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Two methods for enhancing the microcalcifications in digitized 
mammograms are under consideration. First method is based on 
multifractal approach, and second on modern mathematical morphology. In 
multifractal approach, from initial mammogram image, a corresponding 
multifractal “images” are created, from which a radiologist has a freedom 
to change the level of segmentation in an interactive manner. The second 
method, using an appropriate combination of some morphological 
operations, enables high local contrast enhancement, followed by 
significant suppression of background tissue, irrespective of the radiology 
density of the tissue. By iterative procedure this method highly emphasizes 
only small bright details, possible microcalcifications. The interactive 
approach enables the physician to control the level of segmentation. 
Suggested methods were tested through referent mammograms from 
MiniMIAS database and from clinical praxis mammograms. 
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1. INTRODUCTION 
 

Breast cancer is a leading cause of mortality in women 
population in developed countries [1,2]. One of the 
significant signs of possible cancerous changes are 
small calcium deposits in the breast tissue, usually 
referred to as microcalcifications [3]. Those anomalies 
may be viewed in radiology film as small spots brighter 
than surrounding [3,4]. Unfortunately, for several 
reasons: microcalcifications are small sized (typically 
from 0.1 up to a few of millimeters), they often appear 
in an inhomogeneous background tissue, and the local 
contrast is usually low, detection of microcalcifications 
is a difficult task, even for skilled radiologists. 

By digitizing radiology films and applying digital 
image processing algorithms, significant improvements 
of image analysis are possible. Moreover, digital 
mammography, allows direct digitalization: the 
radiology image is converted directly to digital image. 
This technology can overcome many drawbacks 
recognized in classic film technology, but such devices 
are expensive and the detection of microcalcifications 
still remains a difficult task. Conventional contrast 
enhancement algorithms and thresholding [5] are not 
quite appropriate methods since they are pixel oriented 
– they globally change the whole image, not only 
particular details of interest, like microcalcifications. 
Several methods have been proposed for segmentation 
and/or detection of microcalcifications, such as classical 
image filtering [6,7], techniques based on mathematical 

morphology [8,9], stochastic fractal models [10,11], 
wavelet analysis [12-15] and multiscale analysis [16]. 

In this paper the two methods for enhancing 
microcalcifications in digitized mammograms will be 
considered. One method is based on multifractal (MF) 
approach and the other on mathematical morphology 
(MM). In MF approach, the main premise was related to 
the fact that in normal state the human tissue is 
characterized by high degree of self-similarity [17-19]. 
The tissue anomalies are then considered as structural 
“defects”, i.e. as deviations from global regularity of the 
background. Since the MF analysis is capable to 
describe image features both from local and global 
points of view, this analysis may be used for extracting 
anomalies from the background [20-24]. 

Mathematical morphology has been already used for 
digital image processing [3,25]. Morphological contrast 
enhancement methods proved its efficiency in 
fingerprint segmentation [26]. Moreover, the MM 
method may be used for emphasizing small sized bright 
details in the image, thus being capable to enhance 
microcalcifications [27]. 

In Section 2 the modified MF approach adapted to 
extraction of isolated bright objects in digital 
mammograms is described. In Section 3 the MM method 
is presented. The comparison between two described 
methods, through testing on referent mammograms from 
MiniMIAS (Mammographic Image Analysis Society) 
database [28] and from clinical praxis [29], is presented 
in Section 4. Section 5 consists of concluding remarks. 

 
2. MODIFIED MULTIFRACTAL SEGMENTATION 

 
2.1 Multifractal analysis basics 

 
Many natural objects and phenomena exhibit self-
similar or fractal property: a structure is assumed to be 
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made of parts similar to the whole, exactly or 
statistically. Artificially generated fractal structures are 
commonly known as deterministic (or, mathematical) 
fractals [17,18]. These structures are generated by using 
exact rules and they are characterized by the same 
fractal dimension in whole scales, thus they are referred 
to as monofractals. Instead, a variety of natural objects 
may also exhibit self-similarity but only in a statistical 
way. These structures are known as random fractals. 
The fractal dimension of such structures varies with the 
observed scale, thus they are referred to as multifractals 
[18-20]. 

