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Calculation of Flow Parameters Inside 
the High Pressure Line of Fuel Injection 
System in Diesel Engines 
 
Hydrodynamical processes in the high pressure line of a fuel injection 
system in diesel engines are described by hyperbolical partial differential 
equations. In order to solve the equations, it is necessary to reduce them to 
one of the characteristic forms and then, applying the appropriate method, 
calculate the values of the fluid pressure and velocity inside the high 
pressure line. In this paper, the method of finite differences with the 
separation of the flux vector was used for solving the equations of the 
characteristic form. The method enables the calculation of the flow 
parameters inside the high pressure line in a very simple and efficient way, 
avoiding the transformation of the equations at each point of the 
calculation domain. 
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1. INTRODUCTION 
 

When calculating and modeling the working process in 
the high pressure line, apart from determining the 
physical properties of the working fluid, it is necessary 
to apply the corresponding mathematical tool for 
solving the partial differential equations which describe 
the hydrodynamical processes. Due to the extreme 
complexity of the partial differential equations, the 
numerical methods are used for their solving. One 
should bear in mind that partial differential equations 
are simultaneously used with integral and differential 
equations which define the process boundary conditions 
in the high pressure line. Therefore, the precise 
determinations of the flow parameters inside the high 
pressure line depend not only on the equations which 
describe the processes in the high pressure line and the 
calculation methods, but on the way in which the 
equations for boundary conditions are formed and 
solved as well. It can be concluded that the calculation 
of the flow parameters inside the high pressure line is a 
very complex task. 

In this paper, the hydrodynamical model of the flow 
processes in the high pressure line and the method of its 
solving by applying finite differences method with the 
separation of the flux vector will be presented. 

 
2. THE HYDRODYNAMICAL PROCESSES IN THE 

HIGH PRESSURE LINE 
 

In the fuel injection system of the “pump – high 
pressure line – injector” type, Fig. 1, fuel is injected 
under variable flow conditions and propagation 
impulses between the high pressure pump and the 
injector. The volumes which are fuelled are finite and 

the tube length is limited. The pressures in the high 
pressure line go up to several hundred bars, and in new 
systems up to 1200 bars. 

 
Figure 1. Fuel injection system with the piston-radial 
distribution pump 

Pressure waves are propagated from the high 
pressure pump, with finite velocity – sound velocity. 
This flow is described by Navier-Stokes equations and 
the continuity equation of a complex form [1]. 
Considering the fact that this system of non-
homogeneous partial differential equations is very 
complex in terms of integration, it is necessary to make 
some specific assumptions, which simplify and ease its 
solving. 

The flow in the high pressure line is regarded as 
one-dimensional, i.e. the flow parameters depend only 
on one coordinate in direction of the high pressure line 
axis and the flow velocity vector direction coincides 
with it. Since the tube diameter is very small, the tube 
cross-section is considered constant and the bend of 
tube is negligible. The pressure wave is normal on the 
axis of the tube. It is considered that there is friction on 
interior surface of the tube wall, while the viscosity 
friction between fluid layers is negligible. The processes 
in high pressure line are regarded as isentropic. 

Thus, Navier-Stokes equations and continuity 
equation are very simplified and obtain the following 
form: 
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 0vv
t x x
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
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t x x xρ ρ

∂∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
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This system of two equations has three unknown 
variables and one more condition is necessary for solving 
it. In this case, it is best to use the equation of state. In 
general, the fluid density depends on pressure and 
temperature, but if the change of the working fluid state is 
isentropic and if Laplace equation for sound velocity is 
used, system of equations is reduced to the following: 

 0vv
t x x
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
,  

 1 0
2
v vv v pv

t x x d
λ

ρ
∂ ∂ ∂

+ + + =
∂ ∂ ∂

. (2) 

Non-linear partial differential equations system (2) 
has complex boundary conditions, and the exact 
analytical solution cannot be obtained. Because of that, 
various numerical and graphical methods are applied. 

The process which is often used for solving this 
system consists of differential equations linearization. If 
we assume low fluid velocity in relation to sound 
velocity, we can neglect the convection component. 
Also, if we neglect the friction as a function of velocity 
square, the system of equations will be linear: 

 2 0p va
t x

ρ∂ ∂
+ =

∂ ∂
,  

 1 0v p
t xρ
∂ ∂

+ =
∂ ∂

. (3) 

 
3. SOLVING EQUATIONS WHICH DESCRIBE 

HYDRODYNAMICAL PROCESSES IN THE HIGH 
PRESSURE LINE 
 

For solving the partial differential equations (3) which 
describe the hydrodynamical process of the flow in the 
high pressure line, we will use the method of finite 
differences with central pattern at space coordinate in 
combination with the separation of flux vector [2,3]. We 
will solve the one-dimensional equations systems in the 
following form: 

 { } { } 0v E
t x
∂ ∂

+ =
∂ ∂

, (4) 

i.e. the quasi-linear form: 

 { } [ ] { }( ) 0v J v v
t x
∂ ∂

+ =
∂ ∂

 (5) 

where {E} is the flux vector and [J(v)] Jacobian, 
obtained by derivation of vector {E} from vector {v}. 

