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The paper considers statistical aspects of high explosive warhead 
fragmentation. The modeling of fragment mass distribution is of great 
importance for determination of fragmenting warhead efficiency. Seven 
relevant theoretical fragment mass distribution models are reviewed: the 
Mott, the generalized Mott, the Grady, the generalized Grady, the 
lognormal, the Weibull and the Held distribution. Comparison of these 
models with representative experimental database of 30 fragmenting 
projectiles has shown, generally, a very good correspondence between 
theoretical models and experimental data. The goodness of fit analysis has 
indicated that the generalized Mott, the generalized Grady and the Weibull 
distribution enable the best description of experimental fragment mass 
distribution data. Further comparison of these models based on the median 
analysis prefers the generalized Grady distribution, and its bimodal 
characteristic can be physically justified. The suggested theoretical 
fragment mass distribution law can be applied in a complex fragmenting 
projectile efficiency simulation model. 
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1. INTRODUCTION 
 

The modeling of fragmentation process is of the 
utmost importance for design, redesign and efficiency 
analysis of high-explosive (HE) projectiles. The 
fragment mass distribution along with the initial 
fragment velocity, the spatial and the shape 
distribution of fragments, enables the complete 
characterization of a fragmentation process. Natural 
fragmentation of HE projectile is the result of complex 
processes of explosive detonation, gas products 
expansion and behavior of the casing material under 
the intensive impulse loads [1]. The final character and 
distribution of cracks in the projectile casing determine 
the shape, the size and the mass of formed fragments. 
There are several approaches to the fragmentation 
problem – probabilistic [2-4], energetic [5], approach 
based on fracture mechanics [6], etc. Having in mind 
the complexity of underlying physics, the semi-
empirical approach based on the mentioned theoretical 
results, as well as experimental data, seems to be a 
promising approach to the fragment mass distribution 
problem [7]. 

There are a number of concurrent models that define 
the fragment mass distribution law, without consensus 
which of them is the most suitable for description of 
fragments generated by the HE projectiles. The idea is 
to analyze these models and, through comparison with 
experimental results, suggest the “optimal” law that can 
be used in a complex HE projectile efficiency 
simulation model. 

2. FRAGMENT MASS DISTRIBUTION LAWS 
 

Fragment mass distribution is usually described by a 
cumulative distribution function, rather than a 
probability density function (histogram), which is more 
sensitive to the scatter of the fragment masses data. The 
cumulative number of fragments NT(m) = NT(>m) is the 
total number of fragments with the mass greater than m, 
and alternatively, the cumulative fragment mass MT(m) 
= MT(>m) is the total mass of all fragments with 
individual mass greater than m. 

In this paper, relative (normalized) cumulative 
distributions N(m) and M(m) will be used 
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where N0 is the total fragment number and M0 is the 
total mass of fragments. The relation between the 
cumulative distributions is 
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The average fragment mass (distribution mean), 
which is the most important characteristic of the 
distribution, is determined by 
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A very useful numerical property of the distribution 
is the median, which is defined by 

 1
2( )NN m = ,   1

2( )MM m = . (4) 

There are numerous distribution laws that are used 
to describe a real distribution of the HE projectile 
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fragments. The most relevant distribution laws will be 
briefly outlined. 

Mott distribution. In his classic works [8], based on 
the two-dimensional geometric statistics, Mott had 
formulated the well-known fragment distribution law in 
the form 

 ( )
1
2( ) exp mN m µ

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

. (5) 

Generalized Mott distribution. Mott had argued that 
in three-dimensional fragmentation of thick-walled 
cylinder, where fragments do not retain the inner and 
outer surface of original cylinder, exponent ⅓ instead ½ 
in (5) would be more appropriate. Introducing exponent 
λ in (5), we get the generalized Mott distribution (e.g. 
[9,10]) as 

 ( ) exp mN m
λ

µ

⎡ ⎤⎛ ⎞⎢ ⎥= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (6) 

This distribution corresponds to the two-parametric 
Weibull distribution. 

