Eigenvalue Sensitivity Analysis in
Structural Dynamics

Structural dynamic modification implies the incorporation, into an existing
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model, of new information gained either from experimental testing or some
other source, which questions or improves the accuracy of the model. The

sensitivity approach is based on the prior selection of updating parameters
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(design variables) in the initial FE model. This paper deals with analysis

of the dynamic behavior of shaft of electromotor. Two cases are done. The
second example problem is dynamic analysis of 12-node cantilever beam.
Distribution of potential and kinetic energy in every finite element is used
for analysis. In this study it is shown that structural dynamic modification
is important in structural reanalysis.
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1. INTRODUCTION

Structural design for optimal dynamic behavior is an
important problem, especially for structures whose
operational performance and integrity strongly depends
on the structural dynamic characteristics. Some of the
important application areas of this technology are
inegrated controls-structures design, flutter control and
buckling load modification. An excellent review of the
field can be found in a paper by Grandhi [1].

The dynamic response of a structural system is
primarily governed by the natural frequencies and mode
shapes. Hence, formal modification techniques can be
used to achieve the desired dynamic behavior by
changing the design variables to manipulate the natural
frequencies and mode shapes. The design variables
depend on the type of modification problem. In the
design of structural components, such as stiffened
panels and cylinders, the design parameters represent
the spacing of the stiffeners, the size and shape of the
stiffeners, and the thickness of the skin. If the skin
and/or stiffeners are made of layered composites, the
orientation of the fibers and their proportion can become
additional variables. The sizes of the elements are
design variables of a structural system of fixed
configuration (frames, trusses, wings, fuselages, etc).
The thickness of plates, cross-sectional areas of bars,
areas, moments of inertia, and torsional constants of
beams represent sizes of the elements.

It is becoming widely accepted that sensitivity
analysis can be a valuable tool in structural reanalysis
where (enough of) the modal properties are known,
either through theoretical or experimental analysis. In
the modal analysis literature there have been two
primary applications. In the first case sensitivity data are
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used solely as a qualitative indicator of the location and
approximate scale of design changes to achieve a
desired change in structural properties. The
consequences of candidate design changes would then
be evaluated using exact methods. The second strategy
uses the design sensitivities directly to predict the effect
of proposed structural changes. The use of sensitivities
in this fashion relies on the Matrix Taylor Series
expansion, with the usual implications of convergence
and truncation errors. Use only of first order design
sensitivities assumes implicitly that the second (and
higher) order derivatives are negligible. The use of these
second order sensitivities as suitable criteria for the
acceptability of first order sensitivities for predictive
analysis can be interested in some detail. Sensitivity
analysis may be applied to candidate design
modifications distributed across a number of degrees of
freedom of the structure but is limited in scale.

Modal design sensitivities are the derivatives of the
eigensystem of a dynamic system with respect to those
variables which are available for modification by the
designer. A typical modification would be the change in
diameter of a circular section. This would affect both
the mass of the section, proportional to the square of the
diameter, and its stiffness, which depends on the second
moment of area of the section. A change in length
would have a mass effect directly proportional to length,
but a stiffness change depending on the cube of length.
Changing material would similarly affect mass, stiffness
and damping. Shape sensitivity analysis of physical
systems under dynamic loads may be important from
different points of view (i) to understand and model the
system's behavior better with respect to shape, (ii) to
optimize the physical shapes of the desired systems
responses in a prescribed time interval, or (iii) to
identify shapes by utilizing the system's measured
response in time. There are a lot of papers which deal
with structural dynamics modification [6-35].

