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A Neural Model of Automotive Cold 
Brake Performance 
 
The automotive brake’s performance results from the complex interrelated 
phenomena occurring in the contact of the friction pair. These complex 
braking phenomena are mostly affected by the physicochemical properties 
of friction materials’ ingredients, its manufacturing conditions, and 
brake’s operation regimes. Analytical models of brakes performance are 
difficult, even impossible to obtain due to complex and highly nonlinear 
phenomena involved during braking. That is why  in this paper all relevant 
influences on the cold brake performance have been integrated by means 
of artificial neural networks. The influences of 26 input parameters defined 
by the friction material composition (18 ingredients) its manufacturing 
conditions (5 parametars) and brake’s operation regimes (3 parameters) 
have been modelled versus changes of the brake factor C. The neural 
model of the cold brake performance has been developed by training and 
testing of 90 neural models. These neural models have been obtained by 
training of 18 different architectures of neural networks with the five 
learning algorithms.  
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1. INTRODUCTION  
 

The demands imposed to the braking system, under 
wide range of operating conditions, are high and 
manifold. It is expected that the friction coefficient 
should be relatively high but also stable friction force, 
reliable strength, and good wear resistance are needed 
irrespective of temperature, humidity, age, degree of 
wear and corrosion, presence of dirt and water spraying 
from the road, etc. The braking system performance is 
mostly determined by brakes performance. The basic 
requirements imposed to the automotive brakes are 
related to the values and stability of the friction 
coefficient versus different brake’s operation conditions 
defined by changing of pressure application and/or 
sliding speed and/or temperature. These demands are 
increasing due to different vehicle’s weights, four-wheel 
drive vehicles, different vehicles’ maximum speeds, and 
introduction of electronically controlled systems (ABS, 
ESP, BAS, and ROP etc.) whose functions are realized 
by braking system. That is why, braking systems 
capabilities are deteremined by the brakes’ operation i.e. 
friction pair performance.  

The automotive brake’s performance results from 
the complex interrelated phenomena occurring in the 
contact of the friction pair during braking. These 
complex braking phenomena are mostly affected by the 
physicochemical properties of friction materials’ 
ingredients and brake’s operation regimes. The brake’s 
performance is primarily influenced by contact situation 
between a cast iron brake disc and friction materials. 

The contact situation is additionally complicated by the 
fact that friction materials are complex composites and 
may contain over to 20 different ingredients. That is 
why, the contact situation can be differently affected by 
wide diversity in mechanical properties of the friction 
material’s ingredients [1,2,3,4]. Synergetic effects of all 
these ingredients determine the final friction material 
characteristics and accordingly affecting the final 
brake’s performance.  

Improvement of automotive brakes performance, 
under different operating conditions, is complicated by 
the fact that braking process has stochastic nature 
affected by changing of real contact area size, transfer 
layer existence between friction pair, changing pressure, 
temperature, speed, deformation and wear. The size of 
the area of real contact between the pad and the disc is 
far from constant [5], very small compared to the total 
contact area [6], and highly dependent to changes of 
pressure, temperatures, deformation and wear. Taking 
into consideration that very complex and highly 
nonlinear phenomena are involved into braking process 
[7], analytical models of brake operation are difficult, 
even impossible to obtain. In contrast to classical 
approaches, neural modelling can be used to model 
complex non-linear, multidimensional functional 
relationships between the brake’s inputs and outputs.  
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In order to improve the control of brake operation, 
prediction of effects influenced by friction material 
composition and/or its manufacturing conditions 
together with the conditions of brake operation, should 
be provided [8,9,10]. In this paper, artificial neural 
networks have been used for neural modelling of the 
cold brake performance by integrating influences of the 
complete friction material composition, its 
manufacturing parameters, and brake’s operation 
conditions. Based on developed neural models of the 
cold brake performance, the braking system 
performance can be precisely predicted providing 
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preconditions for improving the brake and accordingly 
braking system performance.  

 
2. EXPERIMENT  
 

In order to be learned about the brake performance 
versus different types of friction materials and brake’s 
operation conditions, the artificial neural networks have 
to be trained with corresponding data. The process of 
neural modelling of brakes operation is not trivial and 
many critical issues have to be resolved. The following 
issues have to be considered: (i) select data generator, 
(ii) data generation (define the range and distribution of 
the training data set), (iii) perform data generation (iv) 
data pre-processing, (v) selection of neural networks 
architectures, (vi) selection of training algorithms, (vii) 
training of the neural networks (viii) validation accuracy 
evaluation, and (ix) testing of the artificial neural 
networks.  