Grady distribution. Following Mott's approach 
based on the Poisson distribution of fracture points, 
Grady and Kipp [2] established an alternative paradigm, 
defined also in [11], and proposed the simple linear 
exponential distribution 

 ( ) exp mN m
µ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. (7) 

This distribution law is а special case of the 
generalized Mott distribution law, (6), for λ = 1. 

Generalized Grady distribution. Considering 
statistically inhomogeneous fragmentation, Grady and 
Kipp [2] analyzed the three-parametric generalization of 
distribution defined by (7) as follows: 

 ( ) ( ) ( )1 2
( ) exp 1 expm mN m f fµ µ= − + − − . (8) 

Lognormal distribution. Observing multiplicative 
nature of fragmentation process, several authors (e.g. 
[12]) suggested the lognormal distribution for 
describing the fragment mass distribution: 

 ( )ln1
2 2

( ) 1 erf mN m µ
σ
−⎡ ⎤= −⎢ ⎥⎣ ⎦

, (9) 

where erf(•) is the error function 
22
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Weibull distribution. The two-parametric Weibull 
distribution (also known as the Rosin-Ramler 
distribution), originally used for the description of the 
grain size distribution in grinding processes, defines the 
normalized cumulative mass as 

 ( ) exp ( )mM m λ
µ

⎡ ⎤= −⎢ ⎥⎣ ⎦
. (10) 

Using (2), one gets the relative cumulative number 
of fragments: 
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In (11), Г(a, x) is the upper incomplete gamma 

function 1( , ) e da t

x
a x t t

∞
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Held distribution. Held [13] introduced the relation 
between the cumulative mass and the cumulative 
fragment number in the form 

 ( )0( ) 1 expM n M Bnλ⎡ ⎤= − −⎢ ⎥⎣ ⎦
, (12) 

where n is the cumulative number of fragments sorted in 
descending order, and M(n) is the total mass of these 
fragments. The mass of each particular fragment can be 
calculated by 

 ( ) ( 1)nm M n M n= − − . (13) 

Transformation of (12), using (2) leads to the 
implicit form of the cumulative number distribution: 

 1 1
0 ( )exp ( )T Tm M B N m BN mλ λλ − −⎡ ⎤= −⎣ ⎦ . (14) 

The review of the fragment mass distribution laws is 
given in Table 1. The medians can be easily calculated 
from (4). 

In the earlier paper [14], it had been shown that the 
Strømsøe-Ingebrigtsen distribution [15] does not 
represent substantial improvement of the Mott law. It is 
also discussed that the widely applicable power-law 
distribution (e.g. [16]) cannot successfully describe the 
HE projectile fragmentation. Finally, the Gilvarry 
distribution [17] and the Lin distribution [18] has not 
been analyzed here, regarding a four-parameter fit 
impractical. 

 
3. COMPARISONS WITH EXPERIMENTS 

 
In order to validate the presented theoretical distribution 
models, the comparison with experimental data has been 
performed. Experimental data from [19] (20 projectiles), 
[13] (3 projectiles), [15] (3 projectiles), [10] (2 
projectiles) and [11] (2 projectiles) have been used. 

From the aspect of characterization of fragment 
mass distribution and the analysis of considered models, 
it would be desirable that the mass of each fragment is 
exactly known, i.e. experimental results could be 
presented as an ascendant sequence of fragment masses 
mj, j = 1,2,…N0. However, because of simpler 
measurement and manipulation with collected 
fragments, experimental results are usually given in a 
somewhat less accurate way – in the form of tables with 
the number of fragments and their total mass in arbitrary 
defined mass groups. It is therefore clear that selection 
of too wide ranges of mass groups can distort the real 
fragment mass distribution. Although in some 
fragmentation analysis the fragments with the greatest 
masses are neglected (supposed as the result of irregular 
fragmentation), all collected fragments have been taken 
into account in this research. 
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Table 1. Fragment mass distribution laws and their properties 

Relative cumulative number of 
fragments Relative cumulative mass of fragments Distribution mean 
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The parameters in the theoretical distribution laws 

are calculated by minimizing the deviation of the 
theoretical from the real distribution in the sense of the 
least squares method: 

 2
t 1 2 e
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where Ft(m,p1,p2,...,pk) is the theoretical distribution 
function, pi are the parameters in distribution functions 
(depending on model, the function has one, two or three 
free parameters that should be optimized), and Fe(m) is 
the experimentally determined distribution function. 