The general perturbation procedure followed in
major papers is diagrammatically shown in Fig. 1.
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2. PROBLEM STATEMENT. DERIVATION. THE
PARAMETERS OF DYNAMIC MODIFICATION

Specific  structural  analyses  provide  closer
determination of structural behaviour [2]. The
parameters of modification (distribution of membrane
and bending stresses [29], distribution of deformation
energy, kinetic and potential energy within the element
of the structures) provide very efficient identification of
structural ~ behaviour.  They  define necessary
modification of structure providing better behaviour of
structure in service life. The problem of modification,
mathematicaly, comprises of minimization of objective
function F;(v;) (weight, deformation energy, stress

level, eigenvalues,...) of design variables v (nodal

coordinates, area of cross section, depth...) with
constraints  g(v;)  (constraints of stress level,

displacements, length, area, volumen, frequency [28-
31],...). In general, considered functions are nonlinear.
The main goal of modification represents analysis of
sensitivity of objective function. Sensitivity analysis has
been briefly described in the next paragraph [3-5].

al Structure

Creation of the
Initial FE Model

Modifying |

the Initial |
Model by }
Hand

e

Test Planning

Modal Dynamic
FE Analysis.

[K] [M], [#], [Q]

Maodal Dynamic
Measurements

Verification and
Correlation of the FE Model:

F.E.A. Predictions and
Measurements Agree?

Mot Suitable |
for Reanalysis

Suitable
for

Reanalysis

Reanalysis:
-Analysis of Sensitivity
(Updating Parameter Selection)

-Maodel Updating
by Perturbation - Redesign

Unsatisfactory

Results ‘ T
Assessment of the
Updated Model

Satisfactory
Resulis

Updated Model: [K'], [M']

Response: {u’}, [L'], [Q']

Figure 1. Flowchart of General Perturbation

The matrix form of the equation of undamped
motion of an FE model is:

[M]- (50} +[K]- (0} = 0} m

The free-vibration natural frequencies and mode
shapes of a linear structural system can be computed by
solving the above eigenvalue problem
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where [K],[M] are the structural stiffness and mass
matrix, respectively. The system matrices are
considered to be a general function of the design
variables denoted by {/'} = {j,v5,..,v},...,v,} , and A

and {Q;} are the eigenvalue and the eigenvector of

mode i, respectively.

The eigenvalue and eigenvector derivatives can be
calculated by performing partial differentiation of the
equation (2) to an updating structural parameter v;:

/1,-,5‘9[5],{21‘}_,11..[]\4],%%}:{0}. 5

Left-multiplying with the transpose of the eigenvector
gives
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Because

{Qi}T'[K]—ﬂi'{Qi}T'[M]IO and
(o} mM]{a}=1.
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This is the formula for the eigenvalue sensitivity of
the i mode to the j design parameter. From this
formula, it can be seen that the sensitivity of an
eigenvalue to a design parameter can be calculated from
the eigenvalue, the corresponding eigenvector, and the
sensitivities of the stiffness and mass matrices to the
design parameter (variable). Rearranging equation (3)
gives:

oo}
([K1-A[M]) o,
_|, AM], Ok (0 OK]
—[ﬂ,- o o, [M] o, J{Q,-}- (6)

This is an equation for the eigenvector sensitivity. It
can be seen from Eq. (5) that the computation of the
eigenvalue sensitivities involves a simple and
straightforward calculation. Equations (2-6) have been
derived under the assumption that the baseline
eigenvectors have been mass normalized.

Sensitivity analysis of real structures can be
complicated task [11-23], and instead of it, analysis of
distribution of governing quantities is performed.
Distribution of elements of modification represents
reanalysis, which can be represented in percentage of
quantities within the governing group of elements.
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2.1 Distribution potential and kinetic energy within
the mode shapes

Left-multiplying of equation (2) with the transpose of
the eigenvector gives equation of the balance of
potential and kinetic energy of structure.