The quantitative description of multifractal property 
can be derived in several ways. Very often a box-counting 
method is used, due to its simplicity. Let the structure S be 
divided into non-overlapping boxes Si of size ε such that 
S Si i= ∪ . Each box Si is characterized by some amount 
of measure, µ(Si), and boxes may be assumed to be 
measure domains. An equivalent parameter suggested to 
the MF analysis is defined by a quantity 
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which is known as the coarse Hölder exponent of the 
subset Si. If ε tends to zero the coarse Hölder exponent 
approaches the limiting value α at observed point 

 
0

lim ( )i
ε

α α
→

= . (2) 

Parameter α depends on the actual position on the 
fractal and describes local regularity of the structure. In 
the whole structure there are usually many boxes (or 
points) with the same parameter α. Consequently, the 
next step is to find the distribution of this quantity, i.e. 
to find the function f(α), known as the MF spectrum, 
over subsets characterized by α. The function f(α) 
describes the global regularity of observed structure 
[18-21]. The MF spectrum can be assumed to be the 
fractal dimension over the subsets characterized by α 
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where Nε(αi) is the number of boxes Si containing a 
particular value of αi. From (3) one can obtain the 
limiting value 
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The MF spectrum f(α) calculated as above is also 
known as the Hausdorff dimension of the distribution of 
α. Note again that the box-counting is only one of the 
several possible methods for estimation of the MF 
spectrum, but due to its simplicity and fast computing 
procedure this method is the most frequently used 
[20,21]. But, irrespective of particular technique for 
deriving MF quantities α and f(α), they describe both 
local and global regularities of the process under 
investigation. Consequently, MF analysis may be used in 
a broad class of signal processing problems, as a robust 
method for describing and/or extracting some features 
probably hidden in a large amount of data [20-24]. 

2.2 Multifractal analysis basics in digital image 
processing 

 
Discrete space introduces several limitations in 
determining multifractal parameters α and f(α). The 
basic limitation is a discrete nature of box sizes 
covering the image space – possible size is an integer 
multiple of the pixel size. Instead of (1), which holds in 
a continuous space, in a discrete space each pixel may 
be characterized by a discrete set of coarse Hölder 
exponents as 
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where µi(m,n) is the amount of a measure within observed 
box size ε = i, and (m,n) are discrete spatial coordinates. 
The limiting procedure given by (2) and (4), meaning ε 
→ 0, is not possible in discrete space since the minimal 
size is εmin = 1. Moreover, quantities α and f(α) are even 
undefined if ε = εmin = 1. Instead, we may estimate these 
quantities indirectically, from bi-logarithmic diagrams. 
For estimating Hölder exponents we can calculate natural 
logarithms of measure value, ln(µi(m,n)), and of the box 
size, ln(i), and plot corresponding points in bi-logarithmic 
diagram ln(µi(m,n)) vs. ln(i). Then, the limiting value of 
α(m,n) is estimated as a slope of linear regression line in 
the log-log space [30]. 

After finding the values of α we may create an “α-
image” – a matrix of the same dimension as initial 
image but filled by the values of α(m,n) with one-by-
one correspondence to image pixels. From this matrix, 
the MF spectrum f(α), also in a matrix form, f(m,n) = 
f(α(m,n)), is estimated as follows. First, continuous 
Hölder exponents are discretized into R values of αr: 

 min ( 1) , 1,2,...,r rr r Rα α α= + − ∆ = . (6a) 

We used the uniform division with 

 max min( ) /r Rα α α α∆ = ∆ = − . (6b) 

If the actual value of α is within the subrange r, i.e., 
if αr ≤ α < (αr + ∆α), it is replaced by αr. Such α-image 
is covered by a regular grid of boxes with integer box 
sizes j = 1,2,… The boxes containing at least one value 
of αr are counted, giving the number Nj(αr). Boxes of 
different sizes are recursively taken into account and 
corresponding Hausdorff measures are calculated for 
each image pixel according to (3) as 
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The dimension of boxes in (7) is denoted as ј, 
instead of i used in (5), indicating to different domains: i 
relates to pixel neighborhood in image domain, while j 
relates to size of regular grid into α-matrix domain. 

