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This paper presents a new hybrid control architecture for Intelligent 
Mobile Robot navigation based on implementation of Artificial Neural 
Networks for behavior generation. The architecture is founded on the use 
of Artificial Neural Networks for assemblage of fast reacting behaviors, 
obstacle detection and module for action selection based on environment 
classification. In contrast to standard formulation of robot behaviors, in 
proposed architecture there will be no explicit modeling of robot 
behaviors. Instead, the use of empirical data gathered in experimental 
process and Artificial Neural Networks should insure proper generation of 
particular behavior. In this way, the overall architectural response should 
be flexible and robust to failures, and consenquently provide reliableness 
in exploitation. These issues are important especially if one takes under 
consideration that this particular architecture is being developed for 
mobile robot operating in manufacturing environment as a component of 
Intelligent Manufacturing System. 
 
Keywords: robotic control architecture, behavior based robotics, 
intelligent mobile robot, artificial neural networks, navigation, intelligent 
manufacturing systems. 

 
 

1. INTRODUCTION 
 

At the beginning of the 21st century manufacturing and 
closely related technologies are more than ever 
correlated to fast growing market requirements and 
intensively coupled with diverse customer demands [1]. 
The ever increasing production complexity and growing 
tendency for delivery time cutting of products, as well 
as the need for “make to order” rather than “make to 
stock” manufacturing [2,3], imposes the development 
and implementation of advanced paradigms and 
engineering solutions able to tackle with these 
sophisticated issues. New methods, fast growing 
research fields, design principles and newly developed 
and defined paradigms should result in improved 
manufacturing technology and provide desired quality 
of products and services [4]. 

The advanced manufacturing paradigms like 
Computer Integrated Manufacturing (CIM) and 
Intelligent Manufacturing Systems (IMS) may provide 
more integrated manufacturing environments developed 
on the basis of modern software architectures and 
information technologies [2,5,6]. 

On the other hand, the implementation of advanced 
concepts and paradigms of manufacturing in order to 
overcome problems that arise on the shop floor on daily 
level is a hard scientific and engineering challenge. The 
main problems facing the integration of novel concepts 
are inherent unpredictability and extensive complexity 
of manufacturing environment. This dynamic behavior 

imposes the analysis of each and every element of 
manufacturing processes, so that progress could be 
achieved. 

One of these elements is a Material Handling (MH) 
which is defined by the Material Handling Industry of 
America as “the movement, storage, protection and 
control of materials throughout the manufacturing and 
distribution process including their consumption and 
disposal” [2]. As one may easily infer, material handling 
process must be performed safely, efficiently, at low 
cost and without damage to the goods. Although often 
being overlooked, material handling is an important 
issue in production since the cost of material handling is 
a significant portion of the total production cost 
averaging around 20 % of the total manufacturing labor 
cost [2]. Hence, it is easy to see why this hard problem 
should be in the focus of a research community, side by 
side with other quintessential problems in the 
manufacturing. However, the problem of material 
handling could not be solved directly since it covers a 
vast field of problems spreading from storage, 
protection, delivery planning, optimization issues, 
transport, etc. Therefore, these multidisciplinary 
research fields are to be analyzed individually. 

As it has been stated, one of the elements of the MH 
concept is the transport of materials, goods and 
products. Transport issues in manufacturing are a part of 
Material Transport System (MTS). Conventional 
solutions of material transport are based on forklift 
trucks (industrial trucks), conveyer belts, Automatic 
Guided Vehicles (AGV), etc. Each of these solutions is 
fully integrated in manufacturing processes and 
successfully implemented in industry worldwide. 
However, due to the inherent complexity of the 
manufacturing environment, conventional solutions still 
do not solve all aspects of material transport problem. 
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Namely, each conventional solution has been 
exclusively developed for a particular purpose, resulting 
in a specific implementation. On the other hand, the 
behavior of these systems should be constantly 
supervised and checked for the errors. Therefore, one 
may see that a human operator is an essential 
component and much needed factor for reliable 
implementation of these concepts. This limitation of 
conventional solutions results in increased overall 
expenses and cost of manufacturing. Consequently, the 
cost of products gets higher, which decreases the 
competitive potential of the company on the market. 

Having previous analysis in mind, this paper is a 
part of the research that addresses the issue of 
Intelligent Mobile Robots (IMR) implementation in the 
realm of manufacturing and integration in the MTS 
[4,5]. This advanced application of the IMR should 
solve some aspects of the transport problem and provide 
guidelines for the research in the future. 