%{Qi}T[K] {0} =%%{Qi}T[M]{Q,-} : (7)

Let [AK] and [AM] be the -corresponding

perturbation in the stiffness and mass matrices. The
perturbed eigenvalue problem (from eq. 2) can be
written as

(IK1+[AK))({0:} +{a0;}) =
= (4 +A%)(IM]+[AM]) ({0} +{AQ;}) - ®)

where A4; and {A }i are the eigenvalue and

eigenvector perturbations, respectively. If one assumes
that the structural changes are small, changes in
frequencies and mode shapes can be also expected to be
small. Hence, the second and higher order terms could
at first thought be neglected [31]. The first order
equation of the perturbed system is:

[AK{ O} = LIAMI[M ]+ A4 IM1{Q; } . &)

Left-multiplying with the transpose of the
eigenvector equation (9) can be rewritten:

sz -0 18K - A0} (aM o)}
| o olo)

If modification is performed on e-th finite element,
mass and stiffness matrix of this element become:

[kT, = [k],

. (10

+[Ak], =[k], +a,[k]e »

[m], =[m), +[Am], =[m], + Bolm).,  (11)

where «, and [, are parameters which define

modification of e-th finite element. In this case, in the
perturbation in the stiffness and mass matrices (the
matrices of increments the stiffness and mass matrices)
all terms are equal to zero, except those which
corresponded with e-th finite element, such that
numerator of equation (10) for r-th mode shape
becomes

(0.} 18K1{0, } -7 {0,) (a0, } =
=ae{qﬁ}j[k]e{q5}e—ﬂewr2 {qﬁ}j[m]e {q‘ﬁ}e, (12)

Where are:

a)r2 - r-th eigenvalue,

{Q,,} - r-th eigenvector of structure,

{q‘: }e - governing r-th eigenvector, e-th finite element

with s degrees of freedom,
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T
ey, = %{qi }e [k]e {qi}e - potential energy of e-th FE

for rth main mode shape without structural
modification,
_ 1 24 s T s . .
ey =0 {q,} [m] {q,} - kinetic energy of e-th
2 e ¢ e

FE for r-th main mode shape without structural
modification.

Potential and kinetic energy of the structure for »-th
main mode shape, according to eq. (7), can be written in
the next form:

B, =501 [K1Q.,
) (13)
Epp =440 MO, ).
Now, eq. (10) can be given by expression’
s} {0} 1K1} -? 0.} 1aM1f0,}
7 o} {0, IM1{0,}
_ aeep,r _ﬂeek,r
- Ek’r > (14)

The expression (14) is basic equation for reanalysis
of structure, because it shows influence of specific finite
elements to the eigenvalue. The distribution of energies
within of FE expressed percentage for every main mode
shape provides necessary information for modification.
In other words, for every FE where the difference
between potential and kinetic energy is the largest, the
structural modification should be performed for the best
influnce to change governing eigenvalue. The main goal
of dynamic modification is to increase eigenvalues and
to increase the difference between them.

3. DEMONSTRATION EXAMPLE

The first example problem is a shaft of electromotor.
The initial geometry of the shaft is given in Figure 2.
The cross section of shift of electromotor is stepped.
Diameter of shift where coupling is installed is
¢ 110 mm. All other characteristics, necessary for

calculation of shaft’s eigenvalues are: I, = D*z/64 -
the axial moment of inertia of cross section for z axis,
E=210-10° N/m? - Young's moduo of the shaft's
material (steel), M =1000 kg — weight of windings of
rotor, p =7800 kg/m3 - mass density. The area of

cross-section of shift is calculated by 4 = D*r/4 . This
relatively simple  model is used to verify the
implementation of described method using MatLab 7.

" It should be noted that “order” as used above refers to
perturbed quantities and does not represent the order in terms
of design variables. For example, [ AK] may be of up to the
third order in the plate thickness, while [ AM] is of first order.
Hence, it is not clear that higher order terms are always
negligible compared with the first order terms.
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Figure 2. The shaft is supported by a journal bearing at B
and a thrust bearing at A.
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Figure 3. The shaft is modeled using 9 beam elements.
The windings of rotor and coupling are presented as the
distributed uniform loading

The shaft is modeled using 9 beam elements, see
Fig. 2 and 3. There are two degrees of freedom (DOF)
at each node corresponding to translation in the y-
direction and rotation about an axis normal to the x-y
plane. The shaft is supported by a journal bearing at B
and a thrust bearing at A. In that case transversal
degrees of freedom at the first and 8-th nodes are
constrained to zero, yielding a total of 18 DOF for the
model. The influence of the weight of coupling on the
free end of shaft and increasing of stiffness to the
eigenvalues will be considered.