Therefore, the preliminary step in a neural model 
development is the identification of the model inputs 
and outputs. Input/output identification depends on 
model objectives and choice of the data generator. 
According to the objectives of this paper, the input 
parameters are defined by the friction material 
composition, its manufacturing conditions, and brake 
operating conditions. The brake factor C has been taken 
as an output parameter, representing the brake 
performance. The type of data generator depends on 
application and the availability. In this case, as a data 
generator, single-end full scale inertia dynamometer has 
been used (fig. 1), developed at laboratory for friction 
mechanism and braking systems-FRIMEKS 
(Automotive Department, Faculty of Mechanical 
Engineering, University of Belgrade). 

The role of data generator is important from the 
point of view of repeatability of the testing conditions. 
That is why, it has been decided to perform testing of 
the brake together with the different types of friction 
materials under strictly controlled conditions related to 
changes of pressure application, initial speed, initial 
temperature, and inertia of revolving masses. These 
testing conditions are chosen in order to simulate the 
real operating regimes by full-scale inertia 
dynamometer shown (figure 1). The DC motor (1) 
drives, via coupling (2), a set of six flywheels (3) 
providing in such way different inertia from 10 to 200 
kgm2 independently mounted on the driving shaft (4). 
The flange (5) firmly jointed to the shaft (4), bears 
rotating part of the tested brake (disc) while immobile 
flange (6), being firmly connected to the foundation (7) 
is used for mounting stationary parts of the tested brake 
(calliper) [12]. The full-scale inertia dynamometer is 
equipped by PC –based automatic control and data 
acquisition system of pressure, speed, temperature, and 
braking torque at a sampling rate of 50Hz. The brake 
factor C is calculated from the average values of friction 
coefficient in the range of speed changing between 0.8v 
and 0.1v. Therefore, the brake has been tested according 
to the adopted testing methodology. Obviously, testing 
methodology needs to be chosen according to the range 
and distribution of data that are going to be collected. 
From table 1, it can be seen the testing methodology 

used for output data generating. The brake testing 
conditions, after burnishing procedure, have been 
chosen in order to identify the influences of pressure 
applications, initial speed, and temperatures on the final 
brake’s performance for the specific type of friction 
material [11,13]. These data have been used for training 
of the neural networks in order to establish the 
functional relationship between brake operation 
conditions, type of friction material, and the brake factor 
C. 

 

 
Figure 1. Single-end full-scale inertia dynamometer 

It is mentioned that the range and distribution of the 
data for training, validation, and testing have to be 
predefined. Furthermore, neural modelling of brake 
performance takes into consideration the three groups of 
inputs data: (i) friction material composition, (ii) friction 
material manufacturing conditions, and (iii) the brake’s 
operation conditions. The range and distribution of data 
related to the brake’s operation conditions is defined by 
testing methodology (table 1). On the other hand, choice 
of the range and distribution of the manufacturing and 
especially composition parameters of the friction 
materials is a much more difficult task. For the purpose 
of the training and validation data set forming, each 
ingredient in the composition of friction material and 
manufacturing parameters are selected and ranged (F1-
F9), as shown in tables 2 and 3.  
Table 1. Testing methodology 

Test 
No. 

Test Pressure 
[bar] 

Initial 
speed 
[km/h] 

Temp. 
[°C] 

No. 
braking 

1. Burnishing 40 90 <100 100 

2. Cold 
performance 20-100 20-100 <100 25 

 
Regarding tables 2 and 3, it can be seen that 11 

different types of the friction materials, as a disc pad 
assembly, were produced, mounted, and tested in the 
brake assembly. Disc pads were designed to be mounted 
on the brake for the front axle of passenger car (Yugo 
Florida 1.4) with static load of 730 kg, effective disc 
radius of 101 mm, floating calliper (piston diameter 48 
mm), friction surface area of 32.4 cm2, and thickness of 
16.8 mm. The composition and manufacturing 
parameters for the each type of the friction material, 
shown in tables 2 and 3, were completely different from 
others. Results obtained during brake testing with the 
friction materials F1-F8 have been used for training of 
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the neural networks, while results of brake testing with 
the friction material F9 have been used for validating 
the generalization capabilities of the artificial neural 
networks. Furthermore, the capabilities of the trained 
neural networks (neural models) for predicting the brake 
performance have been tested by input/output data 
stored in the test data set related to the two different 
types of friction materials (FT1 and FT2).  
 