However, it should be emphasized that this 
progressive integration of the IMR in manufacturing 
systems is still a challenge for the research community 
and the general framework has not been established. On 
one hand, the role of mobile robot in the manufacturing 
environment should be defined following the basic 
framework established through integration levels in the 
CIM (level of mechanical integration, level of 
communication integration and integration using 
knowledge) [4,5]. On the other hand, the aspects related 
to intelligent behavior of the IMR in the 
known/unknown environment are to be analyzed and 
introduced. Nevertheless, despite the overall complexity 
of the IMR integration in manufacturing processes, the 
novel and advanced manufacturing paradigms, like the 
CIM and particularly the IMS, point out the necessity to 
have installed intelligent systems capable to solve the 
majority of specific complex problems in manufacturing 
without human interfering, whatsoever. The main 
scientific and engineering challenge in the IMS research 
field is to develop fully autonomous factory which 
would not require human operators. This progressive 
idea brings us to The Black Factory concept [7], the 
factory where there are no lights, since there are no 
human operators. 

This paper is organized as follows. The second 
section of the paper introduces the existing deliberative, 
reactive and hybrid control paradigms for the 
development of the IMR and the basic framework for 
their implementation. In the third section the newly 
proposed hybrid architecture is provided. Finally, at the 
ending of the paper, the discussion and conclusion are 
provided along with expected results that this new 
architecture should achieve. 

 
2. PROBLEM FORMULATION 

 
Mobile robots are being extensively used in various 
fields stretching from everyday human activities to their 
advanced implementation in diverse and hazardous 
environments. With each and every achieved success 
the research field gains more attention resulting in 
progressive frameworks and successful applications that 
previously could not have been imagined. However, 

each implementation of mobile robots implies particular 
concepts and engineering solutions able to deal with 
problems emerging on the daily level. Therefore, the 
concept of general framework is suited exclusively for 
the problems being analyzed. 

As an intelligent agent, a mobile robot needs the 
ability to perceive information from the working 
environment by using a particular sensor or group of 
sensors and based on that information make a decision 
of its responses. In accordance with the state of the 
environment that decision should result in appropriate 
reaction of the mobile robot enabling it to successfully 
operate. Having this in mind, the basic characteristics of 
intelligent agents have to be defined. Any intelligent 
agent should be developed based on the following 
building blocks [4,8]: the sensing ability, the perceptive 
ability, the knowledge acquisition ability, the learning 
ability, the inference ability, the decision making ability 
and the acting ability. Each of these abilities provides an 
opportunity to generate desired and specific response of 
a mobile robot relative to the working environment. 

However, the essential question is: How can these 
abilities be augmented in the various robotic systems? 
In other words, how can integration of these abilities be 
achieved? This question undoubtly leads us to the study 
of robotic architectures. Robotic architecture is a 
software system that provides languages and tools for 
the construction and development of robotic systems 
and in a broader sense, robotic architecture may be 
defined as the discipline devoted to the design of highly 
specific and individual robots from a collection of 
common software building blocks [9]. Therefore, robotic 
architecture defines the flow of information, how it is 
being perceived, how it is being transformed and finally, 
how decisions are being made. The distinction between 
definition of architecture in the computer science sense 
and robotic system sense could be easily noticed. 

The basics of information gathering, understanding, 
representation and acting fall in the realm of Artificial 
Intelligence (AI). As it was defined in [10] the AI 
attempts to understand intelligent entities. Therefore, the 
AI provides scientific framework (mathematical, 
philosophical, gnoseological, etc.) for development of 
intelligent agents and consequently intelligent systems. 
As an agent operating in an known or unknown 
environment robotic system have to be intelligent agents 
and therefore their control architectures, which are 
essential for perceiving and understanding information, 
have to be developed on the AI basis. 

 
2.1 Deliberative control 

 
In the 1980’s, the dominant view in the AI community 
was that the control system for an autonomous mobile 
robot should be decomposed into three functional 
elements: a sensing system, a planning system, and an 
execution system [11] (Fig. 1). The sensing system 
should provide information of the environment and the 
robot state as well, the planning system is to plan future 
robot actions, and finally, the execution system is to 
perform action selected by the planning system. 

This approach has dominated ever since the AI as a 
distinct field had emerged. The deliberative paradigm 
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heavily relies on representational knowledge and 
deliberative reasoning methods, and one may say that in 
those years this was a mainstream. The Sense-Plan-Act 
(SPA) approach has unidirectional flow of information 
(from sensors to world model to plan to effectors) and 
reverse flow is not achievable. 

 
Figure 1. Information flow in hierarchical paradigm 

The major drawback of deliberative paradigm (in the 
literature this paradigm is often referred to as traditional 
or conventional paradigm) is time and computational 
cost. Namely, in order to perform necessary calculations 
defined by the world model and the planning system the 
mobile robot hardware (in the computer science sense) 
had to have enormous memory and processing 
capabilities. The hierarchical paradigm suffers from 
difficulty of real time interaction with the working 
environment. 

 
2.2 Behavior-based control 

 
Being unable to achieve reliable implementation of 
conventional approach for each and every intelligent 
mobile robot being developed, the robotic community 
turned towards new solutions. These new concepts 
should have provided frameworks able to tackle 
problems that conventional approach had not been able 
to. The brand new paradigm emerged in the 1980’s and 
it was named the Behavior Based Robotics (BBR). The 
overall architectural disposal is presented in Figure 2. 