3.1 The First Case

The most important thing, dealing with dynamical
improvment of structure, is increasing of the lowest
frequencies and increase of intervals between them.
Because of that, it is important to examine infuences,
such as changes of geometrical characteristics of the
shaft or external loads as well (where it is technicaly
possible to make a change), to change the values of
frequencies.

The first consideration will be taken when coupling
as external load doesn't exist on the free end of shafts
(see Fig. 4). The natural frequencies of the shaft for this
case are given in the first row in Table 1. In Fig. 5 the
diagram of distribution of potential and kinetic energy
for this case is given. From the diagram it can be
concluded that the differences of Ep and Ek only along
the members 3 and 6 are significant, but the dynamic
behaviour of the shaft is satisfied.
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Figure 4. In the first case coupling doesn’t exist on the
free end of shaft
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Figure 5. The distribution of the potential and kinetic
energy in the case when coupling doesn’t exist on the
free end of shaft

3.2 The Second Case

The second consideration will be taken when coupling
as external load exists on the free end of shafts (see Fig.
6). The weight of the coupling is 600 kg. The natural
frequencies of the shaft for this case are given in the
second row in Table 1. The distribution of the potential
and kinetic energy is shown in Fig. 7. It can be noticed
that dynamic behaviour of structure isn't improved. It is
expected because of existing external loading (coupling)
on the free end of the shatft.

The coupling

THE WINDINGS
'OFROTOR

(5747
[O150
.

l Q120

160 | 50 290 621 290

Figure 6. In the second case there is coupling, whose
mass is 600 kg, on the free end of shaft
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Figure 7. The distribution of the potential and kinetic

energy in the case when coupling, whose mass is 600 kg,
exists on the free end of shaft
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Figure 8. The distribution of the potential and kinetic
energy in the case when modification at section 8 is
performed. Diameter of the shaft at this section is
increased from 0.12 m to 0.14 m.

Nevertheless, the first natural frequency in the
second case is decreased about 9% if compared with the
case without coupling. For the sake of increasing values
of all frequencies, especially of the lowest, the
distribution of the Ep and Ek from diagram 6 is
analysed. It can be clearly seen that the largest positive
value of the difference between Ep and Ek takes place
in the elements 6, 7 and 8 for first mode shape. It means
that the change of geometry should take place at this
possitions in order to have higher values of natural
frequencies. Only modification of element 8 (increasing
of diameter of cross section) results of increase of first
frequency and decrease of the difference between Ep
and Ek in this section, Fig. 8. The natural frequencies of
the shaft for this case are given in the third row in Table
1. Because of that it can be concluded that modification
of stiffness and mass of structure can't be performed
arbitrarily. It depends from distribution of the potential
and kinetic energy.

Table 1. Natural frequencies of the shaft for three
considered cases for 3 mode shapes

M=0. Dg=0.12 m 581.38 363.88 72.10
M, =600 kg, Dg=0.12m | 387.99 104.19 60.60
M, =600 kg, Dg=0.14 m | 394.57 118.51 62.23

The second example problem is 12-node cantilever
beam, see figure 9, that is modeled using 11 rectangular
cross-section beam elements. The initial geometry of

cantilever beam is defined by: bxh =0.01x 0.01 m’ ,
L=1m. All other characteristics, necessary for
calculation of cantilever’s eigenvalues are:

E=2.1-10" N/m* - Young's moduo, p =7800 kg/m’

- mass density.
The area of cross section of beam is

A=bxh=0.01"m? =10 m?, moment of inertia for z
axis is 1, =bh>/12=0.01*/12 m* =8.333-10710 m*,
The mass of cantilever beam is m=p-A-L=

=7800-10*-1 kg =0.780 kg . There are two degrees
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of freedom (DOF) at each node corresponding to
translation in the y-direction and rotation about an axis
normal to the x-y plane. Both degrees of freedom at the
first node are constrained to zero, yielding a total of 22
DOF for the model.