Finally, from a set of discrete points in bi-logarithmic 
diagram of lnNj(αr) vs. – ln(j), the MF spectrum f(α) is 
estimated from linear regression, in similar manner as in 
case of estimation of α. The procedure is repeated for 
whole the α-matrix thus obtaining “f(α)-image” – a 
matrix filled by pixel-wise values of f(α) with one-by-
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one correspondence with pixel positions in initial image. 
This procedure is described in details in [30]. 

Different measures µi(m,n), may be used for 
estimating α. Some of the most frequently used 
measures are [20]: 
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where: i is a size of a measure domain around observed 
pixel (m,n), Ω is a set of all pixels (k,l) within a measure 
domain, and g(k,l) is a grayscale intensity at point (k,l). 
Certainly, different measures lead to different Hölder 
exponents and may be used to produce different effects 
on the processed image. 

 
2.3 Adaptation of multifractal analysis to 

segmentation of microcalcifications 
 

By appropriate choice of a pair α and f(α), different image 
features may be extracted and/or enhanced [20-24]. In 
radiology image, the microcalcifications are seen as small 
bright and relative smooth surfaces not belonging to 
surrounding, with a small gray-level variation. Sharp 
change in gray-level arises just around the edge of 
microcalcification [31,32]. But, if microcalcifications are 
located in radiology “dense” tissue, which strongly 
reflects X-rays, the contrast between them and 
surrounding tissue is very low, making their detection 
difficult even for skilled radiologists. 

Having in mind the main features of 
microcalcifications: (i) they are small parts brighter then 
surrounding tissue, (ii) not belonging to background 
tissue (rare events), with (iii) a relatively high local 
contrast, having (iv) different size and shape, and (v) 
usually clustered, we can infer the guidelines for 
adaptation of multifractal analysis targeted to 
segmentation of microcalcifications. From an MF image 
with one-by-one pixel-wise correspondence with an 
original image, we should be able to select possible 
microcalcifications as image pixels having high α (high 
local contrast) and low f(α) (rare events). In [30] it was 
shown that the capacity measure “Minimum”, given by 
(8b), applied to an inverted (negative) image, is well 
suited to emphasizes local image regularity. Namely, for 
negative image bright anomalies (possible 
microcalcifications) migrate to dark region, and in this 
region the local contrast, described by the ratio 
∆ln(µ)/∆µ is very high. In this way, we obtain the effect 
of “logarithmic amplifier”, which strongly enhances just 
small gray level variations in the dark zone of inverted 
image (bright zone of an original image). This 
procedure does not reduce the sensitivity within regions 
in the middle gray, while in the bright zone of inverted 
image (dark zone in an original image) a contrast 
between microcalcifications and surrounding tissue is 
naturally high, as approved in [30]. 

Considering the feature (iv), we found that disk-
shaped domains are well suited to most of 

microcalcifications. The multifractal spectrum is 
determined by box-counting method according to (7). 
The box sizes may vary from j = 1 (one α pixel) to j = 
max(M,N) (a whole α-image of size M × N). Since our 
goal is to favor small singularities, i.e., high frequency 
components in α distribution, we used small boxes sized j 
= 1 to j = 16 α-pixels. Namely, by the increasing of the 
box size, the number of the nonempty boxes decreases. 
However, if the box size is large enough the number of 
nonempty boxes tends to saturation: it may remain 
unchanged through the box size increases. Then, points 
on bi-logarithmic plot lnNj(αr) vs. – ln(j) stay on 
horizontal line, significantly reducing the resolution of 
calculated f(α) values. On the contrary, by using smaller 
boxes, the number of nonempty boxes significantly varies 
with the box dimension change, preventing saturation and 
enabling high resolution of estimated f(α) values [30]. 