Table 2. The selection and ranges of raw materials (% vol.) 

Raw 
materials 

F1-F9 
(training and 

validation data set) 

FT1 
(test data 

set) 

FT2 
(test data 

set) 

Phenolic 
resin 17-25 25 17 

Iron oxide 3-5 5 3 

Barites 26-15 15 26 

Calcium 
Carbonate 1-3 3 1 

Brass chips 1-3 3 1 

Aramid 2-6 6 2 

Mineral fiber 10-16 10 9 

Vermiculite 4-8 8 4 

Steel fiber 4-1 1 4 

Glass fiber 2-4 4 2 

Brass 
powder 1-2 2 1 

Copper 
powder 1-3 3 1 

Graphite 7-3 3 7 

Friction dust 5-2 2 5 

Molybdenum 
Disulphide 1-3 3 1 

Aluminium 
oxide 2-3 3 2 

Silica 1-2 2 1 

Magnesium 
oxide 8-2 2 8 

Due to unknown interrelated influences between 
ingredients during braking, for the specific 
manufacturing conditions and different brake’s working 
regimes, random distribution was used over to the 
selected ranges. In order to evaluate generalization 
capabilities of the selected artificial neural networks, the 
test data set was sampled by brake testing with the new 
types of friction materials whose compositions and 
manufacturing conditions correspond to the upper and 
lower limit of the training and validation data set (tables 
2 and 3). The data stored into test data set are 
completely unknown for the trained neural networks. 

The composition and manufacturing conditions of 
the friction materials FT1 and FT2 have been chosen to 
represent the upper and lower limit of the prescribed 
ranges for composition and manufacturing parameters 
changing. Based on tables 1, 2 and 3, neural modelling 
of brake performance has been performed between 26 
input parameters (18 parameters related to the friction 
materials composition, 5 parameters related to the 
manufacturing conditions, and 3 parameters related to 
the brake testing conditions), and one output parameter 
(brake factor C).  

Neural modelling of the brake performance is a 
complex task, besides all, the appropriate architecture of 
neural network as well as the learning algorithm need to 
be properly determined. The architecture of artificial 
neural network consists of a description of how many 
layers a network has, the number of neurons in each 
layer, each layer’s transfer function and how the layers 
are connected to each other. The best architecture to use 
depends on the kind of problem to be represented by the 
network. The best neural network set is affected by 
representational power of the network and learning 
algorithm [14,15]. Neural network learning ability to 
extend its prediction power on data out of the training 
data set is essential in implementation of artificial neural 
networks for predicting the brake performance. 

It is clear that sufficient input/target pairs have to be 
stored into training data set. Input/output parameters 
obtained by formulation, manufacturing, and testing 11 
types of the friction materials representing data set that 
can be used for training, validation, and testing. The 
total number of output results, collected by friction 
material testing according to adopted testing 
methodology is 25 (table 1). It means that 275 
input/output pairs are available for the neural networks 
training, validation, and testing. The total number of 
275 input/output pairs has been divided into three sets, 
200 pairs for the neural networks training, 25 for 
validation, and 50 pairs for the neural networks testing. 
Thus, the best neural network architecture and learning 
algorithm are unknown in advance, the trial and error 
method during training process has been employed to 
find out the network characteristics (number of hidden 
layers, number of processing units-neurons and values 
of connections-weights between neurons, learning 
algorithms) for matching the particular input/output 
relationship. Based on MatLab 6.5 Rel. 13 the following 
networks architectures have been investigated in this 
case: (i) one-layered structures 26 [1]1 1, 26 [2]1 1, 26 
[3]1 1, 26 [5]1 1, 26 [8]1 1, (ii) two-layered structures 26 
[1-1]2 1, 26 [2-2]2 1, 26 [3-2]2 1, 26 [5-2]2 1, 26 [8-2]2 1, 

 

Table 3. Manufacturing parameters 

F1-F9 FT1 FT2 

Manufacturing 
parameters 

(training 
and 

validation 
data set) 

(test 
data set) 

(test 
data set) 