Characteristic diagrams of experimental data and the 
corresponding optimized theoretical models for the 
typical experimental projectile are given in Figure 1. 

In order to evaluate and compare the goodness of 
fits, the degrees of freedom adjusted coefficient [20] of 
determination is used: 
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In (17), eF  is the mean of an experimental 
distribution, n is the number of mass groups and k is the 
number of adjustable parameters in a distribution law. 
The statistic 2R  is defined as a proportion of variability 

in experimental data explained by a statistical model, 
taking into account the number of free parameters. 
Therefore, this statistics enables the determination of 
fitting degree among the observed and the theoretical 
data. 

The survey of coefficient of determination values for 
the analyzed theoretical distribution models applied on 
the experimental data for 30 projectiles is given in Table 
2 (target function is N(m)). 

Generally, all models (except the Grady's) are good 
approximation of experimental data, but the generalized 
Mott, the generalized Grady and the Weibull 
distribution have the highest coefficients of 
determination. Similar results are obtained from the 
cumulative fragment mass M(m) optimization (Fig. 2). 

In addition to the analysis of compatibility of 
theoretical distribution laws and experimentally 
determined distribution, the consideration of 
correspondence between appropriate measures of 
distribution central tendencies is also important. From 
the definition of these parameters, (3) and (4), it is 
obvious that the average fragment mass m  and the 
median Nm  are dominantly dependent on the total 
number of generated fragments N0. The experimental 
determination of the overall number of fragments N0, 
especially in the case of 3D fragmentation and 
numerous fragments (N0 > 1000), can be unreliable. 

Namely, despite the advanced fragment recovery 
techniques, a certain number of fragments from the 
smallest mass group can not be collected after the 
experiment. These “missing” fragments can 
significantly influence the evaluation of the total 
number of fragments N0, but their impact on the total 
mass of generated fragments M0 is negligible. 
Therefore, the mentioned experimental error has 
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Figure 1. Comparison of the relative cumulative fragment number experimental data for projectile 1 [19] with: (a) the Mott and 
the generalized Mott, (b) the Grady and the generalized Grady, (c) the Weibull and the lognormal and (d) the Held fragment 
mass distribution model 

minimal influence on the median Mm , and this measure 
will be used as the criterion for further comparison of 
experimental data and theoretical results for three 
distributions. 

The relative errors of the median Mm  for three 
considered theoretical models and 30 experimental 
projectiles are compared in Table 3. The analysis of the 
results presented in Table 3 indicates a satisfactory level 
of compatibility between the experimentally determined 
and the theoretically predicted values of the median 

Mm . This criterion prefers the generalized Grady 
distribution comparing to other two empirical models. 

Thus, the conclusion from the performed statistical 
analysis is that the generalized Grady model provides 
the best description of the mass distribution of 
fragments generated by the HE projectiles. Having in 
mind the main property of this distribution law, this 
means that fragments have two characteristic sizes 
(masses), which is shown in Figure 3. 

Physically, the finer and coarser fragments can be 
related to the central cylindrical and the residual portion 
of the projectile, respectively. Another explanation is 
that different fragment formation mechanisms in the 

inner and the outer section of the projectile casing 
influence the bimodal distribution [1]. 

