolute error for
simulation process with not-learned patterns is 5°, and

FME Transactions

relative error is 5.5%. However, the robot’s end-
effector can move to the neighbourhood of the desired
not-learned patterns, and to execute the assembly task
too. Because the structure of the feedforward net is
suited to parallel processing, the execution time using
BPnet -software is very fast.

5. CONCLUSION

In the present paper, the control strategy of a
learning industrial robot with visual sensor is described.
The control strategy is based on the empirical control
algorithm, as well as on the system of two artificial
neural networks:ART-1, and feedforward. The artificial
neural network system organizes itself for a robot
configuration through a learning process. Identification
of objects is based on ART-1 neural network. Non-
linear mapping between the image data of objects and
the control signals for the changes in the joint angles is
learned by feedforward neural network. The proposed
empirical control strategy is effective because the
generalization ability of the neural networks assures
control robustness and adaptability in the event of
slightly changed object location.

VOL. 35, No 1, 2007 = 7




REFERENCES

[1] Milutinovic, D.S., Milacic, V.R.: A Model-Based
Vision System Using a Small Computer, Annals of
the CIRP, Vol.36/1, pp.327-330, 1987.

[2] Corke, P.I.: Visual Control of Robot Manipulators
- a review, Visual Servoing World Scientific, pp.1-
31, 1993.

[3] Werbos, P.: Beyond regression: New tools for
prediction and analysis in the behavioral sciences,
Ph.D. dissertation, Committee on Applied
Mathematics, Harvard University, Cambridge,
USA, 1974.

[4] McKerrow, P.J.: Introduction to Robotics,
Addison-Wesley Publishing Company, 1991.

[5] Freeman, J.A. and Skapura, D.M.: Neural

Networks, Algorithms, Applications  and
Programming  Techniques,  Addison-Wesley
Pub.Co., 1992.

[6] Carpenter, G.A, Grossberg, S.: A Massively
Parallel Architecture for a Self-Organizing Neural
Pattern Recognition Machine, Computer Vision,
Graphics and Image Processing, 37, 54-115,
Academic Press, Inc., 1987.

[7] Walter Van de Velde (editor): Toward Learning
Robots, MIT Press, Special Issues of Robotics and
Autonomous Systems, 1993.

[8] BrownR.A.: Machines That Learn, Oxford
University Press, 1994.

[9] Dagli, C.H.: Artificial Neural Networks in
Intelligent Manufacturing, Proceedings of the 12"
International Conference on Production Research,
Lappeernanta, pp.127-134, Finland, August 1993.

[10] Dagli, C.H.: Artificial Neural Networks for
Intelligent Manufacturing, Chapman & Hall,1994.

[11] Hashimoto, H., Kubota, T., Sato, M., Harashima,
F.: Visual Control of Robotic Manipulator Based
on Neural Networks, IEEE Transactions on
Industrial Electronics, Vol. 39, No. 6, pp. 490-496,
1992.

[12] Miljkovic, Z.: Application of ART-1 Neural
Network for Pattern Recognition in Robotics
(invited paper), Proceedings of the International
AM.S.E Conference: Communications, Signals
and Systems-CSS96, Vol.1., pp. 235-238, Brno,
Czech Rep., 1996.

[13] Miljkovic, Z.: Hierarchical Intelligent Robot
Control Based on Artificial Neural Network
System, Journal Mathematical Modelling and
Scientific Computing (ISSN 1067-0688), Vol.8
No. 1-2, pp. 331-336, Principia Scientia, Printed in
USA, 1997.

[14] Miljkovic, Z., Lazarevic, I.: ART-1 Simulator for
Identification of Objects in Robotics, Proceedings

8 = VOL. 35, No 1, 2007

of the International A.M.S.E. Conference on
Contribution of Cognition to Modelling-CCM’98,
pp-5.48-5.51, Lyon-Villeurbanne, France, 1998.

[15] Miljkovic, Z., Lazarevic, 1.: Control Strategy for
Learning Industrial Robot Based on Artificial
Neural Network System, Proceedings of the
International Conference on Systems, Signals,
Control, Computers — SSCC’98, Vol.3, pp.124-
128, Durban-South Africa, September 1998.

[16] Miljkovic, Z.: Hierarchical Intelligent Control of
Learning Robot Using Camera and System of
Artificial Neural Networks, International Journal of
Applied Computer Science (ISSN 1507-0360),
Special Issue: Selected Applications of Artificial
Intelligence, Vol.8 No.2, pp.79-97, Poland, 2000.

[17] Miljkovic, Z.: Empirical Control System for
Robots That Learn, Proceedings of the 1%
International ~ Conference on Manufacturing
Engineering (ICMEN 2002) and EUREKA
Partnering Event, pp. 759-768, Greece, 2002.

[18] Visual Basic 5.0, Enterprise edition, Microsoft
Corporation, 1997.

EMIINPNJCKA YIIPAB/JBAYKA CTPATETHJA
3A UHAYCTPUJCKHU POBOT KOJHU YUH

3opan MusbkoBuh, bojan baouh

JlaHaurmy CUCTEMH WHITYCTPH]CKOT pOO0Ta HHTEH3UBHO
YKJbYUY]y CIIOJbAIIE CEH30pE Kao IITO Cy KaMmepe Koje
ce KopucTe 3a HMAeHTH(]uKanujy objekata y pagHOM
OKpYXElhY HHAYCTPUjCKOT poboTa. YKIbyUHBamkEM
CIIOJBAIIEUX CEH30pa-Kamepa INpoliieM yIpaBibarba
WHAYCTPHjCKUM POOOTOM KOjU YYH TOCTaje 3HA4YajHO
mpaxeH. Kopumhemem eMmupujcke yIpaBibadke
cTpaterje, Oa3upaHe Ha CHCTEMY  BEIUTAYKHX
HEYPOHCKHUX MpeXa, HHAYCTPUjCKH POOOT KOjH y4H
MOXKe Ja OCTBapH aJalTHUBHO IIOHALIAkE Yy MOIJIeRy
(iexcOWITHOT MpuilarohaBama NpoMeHaMa y paHOM
okpyxewy. [lopen nmpupoaHuUX cucTeMa KOju MOry jaa
yue Ha 0a3u HMCKYCTBa, 3a BeIITauyke CHUCTEME ce Yy
Iy’KEM IIepHOJly TOBOPWJIO Ja TO HUCY Yy CTamy Ja
octBape. OBaj paja nMa 3a Wb J1a TIOKaxke z1a je moryhe
OCTBapUTH EMIIMPHjCKY YIPaBJbAuKy CTparerujy 3a
HHAYCTPHjCKU POOOT KOjU y4IH, KOpHUIINemeM Kamepe U
CHCTEMa BELITAaYKHX HEYPOHCKHX Mpexa. Pesynraru
no0mjeHn KopuimmhemeM CHCTeMa HEYPOHCKHX Mpeka
MOKa3aJid Ccy Ja xBaTad poboTra MoXxe nga jaohe y
3aXTEBaHMU I0JI0XKA] Y OJIHOCY Ha 00jeKaT XBarama, Yak
Uy Clly4ajy KaJia je Taj moJI0XkKaj pa3jInduT O]l HayYeHUX
npumepa.
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