Specific moulding 
pressure [kg/cm2] 450-650 400 700 

Moulding temperature 
[°C] 155-170 170 155 

Moulding time [min] 6-11 11 6 

Heat treatment 
temperature [°C] 200-250 200 250 

Heat treatment time [h] 12-5 12 5 
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26 [8-4]2 1, 26 [10-5]2 1 and (iii) three-layered 
structures 26 [3-2-2]3 1, 26 [4-3-2]3 1, 26 [4-2-2]3 1, 26 
[5-2-2]3 1, 26 [8-2-2]3 1, 26 [8-4-2]3 1. These network 
architectures have been trained by the following training 
algorithms: Levenberg-Marquardt, Bayesian Regula-
tion, Resilient Backpropagation, Scaled Conjugate 
Gradient, and Gradient Decent. Sigmoid activation 
function has been used between the input and hidden 
layers (see expression (1)).  

 1( )
1 xf x

e−
=

+
 (1)  

Pre-processing of the input parameters have been 
done before the neural networks training. Thus, 18 
parameters related to the friction materials formulations 
were presented to the network in percent by volume, 5 
manufacturing parameters and 3 testing parameters were 
scaled in the range of 0 to 1 according to expression (2). 
On the other hand, output parameter has been linearized 
by expression (3). A linear activation function 
( ) has been employed between the hidden 
and output layer.  

( ) 1 f x x=

 
(

1
( )

Curr Max
Scal

)

Max Min

I I
I

I I
−

= +
−

 (2)  

where: 
CurrI - current input value, MaxI  – maximum input 

value, and MinI  – minimum input value. 

 
(

0,75 0, 2
( )

Curr Max
Lin

)

Max Min

O O
O

O O
−

= +
−

 (3)  

where: 
CurrO - current output value, MaxO  – maximum output 

value, and MinO  – minimum output value. 
 

3. RESULTS AND DISCUSSION 
 

The analysed networks and learning algorithms, 
after processes of their training and validation, have 
been employed for predicting the performance of the 
brake with the friction materials FT1 and FT2 (test data 
set). The total of 90 different neural models have been 
tested (18 different neural networks with the five 
learning algorithms) in order to evaluate their 
capabilities for generalizing the brake performance. The 
quality of prediction has been evaluated by difference 
(in percents) between predicted and real values of the 
brake factor C. Accordingly, the sixth error intervals 
have been established (0-5%; 5-10%, 10-15%; 15-20 %; 
20-25 %; 25-30 %). Based on the calculated errors 
between predicted and real values, the number of the 
predicted results, which belong to each of these error 
intervals, has been calculated and expressed as a 
fraction of the test data set (in percent). The influences 
of different architectures and learning algorithms of the 
artificial neural networks on the final “performance” of 
the neural models have been demonstrated in [1].  

The best results of predicting the cold brake 
performance have been reached by the neural model BR 

26 8 4 1, based on the two-layered neural network with 
8 neurons in the first and four neurons in the second 
hidden layer, trained by Bayesian Regulation learning 
algorithm. In order to illustrate the ability of this neural 
model, its predictions abilities of the brake factor C, 
under specified brake’s operation conditions, have been 
shown on fig. 2, 3, and 4. The abilities of the neural 
model for predicting the cold brake performance 
(T 100 C≤ ° ) have been tested in the specified ranges of 
pressure applications and initial speeds changing (table 
1) for the two types of friction materials FT1 and FT2 
(tables 2 and 3).  

The complex interrelated influences of the cold 
brake’s operation regimes on the brake’s performance, 
for the specific type of friction material, has been shown 
in fig.2. From fig. 2 it can be seen 3-D plot of the real 
cold brake performance, with the friction material FT1. It 
is evident that cold brake performance is strongly 
affected by different brake’s operation conditions. That 
is why, it was very important to develop the neural 
model able to predict these complex influences. The 
neural model (BR 26 8 4 1) abilities to generalize 
influences of the friction material’s (FT1) composition 
and manufacturing parameters on the cold brake 
performance, under specified pressure application and 
initial speed changes, have been shown in fig. 3. It can 
be seen (fig. 3) that the neural model has well predicted 
very complex changes of the brake factor C versus 
different brake’s operation regimes and the friction 
material characteristics unknown to the neural model.   
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Figure 2. 3-D plot of the real cold brake performance 
(friction material FT1) 

Furthermore, the neural model of cold brake 
performance has been also employed for predicting the 
influences of the new type of friction material (FT2) on 
the cold brake performance together with the brake’s 
operation regimes changes (fig. 4, and 5). The real cold 
brake performance has been shown in fig. 4. Regarding 
figures 2 and 4, it is evident that the friction materials, 
whose composition and manufacturing parameters 
corresponding those shown in table 3 and 4, differently 
influence the cold brake performance. The neural model 
of cold brake performance (BR 26 8 4 1) has well 
predicted the cold brake performance represented by the 
brake factor C (fig. 3 and 5).  
 