 
Figure 2. Information flow in reactive paradigm 

The BBR architecture consists of several layers. The 
first one gathers information from the working 
environment. The second is founded on the particular 
form of transfer functions called behaviors, which 
transforms sensor input into predefined response. 
Finally, the last layer is to perform the action based on 
the output of the specific behavior. Two most 
recognizable BBR approaches will be briefly presented 
in the subsequent part of the paper. 

The first proposal in the BBR style emerged in the 
mid 1980’s. Namely, Prof. Rodney Brooks of MIT’s 
Artificial Intelligence Laboratory proposed a new 
solution for mobile robot developing. In his seminal 
paper [12] Brooks argues that use of traditional 
hierarchical structure led researchers in the wrong 
direction of the main research goal, which is to build a 
mobile robot able to operate autonomously in the 
environment. Namely, the dominant focus on the 
planning system and explicit symbolic representational 
knowledge is timely and computationally costly, 
restraining robotics community to tackle those problems 
for the time being. In a way, Brooks eliminated the 
planning system from the control architecture and 
focused exclusively on the sensing and acting modules. 
He advocated the use of layered, but not hierarchical, 
architecture that could provide a mobile robot with 
autonomous capabilities. The low level layers are built 
for obstacle avoidance, while the higher layers for more 
abstract actions. The architecture was named 
subsumption architecture (Fig. 3). 

 
Figure 3. Subsumption architecture 

In the subsumption architecture each behavior is 
realised in the form of Augmented Finite State Machine 
(AFSM) [12]. Coordination of behaviors is achieved by 
the priority-based arbitration via inhibition and 
suppression. Therefore, the overall output of 
architecture is being generated by the highest active 
behavioral module. On the other hand, although the 
subsumption architecture is the most radical of proposed 
reactive approaches, it should be pointed out that 
paradigm represents small step towards making 
traditional Sense-Plan-Act approach work. 

The main morals of subsumption approach towards 
building mobile robots are vividly stated in the 
following messages: the world is its best model and the 
planning is just another way of avoiding what to do next 
[12]. Throughout years, a great number of subsumption 
based robots have been developed and put in the service 
[13], effectively proving the advantages of this reactive 
approach. 

Approximately at the same period, Prof. Ronald 
Arkin from Georgia Institute of Technology proposed 
yet another reactive architecture based on perceptual 
schemas [9]. This approach is more than the 
subsumption architecture strongly motivated by the 
biological sciences. Namely, the motor schema theory 
explains motor behavior in terms of the simultaneous 
control of many different activities [9]. Each behavior 
produces the output in the vector form, while the overall 
response of the system is achieved by vector 
summation. It should be stressed that motor schemas 
represent more than a behavior, namely, by defining 
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behaviors using this reactive paradigm, the control law 
is defined as well. 

One of the most important issues in the BBR is 
coordination of behaviors. The main advantages of the 
BBR approach is the ability to incrementally build 
mobile robot, layer upon layer, starting from the lower 
levels (move, avoid obstacles, etc.) and finishing to the 
higher levels (discover new areas, modify the world, 
etc.). However, coordination among behaviors is a 
major issue. To be more specific, which behavior is to 
be triggered and set into action, if two or more 
behaviors are triggered which one should send 
commands to motors, etc. are main questions. The 
subsumption architecture and the motor schemas 
approach are founded on quite distinct mechanism for 
solving this issue. Namely, in the subsumption 
architecture behaviors are coordinated by means of 
suppression and inhibition. The higher levels are able to 
subsume (thus the name) the inputs as well as outputs of 
lower layers (Fig. 3). Unlike the subsumption 
architecture, relying on competitive selection of 
behaviors, the motor schemas advocate the use of 
cooperative coordination which provides an ability to 
simultaneously use the output of more than one 
behavior, capturing their particular influence in overall 
output (Fig. 4). However, the framework of behavior 
coordination heavily depends on the designer choice. 

 
Figure 4. Motor schemas 

 
2.3 Hybrid approach 

 
Although the BBR establishes the framework for 
successful mobile robot design, it still does not solve 
some of the problems of mobile robot implementation in 
real world. It should be pointed that the BBR heavily 
relies on the following assumptions: the environment 
lacks temporal consistency and stability; the robot’s 
immediate sensing is adequate for the task at hand; it is 
difficult to localize a robot relative to a world model; 
symbolic representational world knowledge is of little 
or no value [9]. To autonomously operate in real world, 
the mobile robot needs a variety of abilities that exceeds 
reactive paradigm hence, some aspects of deliberative 
planning are essential for real world implementation. In 
contrast to paradigms that have been introduced so far, 
the hybrid approach involves the benefits from both 
hierarchical and reactive paradigms. On the low level a 
BBR concept is applied. Whether it is a subsumption 
style or motor schemas is not of importance at this 
point. The role of reactive layer is to generate the action 
based on the environment’s stimuli. On the other hand, 
the deliberative layer is to tackle with high level issues 
that are not solvable by means of reactive control. For 

instance, this layer should determine the position and 
orientation of a mobile robot relative to the environment 
or, if the goal is achieved, the deliberative layer should 
provide answers to the following question: Where 
should I go now? 