The number of α subranges, denoted as R in (6), also 
influences the accuracy of multifractal spectrum. A small 
number of subranges has an effect of low-frequency 
filtering, yielding to smooth spectrum but with small 
resolution and small “sharpness”. Conversely, too much 
subranges produce saw-toothed (“erratic”) spectrum, 
with more details. In our research, as a compromise 
solution, the value of R = 100 is adopted. 

 
3. MORPHOLOGY SEGMENTATION 

 
3.1 Basics of mathematical morphology 

 
The morphological image processing techniques are 
based on modern mathematical set theory [25]. The 
morphological operations have been originally 
developed for the analysis of binary (black and white) 
images, and later extended to monochrome (gray-scale) 
and multicomponent (color) images [5]. Morphological 
operations are based on the relationships between the 
two sets: an input image matrix, I, and a processing 
operator, so-called the structuring element, S, which is 
usually much smaller than the input image. Although 
the pixels of structuring element may have arbitrary 
values, the most commonly used is the flat structuring 
element, having the same values of all nonzero pixels. 
By selecting the shape and size of structuring element, 
different results may be obtained in output image. 

Two morphological operations: dilation and erosion 
are fundamental to morphological processing. The 
dilation of a two-dimensional gray-scale digital image, 
I(m,n), by a two-dimensional flat structuring element, 
S(i,j), is defined as [5]: 

 ( ) { }( , ) max ( , )I S m n I m i n j⊕ = − − , (9) 

with [(m-i),(n-j)] ∈ DI and (i,j) ∈ DS, where DI and DS 
are the domains of I and S, respectively. The origin of S 
is assumed to coincide with the actual current position 
(m,n) of the input image. This way the pixel element at 
point (m,n) is simply replaced by the maximum value of 
image pixels covered by the nonzero members of the 
structuring element. The output image tends to be 
brighter than the input, and dark details are reduced or 
completely removed, depending on how their values and 
shapes relate to the structuring element used. 
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Gray-scale erosion is defined as: 

 ( ) { }( , ) min ( , )I S m n I m i n j= + + , (10) 

assuming [(m+i),(n+j)] ∈ DI and (i,j) ∈ DS, where DI 
and DS are the domains of I and S, respectively. The 
condition that (m+i) and (n+j) have to be in the domain 
of I, and i and j have to be in the domain of S, denotes 
that the structuring element is covered by I. The erosion 
results in replacing pixel values with the minimum 
value of image pixels within the domain defined by the 
size and shape of the structuring element. The output 
image tends to be darker than the input and the bright 
details in the input image are reduced or removed, 
depending on how their values and shapes relate to the 
structuring element. 

The next two, very important morphological 
operations, are opening and closing. The opening of 
image I by a structuring element S is defined as erosion 
followed by dilation, while closing has the opposite 
order of these operations: 

 ( )I S I S S= ⊕ , opening (11) 

 ( )I S I S S• = ⊕ , closing. (12) 

As a consequence, with gray-scale opening one can 
remove bright details smaller than the structuring 
element used. Large details, both bright and dark, which 
are larger than the structuring element, remain nearly 
unchanged. Conversely, closing operation removes dark 
details smaller than the structuring element. 