 
Figure 2. Relative cumulative fragment mass distribution: 
comparison of the experimental data (projectile 1 from [19]) 
and the generalized Mott, the generalized Grady and the 
Weibull distribution 

(a) (b)

(c) (d)
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Table 2. The coefficient of determination calculated for different fragment mass distribution laws and 30 experiments. Relative 
cumulative fragment number N(m) has been fitted 

Coefficient of determination, 2R   
Mott Gen. Mott Grady Gen. Grady Lognormal Weibull Held 

1 0.9919 0.9960 0.9271 0.9994 0.9817 0.9997 0.9975 
2 0.9946 0.9946 0.9160 0.9999 0.9846 0.9995 0.9899 
3 0.9936 0.9936 0.9025 0.9992 0.9787 0.9997 0.9981 
4 0.9948 0.9957 0.9252 0.9995 0.9897 0.9994 0.9944 
5 0.9896 0.9913 0.8720 0.9994 0.9766 0.9993 0.9988 
6 0.9122 0.9951 0.9909 0.9987 0.9807 0.9980 0.9926 
7 0.4326 0.9462 0.9026 0.8959 0.9229 0.9521 0.9687 
8 0.9984 0.9985 0.9337 0.9973 0.9937 0.9996 0.9606 
9 0.9952 0.9984 0.9222 0.9970 0.9946 0.9994 0.9723 
10 0.9941 0.9984 0.9120 0.9958 0.9941 0.9994 0.9855 
11 0.9990 0.9992 0.9521 0.9985 0.9961 0.9990 0.9805 
12 0.9991 0.9991 0.9554 0.9994 0.9964 0.9995 0.9775 
13 0.9750 0.9988 0.9599 0.9997 0.9909 0.9961 0.9885 
14 0.9884 0.9996 0.9521 0.9990 0.9931 0.9959 0.9967 
15 0.9995 0.9997 0.9848 0.9998 0.9990 0.9999 0.9853 
16 0.9986 0.9986 0.9667 0.9995 0.9964 0.9999 0.9812 
17 0.8879 0.9990 0.9985 0.9990 0.9940 0.9972 0.9760 
18 0.9959 0.9971 0.8911 0.9943 0.9951 0.9931 0.9908 
19 0.9995 0.9997 0.9553 0.9999 0.9975 0.9991 0.9944 
20 0.9990 0.9992 0.9461 0.9996 0.9963 0.9998 0.9899 
21 0.9923 0.9996 0.9757 0.9991 0.9991 0.9999 0.9866 
22 0.9992 0.9999 0.9933 0.9998 0.9998 0.9999 0.9774 
23 0.9960 0.9996 0.9283 0.9930 0.9966 0.9961 0.9937 
24 0.9910 0.9980 0.9574 0.9952 0.9893 0.9964 0.9613 
25 0.9985 0.9985 0.9351 0.9960 0.9891 0.9988 0.9608 
26 0.9561 0.9894 0.8026 0.9966 0.9799 0.9964 0.9916 
27 0.9948 0.9995 0.9721 0.9979 0.9967 0.9979 0.9923 
28 0.9787 0.9886 0.9483 0.9988 0.9752 0.9961 0.9905 
29 0.9104 0.9987 0.8382 0.9707 0.9985 0.9948 0.9986 
30 0.9738 0.9992 0.9429 0.9831 0.9992 0.9961 0.9925 

Note: data for projectiles 1-20 are taken from [19] (average values for minimum 5 tests for each projectile); results for projectiles 21-
23 are from [13], projectiles 24-26 are from [15], 27-28 from [10] and 29-30 from [11] (test cylinders). 

 

 
Figure 3. Fine and coarse fragments components of the 
generalized Grady distribution fit of the experimental data 
(projectile 1 [19]) 

4. CONCLUSION 
 

The analysis of the most relevant theoretical fragment 
mass distribution models has been undertaken. Using 
the comprehensive statistical approach based on 
comparison with the representative experimental 
database of 30 projectiles, it has been concluded that the 
generalized Grady distribution provides the best 
description of the mass distribution of fragments 
generated by detonation of the HE projectiles. The main 
characteristic of this distribution are physically justified. 
The suggested distribution model can be applied in HE 
projectile efficiency modeling. 

ACKNOWLEDGMENT 

This work has been supported by the Ministry of 
Science and Technological Development, Republic of 
Serbia, through the project 44027: “Special topics of 
fracture mechanics of materials”, which is gratefully 
acknowledged. 