The hybrid paradigm emerged on the verge of the 
1990’s and one of the first architectures was developed 
by Arkin itself [9]. The architecture’s name is 
Autonomous Robot Architecture (AuRA). Three layered 
architecture (3T) is the second significant architecture, 
introduced by Erann Gat [11]. 

 
3. NEW HYBRID CONTROL ARCHITECTURE FOR 

MOBILE ROBOT NAVIGATION IN A 
MANUFACTURING ENVIRONMENT 
 

Although robotics has achieved a number of great 
successes [14,15], the general framework for the 
development on architectural level has not been defined 
by the community. Researchers argue that the 
aforementioned general framework is hard to develop 
[10,12], since this problem is closely related to 
questions like: What is intelligence? How can it be 
defined? Is it possible to achieve intelligent behavior in 
artificial agents?, etc. These questions are part of the 
multidisciplinary study that should embody cognitive 
and neuro sciences, artificial intelligence, philosophy, 
etc., in order to tackle this sophisticated and in a way 
mystic issue. On the other hand, the research 
community argue [10,12,16] that it is too early (or even 
unnecessary generally speaking) to define general 
framework. Therefore, the raised questions are to be 
solved gradually and the development of robotic 
control architectures is one minor step towards general 
solution. 

The development of control architecture heavily 
depends on the environment, the task robot is being 
designed to do, hardware components, available 
funding, etc. Hence, the robot designer is left with the 
freedom of choice. It could be easily verified that each 
and every success in the field [14,15] stands upon 
different kinds of control architectures. Therefore, one 
may conclude that working characteristics of the 
environment have severe influence and, in a way, 
“define” the architectural solution. 

As it has been stated in the previous part of the 
paper, the manufacturing environment imposes specific 
abilities that a mobile robot, as an element of the MTS, 
ought to have. For instance, fast reacting behaviors for 
static or dynamic obstacle avoidance, perception and 
world representation ability – to enable information 
gathering and processing, map building ability – to 
insure the robot would be able to localize itself relative 
to the environment, inference and decision making 
ability – to provide the robot with ability to 
“understand” gathered information and based on that 
particular information make a reliable decisions, etc. 
Having this in mind, it is quite obvious what the 
prerequisites are required. 

Based on previous analysis, the authors propose a 
new hybrid control architecture for mobile robots 
operating in a manufacturing environment. The 
architecture is founded on the basis of hybrid approach. 
The architecture can be seen in Figure 5. 
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Figure 5. Proposed hybrid control architecture 

The architecture consists of four distinct layers. The 
first is the Sensor Layer, responsible for information 
gathering. The second layer processes and interprets 
sensor information and based on that information makes 
decisions. As it may be seen, this layer is formed of three 
modules: the State_estimate, the Obstacle_map and the 
Path_planner module. The State_estimate module is 
based on Kalman Filter state estimator [17,18], 
providing a robot with information about its position and 
orientation (i.e. robot pose) in the environment. The 
Obstacle_map module detects and reports the presence 
of obstacles in the robot path. Finally, the Path_planner 
generates plans for online exploitation. The third layer, 
called Skill Layer, is responsible for fast reactions based 
on information provided by the Perception and Planning 
Layer, i.e. Path_planner and Obstacle_map modules to 
be more specific. The Skill Layer consists of two 
modules: the Velocity_control module generates control 
signals for speed control while the Steering_control 
module generates controls for change of course. Finally, 
the Robot Interface Layer enables control of motors. In 
the following part of the paper much deeper analysis of 
each and every module is given. 

 
3.1 Sensor layer 

 
For experimental setup five distinct sensors have been 
chosen (Fig. 6). Two ultrasonic sensors (S1 and S2), two 
encoders (E1 and E2), two light sensors (LS1 and LS2), 
one touch sensor (TS) and one battery level sensor (BL). 
Energy level is checked with the specific sensor that 
keeps track about available energy. Energy consumption 
is a major issue in mobile robotics and that information 
should be included in the decision-making process. 
Finally, information about transport task is given in the 
mission data file (MDF). These sensors are essential to 
intelligent behavior of the mobile robot, especially in 
dynamic environment like shop floor. The Sensor Layer 
gathers information and transfers it to the Perception and 

Planning Layer which is going to be explained in much 
more details in the subsequent part of the paper. 