Only the central pattern for approximation of the 
derivative along x-axis gives stable calculation for positive 
and negative pressure waves. The application of non-
symmetrical operators can increase stability, reduce the 
problems to the two-diagonal system of equations instead 
of the tree-diagonal one in implicit formulations, and 
provide better dispersion and dissipation characteristics. 

By approximating the partial derivative in space by a 
backward pattern, it can be concluded that asymmetrical 
approximation of the derivative cannot be constructed at 
space coordinate which will be simultaneously stable for 
both its positive and negative eigenvalues. 

According to Euler theorem for homogeneous 
function, it follows that: 

 [ ]{ }E J v= . (6) 

As far as vector {E} meets the necessary level of 
homogeneity and as far as [J] has the appropriate 
number of linearly independent vectors, vector {E} can 
be split in two parts, each suitable for its eigenvectors. 
One part will correspond only to positive own values, 
and the other to the negative ones, i.e.: 

 { } { } { }E E E+ −= +  (7) 

where {E+} corresponds to positive eigenvectors of the 
matrix [J] and {E–} to negative eigenvectors of the 
matrix [J]. The equation (7) can be made as follows: 

 { } ([ ] [ ]){ } { } { }E J J v E E+ − + −= + = +  (8) 

where: 

 { } [ ] [ ]J J J+ −= + , (9) 

 { } [ ]{ }E J v+ += , (10) 

 { } [ ]{ }E J v− −= . (11) 

By writing (3) into a vector form, we get: 
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where: 
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Not considering the obtainment method of matrix 
[S], it can be confirmed by multiplication that matrix [S] 
and matrix [S]-1 transform Jacobian into diagonal form: 
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[ ][ ][ ]

0
a

S J S
a

− ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

. (14) 

The part of Jacobian, which corresponds to positive 
“a” and negative “–a” eigenvalue is calculated easily: 
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2
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Matrix [Λ] is a diagonal matrix and eigenvalues λi 
are real. Composite variable {v} is given by: 
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We can use (17) for the analytical solution. Along 
the characteristic x = x0 + at, the first component of a 
composite vector is a constant, while the second 
component of the vector is a constant along the 
characteristic x = x0 - at. The flux vector is split: 
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, (18) 
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The split flux vector is transformed into expanded 
form for individual points of the domain (i,j) along the 
high pressure line: 
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The components derived previously from the split 
flux vector in the expanded form are used in the 
equations for calculating velocity and fluid pressure at 
individual points (i,j) along the high pressure line. 

 ( ) ( ) ( )* i, j i 1, j i, jtv v A
x

∆
= − −

∆
 (30) 

 ( ) ( ) ( )* i, j i 1, j i, jtp p B
x

∆
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∆
 (31) 

The values v*(i,j) and p*(i,j) present velocities and 
fluid pressures along the high pressure line at points 
(i,j), which were obtained in the first step of the 
calculation. 

 ( ) { } { } { } { }i* i* i* i**
j 1 j j j 1

i, j v v v vA E E E E+ + − −
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= − + −  (32) 
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Values which were marked with * in previous two 
equations were obtained by using values for velocity 
v*(i,j) and pressure p*(i,j) in terms used for their 
calculation. Finally, the equations for calculating flow 
velocity and fluid pressure along the high pressure line 
in the second step are: 

 ( ) ( ) ( ) ( )
*
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i, j i, j

2 2
v v tv A
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− + ∆
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, (34) 
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The calculated values v(i,j) and p(i,j) present final 
values of the fluid velocity and pressure along the high 
pressure line, for the given interval ∆t i.e. given 
integration level, Fig. 2, 

 
Figure 2. Calculation scheme for fluid velocity along the 
high pressure line 

where j is the number of segments along x-axis, i.e. the 
tube, 

 ( )j 2,3,4..... / 1L x= ∆ − , (36) 

and i is the number of levels along time axis, 

 i 2,3, 4.....n= . (37) 

The condition for convergence, i.e. the condition for 
stable solution is: 

 ( )maxa v t x+ ∆ < ∆  (38) 

The state of working fluid in the space from the 
delivery valve to the injector at the beginning of the 
injection process is not known, so the initial conditions 
of the integration are assumed. The time between two 
injections is longer than the injection itself, so it can be 
assumed that the working fluid at the beginning of the 
process does not move, i.e. the fluid velocity equals zero 
in each cross-section of the tube. Also, it can be 
considered that the fluid pressure is constant in each 
cross section of the tube at the beginning of the process. 
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At L = 0, the fluid pressure at the beginning of the high 
pressure line is obtained from boundary conditions by a 
mathematical model of the process in the delivery valve: 

 ( )i,1 (i)vp p= . (39) 

At L = Lmax, the pressure at the end of the high 
pressure line is obtained from boundary conditions by a 
mathematical model of the process in the injector: 

 ( )i, / (i)kp L x p∆ = . (40) 

Mathematical models for boundary conditions at 
delivery valve and injector can be found in [4]. 