  12 ▪ VOL. 35, No 1, 2007 FME Transactions



20
40

60
80

10020
40

60
80

100
0.75
0.77
0.79
0.81
0.83
0.85
0.87
0.89
0.91
0.93
0.95
0.97
0.99

Brake factor C

Pressure application 
(bar)

Initial speed (km/h)

Cold brake performance-Predicted (FT1)

0.75-0.77 0.77-0.79 0.79-0.81 0.81-0.83 0.83-0.85 0.85-0.87 0.87-0.89

0.89-0.91 0.91-0.93 0.93-0.95 0.95-0.97 0.97-0.99  
Figure 3. 3-D plot of the cold brake performance –predicted 
by BR 26 8 4 1 (friction material FT1) 

20 40
60

80
10020

40
60

80
100

0.75
0.77
0.79
0.81
0.83
0.85
0.87
0.89
0.91
0.93
0.95
0.97
0.99

Brake factor C

Pressure application 
(bar) Initial speed 

(km/h)

Cold brake performance-Real (FT2)

0.75-0.77 0.77-0.79 0.79-0.81 0.81-0.83 0.83-0.85 0.85-0.87 0.87-0.89

0.89-0.91 0.91-0.93 0.93-0.95 0.95-0.97 0.97-0.99  
Figure 4. 3-D plot of the real cold brake performance 
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Figure 5. 3-D plot of the cold brake performance –predicted 
by BR 26 8 4 1 (friction material FT2) 

 
4. CONCLUSION 

 
The results show that the artificial neural networks 

can be used for neural modelling of complex nonlinear 
phenomena influenced by different friction material 
compositions, their manufacturing conditions, and the 
brake’s operation regimes. The influences of the whole 
friction materials composition with 18 different 
ingredients, 5 the most important manufacturing 
conditions, and 3 brake’s testing conditions have been 
modelled versus changes of the brake factor C. Based 
on training of 18 different neural networks’ 

architectures with the five learning algorithms, the total 
of 90 neural models have been investigated in this paper 
regarding their abilities for predicting the cold brake 
performance.  

The capabilities of the neural models to predict cold 
brake performance have been tested against unknown 
data stored into test data set. The neural model BR 26 8 
4 1 has shown the best prediction abilities of the cold 
brake performance regarding test data set. Based on 
results shown in this paper, the technique of neural 
modelling can be used for modelling of cold brake 
performance regarding synergistic influences of the 
friction materials’ composition, its manufacturing 
conditions, and brake’s operation regimes. Accordingly, 
the control of the brakes operation can be substantially 
improved providing preconditions for intelligent 
controlling of braking system performance. The neural 
model of the cold brake performance well predicted the 
brake’s responses (brake factor C changes) versus 
different types of friction materials and brake’s 
operation regimes. Accordingly, the appropriate 
pressures can be selected for the brakes application in 
order to achieve high and stable value of the brake 
factor C. 
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Перформансе кочница моторних возила су 
резултат сложених медјусобно повезаних 
феномена који се јављају у контакту фрикционог 
пара. Ови сложени кочни феномени су углавном 
одредјени физичко-механичким особинама 
сировина фрикционог материјала, условима 
његове производње и радним условима кочнице. 
Успостављање аналитичких модела кочних 
перформанси је врло тешко, готово немогуће, 
услед сложених и изражено нелинеарних 
феномена који се јављају  у току процеса кочења. 
Због тога су у овом раду обухваћени сви 
релевантни утицаји на перформансе хладне 
кочнице помоћу вештачких неуронских мрежа. 
Утицаји 26 улазних параметара одредјени 
саставом фрикционог материјала (18 сировина), 
његовим производним условима (5 параметара) и 
радним условима кочнице (3 параметра) су 
моделирани у односу на промену Ц 
карактеристике кочнице. Неуронски модел 
перформанси хладне кочнице је развијен на 
основу обуке и тестирања 90 различитих 
неуронских модела. Ови неуронски модели су 
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