By combining morphological opening and closing, 
various image processing tasks can be performed. 
Enhancing (or suppressing) details smaller than 
structuring element may be obtained by morphological 
operations known as top-hat (TH) and bottom-hat (BH) 
transformation. The top-hat transformation is obtained 
by subtracting a morphologically opened image from 
the original one: 

 ( )TH I I S= − . (13) 

As already mentioned, by gray-scale opening one 
can remove the bright details from an input image, 
smaller than used structuring element. Subtracting an 
opened image from the original one yields an image, 
which emphasizes the features removed by opening. 
Thus, TH transformation is an excellent tool for 
enhancing small bright details from a nonuniform 
background, and it has proved its efficiency in 
fingerprint segmentation applications [26]. 

The morphological bottom-hat transformation is 
defined as a difference between a morphologically 
closed image and an original image: 

 ( )BH I S I= • − . (14) 

Consequently, this transformation produces an effect 
opposite to the top-hat transformation. That means, by 
using closing instead of opening, and subtracting the 
original image from the closed one, one can extract dark 
features from a brighter background. Note that both 
transformations equalize a nonuniform background 
illumination. 

3.2 Local contrast enhancement using 
morphological operations 

 
Local contrast enhancement can be achieved by adding 
an original image to the difference between top-hat and 
bottom-hat transformed image. The output image called 
the contrast image, C, is given by: 

 ( )C I TH BH= + − . (15) 

By the difference (TH – BH), bright details, smaller 
than the structuring element, are strongly emphasized, 
while dark details are suppressed. Furthermore, if we 
add an original image to this difference a high-
frequency filtering is achieved. Consequently, the 
enhancement of bright details smaller than the 
structuring element S is reinforced, and uneven 
background (surrounding tissue texture) is highly 
equalized. This procedure can be iteratively repeated, by 
using the output image from the k-th iteration as the 
input image for the next, (k+1)-th, iteration, i.e., by 

 ( 1) ( ) , 1, 2,3,...k kI C k+ = = , (16) 

and repeating the procedure described by (13) to (15). 
The proposed method converges very rapidly. Our 
intensive simulations showed that not more than three 
iterations are sufficient. The transformed image, 
obtained after convergence, contains only small bright 
details, while uneven background tissue is equalized. 

By an appropriate selection of shape and size of the 
structuring element, as well as the number of necessary 
iterations, the proposed algorithm may be customized to 
particular processing tasks. 

 
3.3 Visualization of microcalcifications in 

mammograms 
 

The iterative procedure for local contrast enhancement, 
described by (15) and (16), started with the structuring 
element whose size is close to expected upper limit of 
microcalcifications dimension (about 2.5 mm) [3]. The 
size of structuring element appropriately decreases with 
subsequent iterations, since once finding the possible 
microcalcification we tried to detect its peak, according 
to typical feature of microcalcifications, described in 
[32]. 

The final segmentation of microcalcifications is 
obtained by thresholding applied to the output image 
after k-th iteration, C(k). First, the magnitudes of all pixel 
values in output image are normalized to the range [0-
1]. After that, by choosing the proper threshold value, T, 
one can extract bright details (microcalcifications 
candidates) from the background. Any pixel with a gray 
level L, larger than T is labeled white (corresponding to 
the normalized value 1), while other pixels are labeled 
black (the value of 0). In this way, the extracted details 
are presented as white islands in the black surrounding. 
The contour lines of the segmented bright objects may 
be extracted and superimposed onto the original, 
indicating to (possible) microcalcifications. This 
thresholding procedure may be performed in an 
interactive manner allowing adjustment of the threshold 
level T for finding the best result. 
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4. COMPARISON OF TWO METHODS 
 

The efficiency of suggested methods is verified through 
referent mammograms from public domain MiniMIAS 
database [28]. MiniMIAS database has been derived 
from MIAS (Mammographic Image Analysis Society) 
database [33]. Films are taken from the UK National 
Breast Screening Programme. All mammograms are in 
medio-lateral (ML) oblique view and were digitized to 
50 × 50 micron resolution. The images have been 
reviewed by the consultant radiologists and anomalies 
have been identified and marked: the location of the 
anomaly and the radius of a circle which encloses it. 
Images from MIAS database were rescaled from 50 to 
200 microns per pixel forming publicly available 
MiniMIAS database. All mammograms in the 
MiniMIAS database have the same size of 1 MB, same 
dimension (1024 × 1024 pixels) and same gray-level 
range (from 0 – black to 255 – white). 