Potential and kinetic energy distribution in every FE
of cantilever beam is shovn in Fig. 9a. Based on
difference of potential and kinetic energy for every FE it
can be concluded that cantilever should be strenghtened
from free end to the fixed end.

First approximate modified shape of cantilever is
shown in Fig. 10. The profile of cantilever is a cubic
parabola, while the width of cantilever is unchanged
from the initial one. From Fig. 9a. it can be seen that the
smallest difference between potential and kinetic energy
along the elements is minimal at the middle of
cantiliver. At that point the cross-section shouldn't be
changed.

On the other hand, the difference between potential
and kinetic energy along the elements is larger if we go
to the fixed end of cantiliver and height of cantiliver A
should be increased. From the middle towards the free
end the height should be decreased. Because of that the
cubic parabola is chosen as an approximation for the
distribution of height of cantiliver. For initial geometric
characteristics it means:

|y =-0.04-(x~0.5)" +0.005.

Distribution of potential and kinetic energy for this
case is given in Fig. 10a. Second approximation of
modified shape of cantiliver is shown in Fig. 11.
Cantiliver profile is a linear function, and width of
cantiliver is again unchanged. Equation of line is
determined similarly as in the first case and it is:

|y|=-0.01-x+0.01.

The digtribution of the potential and kinetic energy. The first mode chape
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Figure 9a. The distribution of E, and E for initial shape of
cantiliver (Fig. 1)

Figure 9. Cantilever beam with height h as the design
variable. Initial shape
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Figure 10a. The distribution of E, and Ey for modified shape
of cantiliver (Fig.10)
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Figure 10. Cantilever beam with cubic parabola profile

Distribution of potential and kinetic energy for this
case is given in Fig. 1la. To better understand the
dynamic behaviour of cantiliver, the diagram of relative
ratio of differencies of potential and kinetic energies is
done (Fig. 13), for each of 11 elements and for the first
three mode shapes. According to Fig. 13, it can be
concluded, that only the changes within the elements
where differences of potential and kinetic energies are
of the same sign for all three mode shapes should be
performed. On the other hand, every increase of first
natural frequency will cause decrease of others i.e. it
will make a solution worst and vice versa.

According to this analysis, it can be concluded that
the cantiliver shape shown in Fig. 10 is approximately
the best one for this example for the considered first
three modes shape.

The distribution of the potential and kinetic energy. The first mode shape
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Figure 11a. The distribution of Ep and Ek for modified
shape of cantiliver (Fig. 11)
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Figure 11. Cantilever beam with the triangular profile
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Figure 12a. The distribution of Ep and Ek for modified
shape of cantiliver (Fig. 12)
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Figure 12. Cantilever beam with stepped cross section

A relative ratio between difference of Ep and Ek for each of 11 elements
The first, secand and third mode shapes
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Fig. 13. A relative ratio between difference of potential and
kinetic energy for each of 11 FE of cantilever for first three
modes shape

Table 2. Natural frequencies [Hz] of cantiliver for all
considered cases for five mode shapes

Cantilever Cantilever Cantilever Cantilever
beam beam beam beam
(fig.9) (fig.10) (fig.11) (fig.12)
1 51.40 92.29 151.49 65.26
2 322.10 453.42 380.44 382.83
3 902.03 1016.79 633.68 1015.25
4 1768.46 1638.42 1114.19 1891.75
5 2926.59 2515.30 1861.50 3002.70
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4. CONCLUSION