 
4. THE RESULTS OF FLUID FLOW PARAMETERS 

CALCULATION 
 

The fuel injection system scheme whose working 
process was modeled is shown in Figure 1. The system 
is composed of piston-radial distributor pump (IPM 
099.33.50), the tube (length 340 mm, inside diameter 2 
mm) and the injector (IPM type 303.71.00, YDN O SD 
293). The calculation and measurement of individual 
parameters were made under maximum fuel delivery 
and the pump shaft speed of 1500 rpm. 

The results shown in Figures 3 and 4 were obtained 
by solving the model of the working process in the fuel 
 

 
Figure 3. The comparison of measured and calculated fluid 
pressure at the end of the high pressure line 

 
Figure 4. The change in fluid velocity at the end of the high 
pressure line 

injection system in diesel engines [4]. The previously 
described method of finite differences with separation 
of the flux vector was used for solving the equations 
which describe the hydrodynamical processes in the 
high pressure line. Figure 3 shows a comparison of 
calculated and measured fluid pressure and Figure 4 
shows the change in fluid velocity at the end of the high 
pressure line, both as the function of the pump shaft 
angle. 

There is a moderately good agreement between 
simulation and experimental data for pressure at 
injector, Fig. 3. Model prediction of pressure peak value 
is very good, but some phase shift between measured 
and calculated lines can be observed. 

 
5. CONCLUSION 

 
The numerical method of finite differences with 
separation of the flux vector can be easily applied in 
solving the hyperbolic partial equations (3) which 
describe the hydrodynamical processes in the high 
pressure line of the fuel injection system of diesel 
engines. Selection of the integration step along both the 
time and space coordinates must satisfy the condition 
for stable solution (38). Also, this integration time step 
must be compatible with time step used in integration of 
differential equations for boundary conditions in the 
delivery valve and the injector. 

The advantage of splitting the vector {E} into two 
parts is in avoiding the transformation of the equations 
at each point in the calculation domain into a series of 
disconnected partial differential equations. Instead of 
transforming the equations each time, only vector {E} 
components are calculated. 

By analyzing accessible papers which consider the 
process of solving the equations which describe the 
hydrodynamical processes in the high pressure line of 
diesel injection system, it can be concluded that the 
method presented in this paper was used only in one 
paper for calculation of flow parameters in the high 
pressure line [5]. However, in the mentioned paper, only 
the results of flow parameters are given without 
analyzing the application of the method. In most papers 
published so far and concerning this field, the finite 
differences method combined with characteristic 
method has been used. 
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NOMENCLATURE 

a sound velocity in the high pressure line 
n maximum number of levels along t axis 
p fluid pressure in the high pressure line 
pv fluid pressure in the delivery valve 
pk fluid pressure in the injector 
v fluid flow velocity in the high pressure line 
t time 
x coordinate along the tube 
d tube diameter 
L tube length 
i number of levels along time axis 
j number of segments along the tube 
E flux vector 
J Jacobian 

Greek symbols 

Λ diagonal matrix 
λ hydraulic friction coefficient 
ρ fluid density in the high pressure line 

 

 
ПРОРАЧУН ПАРАМЕТАРА СТРУЈАЊА ДУЖ 
ЦЕВОВОДА ВИСОКОГ ПРИТИСКА СИСТЕМА 

ЗА УБРИЗГАВАЊЕ ГОРИВА КОД ДИЗЕЛ-
МОТОРА 

 
Славко Ракић, Милош Цветић 

 
Хидродинамички процеси у цевоводу високог 
притиска система за убризгавање горива код дизел-
мотора су описани хиперболичким парцијалним 
диференцијалним једначинама. Да би решили 
поменуте једначине, неопходно је њихово свођење 
на један од карактеристичних облика, а затим се 
применом одговарајуће нумеричке методе 
прорачунавају вредности притиска и брзине флуида 
дуж цевовода високог притиска. У овом раду је за 
решавање карактеристичног облика једначина 
коришћена метода коначних разлика са раздвајањем 
флукс вектора. Поменута метода омогућује 
прорачун параметара струјања дуж цевовода на 
веома једноставан и ефикасан начин, избегавајући 
трансформацију једначина за сваку тачку 
прорачунске области. 

 