 
Figure 6. Mobile robot built on LEGO Mindstorms NXT 
Technology 

 
3.2 Perception and planning layer 

 
Two ultrasonic sensors (S1 and S2) should detect the 
presence of an obstacle in front of the robot. The 
Obstacle_map module returns answer to the following 
question: Is there an obstacle in the predefined range in 
front of the robot? The answer is positive if module 
detects the presence of obstacle and negative if there is 
no obstacle on the path. The obstacle detection problem 
could be seen as the classification problem of the 
machine learning [19,20]. In other words, given a data 
(in this particular case sonar reading) the module should 
provide information about the presence of obstacle. 

Using the standard machine learning framework and 
terminology [19] we may tackle the classification 
problem by applying generative or discriminative 
learning algorithms [21]. The discriminative algorithms 
learn the probability p(y|x) directly, where y is the label 
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and x is the feature vector of the label, and in the 
classification problems these algorithms map the input 
vector x, where 2ℜ∈y , into the label y = {0,1} defined 

in the output space 2ℜ∈y . For instance, if label y 
indicates the presence of obstacle and feature vector x 
indicates the sonar reading, conditional distribution 
p(y|x) models the answer to the following question: 
Given a measurement x, what is the probability of 
obstacle presence? Therefore, for the training set S the 
generative algorithm should learn this mapping and for 
the given feature vector x return the label y. 

In contrast to discriminative algorithms, the 
generative machine learning algorithms try to learn the 
inverse probability distribution, i.e. p(x|y). If label y 
indicates the presence of obstacle in the path, then 
p(x|y=0) models the distribution of features when there 
is no obstacle and p(x|y=1) models the features when the 
obstacle is present. In addition, the class prior 
probability p(y) has to be learned from a training set as 
well. Therefore, the generative learning algorithms learn 
how the world looks given label y (when there is the 
obstacle or when there is no obstacle). 

Based on the previous information related to 
machine learning algorithms for the classification 
problems, the authors propose the Artificial Neural 
Networks (ANN) [6,22,23] for modeling this problem. 
As the paradigm of machine learning ANNs are able to 
approximate arbitrary nonlinear function [22,23] or 
achieve classification of the input data with predefined 
accuracy. For instance, the perception learning 
algorithm [22] achieves mapping from input vector x to 
discrete set y = {0,1}. In other words, the perception 
learning algorithm draws a line (hyperplane in a general 
case) between two distinct sets of data which separates 
these sets. Therefore, based on the input vector the 
perception algorithm finds the appropriate mapping. 

On the other hand, the ANNs could be applied to 
learn distributions p(x|y=0) and p(x|y=1), as well as prior 
class distribution p(y). In accordance, the ANNs could 
determine the value of label y based on feature vector x 
which in this particular problem is the vector of sonar 
readings. 

The experimental setup based on LEGO Mindstorms 
NXT Technology [24] is being prepared in order to 
gather experimental data (sonar readings when obstacle 
is present and when there is no obstacle), so that valid 
training set could be established (Fig. 6). At this 
moment, feedforward neural networks [6,22,23] look 
suited for solving the classification problem, where the 
ANNs will be trained according to training set. 
Feedforward ANNs are known for their ability to make 
general conclusions based on the training set, 
compensate for any nonlinearities and uncertainties in 
the training set and to achieve reliable mapping between 
the input data and the desired output values. Gathering 
empirical data and modeling the obstacle detection 
problem with the ANNs should result in a fully 
developed module able to recognize the presence of an 
obstacle. In this way, the obstacle detection is being 
developed on the basis of empirical control strategy [25]. 

The third input in the Obstacle_map module is the 
output of touch sensor. Namely, if the obstacle detection 

algorithm fails due to imperfection of available sonars, 
the touch sensor is to detect and report collision with the 
obstacle. Finally, as one may see, the outputs of the 
Obstacle_map module are being sent to the 
Path_planning module and the Skill Layer. 

Two encoders (E1 and E2) are used for purposes of 
odometry calculation in the State_estimation module. 
These sensors are the basis for prediction step of 
Kalman Filter (KF) type of the robot pose estimation 
[4,5,17,18,26]. Two light sensors (LS1 and LS2) are 
responsible for color detection of distinct features in the 
environment which is essential for the update step of KF 
and calculation of innovation vector and cross-
correlation matrix between state and measurements, 
needed for determination of Kalman gain. At this 
conceptual level, the output of the State_estimation 
module is send to the Path_planner module. 