 
4.1 Radiology easy case 

 
Figure 1a represents full-sized mammogram (1024 × 
1024 pixels) mdb219.pgm from MiniMIAS database 
and its part (128 × 128 pixels), Figure 1b, around 
clinically approved microcalcifications (under the white 
circle in Figure 1a). This case belongs to an “easy” one, 
since the tissue is radiology sparse and 
microcalcifications are visible even for not so skilled 
radiologist. Figures 1a and 1b clearly confirm basic 
features of microcalcifications: they are small bright 
anomalies – parts in a mammogram not belonging to 
background tissue. In geometrical interpretation, they 
are seen as singular sets of points. From the multifractal 
standpoint they are characterized by both high α and 
low f(α) values, because, they represent sharp local 
changes and globally rare events [20-22]. The MF 
spectrum f(α) is depicted in Figure 1c, while α and f(α) 
images are presented in Figures 1d and 1e, respectively. 

In Figure 1d the edges of microcalcifications are 
represented as white pixels (high α values) while in 
Figure 1e the edges are black (low f(α) values). Note 
that in α-image the background is characterized by low 
α-values (dark regions, although the background is not 
pure black). 

In order to extract microcalcifications we have to 
choose image pixels characterized by high values of α 
and low values of f(α). Referring to multifractal 
spectrum in Figure 1c, if we select image pixels from 
desired range of f(α) values: f1 ≤ f(α) < f2, and refine the 
segmentation by using successive morphological 
closing and opening procedures, we can obtain contour 
lines around segmented details. These contour lines 
have been superimposed to the original image and 
displayed as in Figure 1f, for 0 ≤ f(α) < 0.4, strongly 
indicating to a cluster of microcalcifications. By 
changing f(α) range, we can interactively choose the 
appropriate segmentation level for each particular case, 
as depicted in Figure 1g. 

Figure 2a shows the output image C(3), obtained by 
applying the morphology segmentation after k = 3 
iterations. The iterative image processing is performed 
following (15) and (16) using only the pixels within the 

segmented breast tissue region. Disk shaped structuring 
element of 5 pixels radius was used in the first iteration 
(corresponding to the microcalification diameter of 
about 2.25 mm). Microcalcifications are highly 
enhanced, while background tissue is equalized and 
homogenized. Figure 2b shows the original image with 
superimposed microcalcifications contour lines. 
Contour lines are extracted from the normalized image 
C(3) by applying the threshold of T = 0.4. For better 
visualization, a zoomed detail of the size 256 × 256 
pixels is presented in Figure 2c. 
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Figure 1. Multifractal segmentation: (a) mammogram 
mdb219.pgm from MiniMIAS database and (b) its selected 
part around clinically approved microcalcifications, (c) an 
MF spectrum of an image from Figure 1b, (d) α image, (e) 
corresponding f(α) image of image from Figure 1b and (f) 
and (g) superimposed contour lines around segmented 
details for 0 ≤ f(α) < 0.4 and 0 ≤ f(α) < 0.6, respectively 

(a) (b) 

(c)

(e) (d)

(g) (f)
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Figure 2. Morphology segmentation: (a) transformed image 
C(3) after three iterations, (b) mammogram mdb219 with 
superimposed microcalcifications contour lines (threshold 
T = 0.4) and (c) zoomed detail of size 256 × 256 pixels 
corresponding to the white rectangle from Figure 2b 

 
4.2 Radiology hard case 

 
A mammogram mdb253.pgm from MiniMIAS database 
is shown in Figure 3a. Clinically approved 
microcalcifications are located within a small black 
circle. A part of this mammogram (256 × 256 pixels) 
around approved microcalcifications is presented in 
Figure 3b. The breast tissue is very dense causing very 
poor contrast between anomalies and surrounding tissue. 
Thus, the visual detection of microcalcifications is 
extremely difficult even for skilled radiologists. The 
corresponding f(α) image obtained from the image in 
Figure 3b is shown in Figure 3c. Superimposed contour 
lines around pixels from Figure 3b characterized by 0 ≤ 
f(α) < 0.3 are plotted in Figure 3d. As we can conclude, 
clinically approved microcalcifications are highly visible. 