 

134 ▪ VOL. 37, No 3, 2009 FME Transactions
 

Table 3. Relative error of the median Mm for the three 
analyzed distributions (generalized Mott, generalized Grady 
and Weibull) based on 30 experimental fragmentation 
results. Ranks of calculated results are indicated in 
brackets 

Relative error of median  
Gen. Mott Gen. Grady Weibull 

1 0.2459 (3) 0.0554 (1) 0.0876 (2) 
2 0.3895 (3) 0.0985 (1) 0.1870 (2) 
3 0.2768 (3) 0.0149 (1) 0.0698 (2) 
4 0.4140 (3) 0.1160 (1) 0.2213 (2) 
5 0.3918 (3) -0.0006 (1) 0.0762 (2) 
6 0.1080 (3) 0.0932 (2) 0.0735 (1) 
7 0.0508 (1) 0.3209 (3) 0.0612 (2) 
8 0.1751 (3) -0.1112 (2) 0.0003 (1) 
9 0.3604 (3) -0.0698 (1) 0.0841 (2) 
10 0.3769 (3) -0.0856 (2) 0.0829 (1) 
11 0.2425 (3) 0.0515 (1) 0.0831 (2) 
12 0.2691 (3) 0.0689 (1) 0.1193 (2) 
13 0.0833 (3) 0.0607 (2) -0.0012 (1) 
14 0.1210 (3) 0.0763 (2) 0.0105 (1) 
15 0.8198 (3) 0.7621 (1) 0.7933 (2) 
16 0.5482 (3) 0.3365 (1) 0.4569 (2) 
17 0.1668 (2) 0.1699 (3) 0.1360 (1) 
18 0.2058 (3) -0.0878 (1) -0.1178 (2) 
19 0.2361 (3) 0.1656 (2) 0.1203 (1) 
20 0.3259 (3) 0.1357 (1) 0.1666 (2) 
21 1.2373 (3) 0.1409 (1) 0.3726 (2) 
22 0.6374 (2) 0.6458 (3) 0.6212 (1) 
23 0.0592 (1) -0.5295 (3) -0.4608 (2) 
24 -0.0417 (1) -0.2846 (3) -0.2746 (2) 
25 0.3071 (3) -0.1612 (2) -0.0497 (1) 
26 2.8439 (3) -0.0271 (1) 0.3419 (2) 
27 0.1269 (3) -0.0902 (1) -0.1147 (2) 
28 0.3896 (3) 0.2499 (1) 0.2702 (2) 
29 4.5932 (3) -0.9182 (2) -0.7485 (1) 
30 0.8376 (3) -0.6784 (2) -0.3911 (1) 

Note: The same as for Table 2. 
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РАСПОДЕЛА МАСЕ ФРАГМЕНАТА БОЈНИХ 

ГЛАВА СА ПРИРОДНОМ 
ФРАГМЕНТАЦИЈОМ 

 
Предраг Елек, Слободан Јарамаз 

 
У раду се разматрају статистички аспекти 
фрагментације разорних бојних глава. Моделирање 
расподеле масе фрагмената је од великог значаја при 

одређивању ефикасности разорних пројектила. Дат 
је преглед седам релевантних теоријских модела 
расподеле масе парчади: Мотов (Mott) модел, 
генерализовани Мотов модел, Грејдијев (Grady) 
модел, генерализовани Грејдијев модел, 
логнормална расподела, Вајбулова (Weibull) и 
Хелдова (Held) расподела. Поређење ових модела са 
репрезентативном базом података за 30 разорних 
пројектила показало је веома добро подударање 
теоријских и експерименталних резултата. Анализа 
коефицијената детерминације указала је да 
генерализована Мотова, генерализована Грејдијева 
и Вајбулова расподела најбоље описују резултате 
експеримената. Даље поређење ових модела 
засновано на анализи медијане фаворизује 
генерализовану Грејдијеву расподелу чија се 
бимодалност може физички оправдати. Предложени 
закон расподеле масе фрагмената може се 
применити у сложеном симулационом моделу 
ефикасности разорних пројектила. 

 