In the proposed architecture the Path_planner 
module is being developed on the potential fields 
concept developed by Prof. O. Khatib from Stanford 
University [27]. Within this framework, the main goal 
the robot should reach is represented by attractive 
potential, while the obstacles and other not so 
significant objects are modelled with repulsive 
potential. In this way, the mobile robot is to track the 
generated path based on these restrictions. However, 
although potential field method could be applied in the 
real time by incrementally calculating parameters, in the 
proposed hybrid architecture different approach is 
introduced. Namely, the computational cost of online 
planning based on this concept is extremely high, 
therefore the majority of hardware capabilities will be 
totally concentrated towards solving this issue. Having 
this in mind, the mission planner (not explicitly 
represented in Figure 5) is to define the path the robot 
should take in off-line mode resulting in the mission 
data file – MDF. Based on the MDF the robot is to track 
path on-line, allowing the Path_planner module to 
modify segments of path along the way according to 
outputs of the State_estimation and the Obstacle_map 
modules. At first glance, this may be seen as an 
exchange of one hard problem with the other one, 
however, focusing on thorough off-line planning and 
flexible on-line tracking should enhance the overall 
speed of response and increase robustness of the 
architecture. Having this fact in mind, the mission 
planner is provided with transport tasks in particular the 
time period (MDF) and the robot is to keep up with 
predefined schedule of transport tasks. This fact has 
enormous impact since it significantly reduces the 
computational cost of planning. Finally, one may notice 
that “local” planner, i.e. the Path_planner module, 
receives information about energy consumption 
(provided by BL sensor) which, as a result, should have 
improved awareness of the IMR’s performance and 
available energy. The outputs of the Path_planner 
module are sent directly to the Skill Layer. 

 
3.3 Skill layer 

 
As it is common in hybrid (deliberative/reactive) 
approach towards developing robotic control 
architectures [11] the reactive layer is called the skill 
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layer. The Skill Layer is composed of fast reacting 
modules able to generate instantaneous response in real 
time without “thinking too much”. In general, this 
module is responsible for obstacle avoidance, steering 
and velocity control or for solving any other 
implementation issue, where the immediate response is 
needed. 

In the proposed hybrid architecture the Skill Layer 
consists of two main modules: the Velocity_control 
module and the Steering_control module. The 
Velocity_control module is responsible for the control 
of robot’s speed. This module consists of two 
submodules, the Increase and the Decrease. According 
to their appellations, it is not difficult to figure out their 
function in the proposed architecture. 

Besides the Velocity_control module, the robot needs 
the ability to steer its wheels and to change direction of 
travelling, so that requirements defined by the transport 
mission could be fulfilled. For these purposes the 
Steering_control module is proposed. As in the previous 
reactive module, this module is founded on two kinds of 
submodules: the Turn_left and the Turn_right. The 
function of these submodules is quite obvious. 

The Skill Layer is being supplied with information 
generated by the Perception and Planning Layer. To be 
more precise, the Path_planner and the Obstacle_map 
modules provide the input. In this manner, the robot 
receives all relevant update, so that no information 
should be lost. The Path_planner module generates a 
set of actions that should bring the robot to the desired 
waypoint, i.e. the checkpoint (Fig. 7, case 1). On the 
other hand, the Obstacle_map module provides the Skill 
Layer with information about obstacle presence. In this 
manner, the Skill Layer should be able to generate a 
reliable response. 

One may notice that unlike “standard” formulation 
and consequent development of behaviors in reactive 
paradigm [9,12], based upon individual modules, such 
as move_around, avoid_obstacles, backup, 
approach_goal, etc. in the proposed architecture the 
Skill Layer is founded on the basis of their mixture. In 
other words, there is no explicit module called 
avoid_obstacles, approach_goal or follow_the_path, 
instead the individual submodules in the Skill Layer 
should generate response according to stimuli. 
Therefore, whether the robot should perform the 
obstacle avoidance maneuver or approach goal point, 
the Perception and Planning Layer is to recognize the 
action and send it to the Skill Layer. 

At this point of the research the Skill Layer is 
responsible for the path following and obstacle 
avoidance. However, unlike “conventional” software 
solutions based on if-then rules (as in subsumption 
architecture) or vector calculation (as in motor schemas) 
authors propose the use of the Artificial Neural 
Networks for their assemblage. Namely, modeling this 
problem with the ANNs by gathering empirical data, 
based on experimental setup, should result in improved 
responses of modules and control of the robot. In the 
following part of the paper the proposed methodology 
will be provided. 

As it may be seen in Figure 5 the Path_planner 
module provides the Skill Layer with information of 

reference trajectory the mobile robot should follow. For 
instance, that information could be defined with vector 
in the distance to waypoint-course to waypoint space. 
Therefore, at this point, the Path_planner module 
outputs the following vector p = {ρ φ}, where ρ is the 
distance to waypoint and φ is needed change of the 
course. On the other hand, the Obstacle_map module 
outputs the list of obstacles and the distance between the 
robot and obstacle(s). Put it differently, this particular 
module outputs the following vector o = {d l r}, where 
d is the distance, while components l and r define the 
obstacle presence on the left and on the right side of 
perceptual field respectively (Fig. 7, case 2, a) and b)). 