Two example problems are done in this paper. First
consideration is performed for dynamic behavior of
shaft of electromotor. The obtained results for natural
frequencies for three cases show that dynamic
characteristics of considered shaft are satisfied. In the
real conditions the mass of coupling doesn’t overstep
600 kg. The relative ratio between first frequencies for
the first and second cases shows decreasing first natural
frequency of 16%. But for the sake of improving
dynamic charasteristics of structure, design variables
can't be changed arbitrarily. It depends on distribution
of the potential and kinetic energy

Second consideration is performed for dynamic
behavior of cantilever beam. From this study, and the
results shown in Table 2, all modified cantilever shapes
are of better dynamic characteristics than the initial one
given in the first column of Table 2, or shown in Fig. 9
and Fig. 9a. For the cases shown in column 3 (fig. 11)
the increase of the first frequency is the largest one, but
the others are decreased, and the difference between two
neighboring frequencies is satisfied. From all above
considerations, it can be concluded that cantilever of the
shape given in Fig. 10 is the best modified one because
the first natural frequency is increased enough, but all
other natural frequencies preserved almost the same
values. In the above explained modification only one
constraint is used, with respect to first natural
frequency. However, the structure can be modified with
the multiple constraints of natural frequencies, which
will be done in future investigations.

This paper opens up new possibilities for application
of this approach to improve dynamic characteristics of
structures, providing increasing of all considered natural
frequencies and increasing the difference between them.
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AHAJIM3A CEH3UTUBHOCTHU COIICTBEHUX
BPEJTHOCTH Y JUHAMUWIIN KOHCTPYKIINJA

Harama Tpumosuh

Moaudukarmja JUHAMHYKHX KapaKTEepUCTHKA
KOHCTPYKIIMja ce Je(UHHIIE Kao CKYIl METoJa Kojuma
ce MoXe T00OoJbIIAaTH AWHAMHYKO  IIOHAIIAE
KOHCTPYKIIMje Y eKCIuloatanuju. Moaudukanuja
JUHAMUYKUX KapaKTepHCTHKA WM peaHaln3a ce
MOCeOHO OJHOCH Ha CKyI METOJa U TEXHHKA KOje CBOje
KOpeHE ¥ OCHOBE UMajy Yy TPHMCHH aHalu3e
CCH3UTUBHOCTH M MeETOJe KOHAYHUX eJeMeHara.
AHanu3a CCH3UTUBHOCTH C€ 3aCHHMBA Ha CENCKIHjU
KOHCTPYKIIMOHHX napaMerapa y MTOYETHOM
KOHAYHOCJIEMEHTHOM MOJENY YHjOM MOJH(HKAII]OM
O6u moUIIO 10 HONpaBibama JMHAMHYKOL MOHAIIAmba
nocmarpane koHcTpykuuje. OBaj pan ce 6aBU aHAIH30M
JMHAMHYKOT [IOHAIIAkha BPATHIA EISKTPOMOTOPA, Kao
aHaJIM30M yTHIlaja O0OJMKa KOH30JHOT HOcada Ha
BPEHOCTH OCHOBHHMX (pekBeHIMja. Y OCHOBH OBE
aHanu3e je AUCTPUOYIMja MOTCHIUjaHe U KHMHETHYKE
eHepruje Ha IJIABHUM OOJHIMMA OCLIOBamAa Y CBUM
eJIeMEHTHMa TIocMaTpaHe KOHCTpyknuje. Ha ocHOBY
CCH3UTUBHOCTH TOjeNHMHUX eJleMeHata Oupajy ce
cerMeHTH 3a Momudukanujy. Ha ocHOBy oBor
WCTpaXHBamba IIOKa3dyje Ce BAKHOCT peaHanuse Y
JIMHAMUIN KOHCTPYKIIH]a.
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