 
Figure 7. Sonar measurements 

One may notice that sonar sensors S1 and S2 search 
for obstacles right in front of the robot, neglecting the 
possible presence of obstacles perpendicular to the 
reference trajectory. In this way, the information flow 
would be enhanced since the presence of obstacles 
outside the perceptual field has a minor influence (or no 
influence at all) on the planned path. If these obstacles 
were static, their influence has been analyzed and taken 
into account during the off-line path planning. On the 
other hand, if these obstacles were dynamic ones, in the 
manufacturing environment these obstacles could be 
human operators or other mobile robots. Either way, 
workers would avoid collisions with the IMRs, while 
the IMRs would be programmed and learned not to 
collide with the other IMRs. 

Based on previous analysis, one may conclude that 
input vector i in the Skill Layer, defined in R5 space, is 
composed of the following components: i = {ρ φ d l r}. 
This vector is sent to both modules of the Skill Layer: 
the Velocity_control module and the Steering _control 
module. Two distinct feedforward neural networks will 
be used for information processing and generation of the 
output. The first one is the Velocity Control Neural 
Network (VCNN), responsible for generation of speed 
change, while the other one is the Steering Control 
Neural Network (SCNN), responsible for change of the 
robot’s course. The output of the VCNN network is 
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scalar value ∆v that defines a new value of translational 
velocity. Similarly, the output of the SCNN is defined 
with vector s = {∆l ∆r}, where ∆l represents control 
input to the left motor and ∆r is control input to the 
right motor, so that change of the course could be 
performed. In this manner, based on the information 
provided by the Perception and Planning Layer, the 
future actions of the robot should be defined. However, 
synchronization of these two neural networks is a major 
issue. Namely, simultaneous processing of inputs, with 
both neural networks working on-line, is not possible, 
merely because of operating system’s inability to 
perform multi-tasking or multi-threading. If this were 
possible, it would be quite easy to perform computation 
of the outputs. This software issue could be solved by 
defining the importance of motor control. For instance, 
the output of the VCNN could be declared as more 
important information than the output of the SCNN. In 
this manner, the VCNN output will be the first one sent 
to motors. Having sent these outputs, the SCCNN will 
send the rate of steering change. Justification for 
introduction of action importance is empirical one: 
when obstacle is detected the first thing robot should do 
is to decrease the velocity and then to change its course. 
Nevertheless, one may easily notice that vice versa 
approach (the SCNN output then the VCNN output) 
may hold as well. 

Yet, another way of tackling synchronization 
problem is to implement additional neural network. 
Namely, as in the previous case, first the VCNN’s 
output will be calculated, and after that the SCNN’s 
output. Finally, the new neural network will receive the 
input vector, and generate motor controls. This solution 
of the synchronization issue resembles the Modular 
Artificial Neural Networks (MANN) approach, where 
output of n neural networks (one may say expert neural 
networks as well) is being sent to a new network for 
improved decision making. Either way, the decision 
whether to choose the first or the second approach for 
synchronization will be made during experimental 
process. 

 
4. DISCUSSION AND EXPERIMENTAL SETUP 

 
In the proposed architecture there is no explicit 
modeling of robot behaviors. Namely, by modeling 
more general phenomena specific behaviors like 
avoid_obstacles should emerge, ensuring existence of 
the emergent behaviors [16]. In this way, the ANNs 
should capture specifics of each behavior and result in 
much improved architectural output. Therefore, by 
applying machine learning and empirical control, we let 
the mobile robot learn non-modelled behaviors needed 
for exploitation on daily level. 

An interesting problem may arise when 
Obstacle_map module, based on the interpretation of 
sonar readings, detects the presence of obstacles on both 
sides of sonar perceptual field (Fig. 7, case 2. c)). 
Namely, in this particular situation the initial 
architectural setup is not able to solve this problem. 
Therefore, in order to tackle this issue, additional 
module, or to be more precise, submodule of 
Path_planner could be added. This module is to be 

developed on the basis of the action selection algorithm 
presented in Figure 8. 

The new action selection algorithm starts by 
checking whether the obstacle is present in both sides of 
perceptual field. If this is the case, the robot will collect 
data, classify the environment and based on that 
information generate a brand new plan that will enable 
robot to go around the obstacle. 

 
Figure 8. Action Selection Algorithm 

For these purposes, the environment classification 
has to be enabled. This situation could be solved by 
introducing Environment Classification Neural Network 
(ECNN) that should take sonar readings and achieve 
classification, so that the robot would know whether it 
stands next to left wall, right wall, hallway, etc. (Fig. 9). 

 
Figure 9. Environment Classification Neural Network 

A similar idea of the environment classification 
based on multilayer perception could be seen in [28] but 
with two major distinctions. Firstly, in [28] the 
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environment classification is performed in real time, 
unlike this particular implementation of the ECNN 
which assumes that robot has stopped moving, all due to 
available resources for experimental setup. The second 
distinction is related to training set necessary for 
adjustments of weights between neurons. Namely, in 
[28] the ECNN was trained with simulated sonar 
readings. The readings had been gathered and 
afterwards the ECNN was trained with added noise. 
Unlike this approach, the authors propose the empirical 
approach towards gathering sonar data that would 
enable more reliable and more precise training set 
necessary for adjusting of the weights between neurons. 

Figure 7 (case 2, d)) shows the unreliableness of 
sonars and dissipation of sound waves. If the surface is 
not perpendicular to the direction of wave’s travelling, 
the sonar wave will be dissipated. Therefore, this 
particular situation results in the reflection of sound 
waves proportional to the incoming angle, resulting in 
sonar misreading. This situation, so common in “the real 
world”, depicts why empirical data has to be gathered 
and why the concept of machine learning should be 
implemented. Applying learning algorithms and the 
ANNs should enable robot to recognize the presence of 
obstacle although at first glance the presence of obstacle 
was disregarded. 

The proposed architecture could be extended in 
several ways. The first one is related to the perception 
ability. For instance, information about the collision 
with objects (provided by touch sensor) could be sent to 
the Skill Layer directly as well, providing the VCNN 
and the SCNN modules with additional parameter 
needed if collision with the obstacle happens. Touch 
sensor is to send the information to the Skill Layer 
significantly improving the overall response. The 
second extension is related to map making ability [26]. 
When the robot is set to run for the first time, the human 
operator should control robot and “show” the specifics 
of the environment. On the first run, this module would 
generate a map and use this map for tasks in the near 
future. At the end of the first run, the map will be stored 
and used for navigation purposes in the future, while the 
map building module will “become” state estimation 
module. Needless to say that during exploitation this 
module could be started at any time and set to work 
mode if unseen feature of the environment shows up. At 
this stage of architectural development the 
State_estimate module was developed exclusively for 
localization purposes. However, the module itself could 
be extended, so that map building could be achieved. 

For the time being, a new hybrid architecture will be 
tested on mobile robot built on Lego Mindstorms NXT 
technology [24] operating in the experimental working 
environment (Fig. 6). Due to limited resources of 
Lego’s hardware and software, the laptop will serve as 
the main computation unit, while communication 
between the robot and the laptop will be achieved with 
Matlab [29] via USB or Wireless protocol. In this way, 
the laptop will perform all necessary computation on-
line and send commands to the robot knowing that 
embedded computation is not achievable at this point of 
research. On the other hand, although computational 
power will be improved significantly, all due to Matlab 

and laptop capabilities, the authors are aware of possible 
delays in communication and influence on experimental 
process. However, if architecture performs well on this 
(admittedly) limited experimental platform, then we are 
one step closer to embedded computation. 

 
5. CONCLUSION 

 
In this paper, the new hybrid architecture for mobile 
robot navigation and exploitation in a manufacturing 
environment was presented. The architecture is based on 
hybrid approach towards developing intelligent robotic 
systems, so that fruits of both Hierarchical and 
Behavior-based styles should be captured. The initial 
architectural setup is founded on gathering of empirical 
data and implementation of machine learning through 
development of reliable models of artificial neural 
networks for obstacle detection, behavior generation 
and environment classification. 

The use of ANN paradigm for behavior modelling 
should result in improved capabilities of a mobile robot 
and provide much needed robustness to sensor failures. 
Neural networks will be trained by empirical data 
gathered in the experimental process. Therefore, the 
output should capture the influence of significant 
parameters and achieve generalization. The 
experimental setup, which is being prepared at the 
moment, should point out the advantages and 
disadvantages and ultimately verify the usability of 
architecture and proposed approach towards 
development of the IMR’s as intelligent agents. 

Finally, these issues have been analyzed from the 
perspective of mobile robot implementation in a 
manufacturing environment as an integral element of 
transport system, which in turn should result in 
improved performance of manufacturing systems and 
processes. 
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НОВА ХИБРИДНА УПРАВЉАЧКА 
АРХИТЕКТУРА НАМЕЊЕНА ЗА 

ЕКСПЛОАТАЦИЈУ ИНТЕЛИГЕНТНИХ 
МОБИЛНИХ РОБОТА У ПРОИЗВОДНОМ 

ОКРУЖЕЊУ 
 

Најдан Вуковић, Зоран Миљковић 
 
У раду је приказана нова хибридна управљачка 
архитектура намењена за експлоатацију и 
навигацију интелигентних мобилних робота у 
технолошком окружењу. Архитектура је базирана на 
емпиријском управљању и имплементацији 
концепта машинског учења у виду развоја система 
вештачких неуронских мрежа за потребе генерисања 
интелигентног понашања мобилног робота. За 
разлику од конвенционалне методологије развоја 
интелигентних мобилних робота, предложена 
архитектура је развијена на темељима 
експерименталног процеса и имплементације 
система вештачких неуронских мрежа за потребе 
генерисања интелигентног понашања. Предложена 
методологија развоја и имплементације 
интелигентних мобилних робота треба да омогући 
несметану и поуздану експлоатацију али и 
робустност у погледу генерисане управљачке 
команде, као одговора робота на тренутно стање 
технолошког окружења. 

 