Morphology transformed image C(3) of the breast 
region from Figure 3a, after three iterations described by 
(15) and (16), is shown in Figure 4a. Due to extremely 
low contrast, visual detection of the enhanced 
microcalcifications is still difficult. But, after applying 
the thresholding on the C(3) image, microcalcifications 
may be extracted as shown in Figure 4b. The contour 
lines are obtained from C(3) after applying the threshold 
of T = 0.65. Besides verified microcalifications, we 
segmented other anomalies, possible microcalcifications, 
outside from declared region – signed by black arrows in 
Figure 4b. 

 
4.3 Mammogram with high masking effect caused 

by background tissue 
 

As a third example, we will observe a mammogram 
mdb223.pgm from MiniMIAS database as shown in 
Figure 5a. Clinically approved microcalcifications are 
located somewhere within small black circles. A part of 
this mammogram (256 × 256 pixels) around approved 

microcalcifications is presented in Figure 5b. 
Microcalcifications are visible for radiologists, but 
automated selection is not so simple since background 
tissue has similar local contrast producing masking 
effect. However, both of our algorithm may extract very 
efficiently regions containing microcalcifications 
without affecting background tissue, as shown in 
Figures 5c and 5d. In Figure 5c the segmentation results 
of MF method by making contour lines around extracted 
details for 0 ≤ f(α) < 0.4, is depicted. The same part of 
mammogram, shown in Figure 5b, is morphology 
segmented and obtained results are shown in Figure 5d. 
Black arrow indicates to possible macrocalcification. 
   

 

   

 

  
Figure 3. (a) original mammogram mdb253.pgm from 
MiniMIAS database and (b) its selected part (256 × 256 
pixels) around clinically approved microcalcifications, (c) 
multifractal segmentation – f(α) image of image in Figure 3b 
and (d) multifractal segmentation – superimposed contour 
lines around pixels from Figure 3c having 0 ≤ f(α) < 0.3 

 

  
Figure 4. Morphology segmentation: (a) morphology 
transformed image C(3) after three iterations and (b) 
superimposed contour lines around segmented details for 
threshold of T = 0.65 

 
4.4 Mammogram from clinical praxis 

 
The last example, mammogram r21.tif, depicted in 
Figure 6a, is from clinical praxis from Clinical Center 
“Bezanijska kosa” in Belgrade, Serbia. The film 
digitalization was adjusted to 600 dpi (43 micrometers 
per pixel). Notice that mammogram is cranio-caudal 
(CC) oblique view. We analyzed only a part of 
mammogram within superimposed white dashed square. 

(a) (b) 

(c) 

(a) (b) 

(c) (d) 

(a) (b) 
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Results after MF and MM segmentation are shown in 
Figures 6b and 6c, respectively. According to increased 
mammogram resolution compared to MiniMIAS 
database (43 micrometers vs. 200 micrometers), disk 
shaped structuring element of 25 pixels radius was used 
(corresponding to the microcalification diameter of 
about 2.2 mm). 
  

 

 

 

 

  

 
Figure 5. (a) original mammogram mdb223.pgm from 
MiniMIAS database and (b) its selected part (256 × 256 
pixels) around clinically approved microcalcifications, (c) 
multifractal segmentation – superimposed contour lines 
around segmented details from image in Figure 5b having 0 
≤ f(α) < 0.4 and (d) morphology segmentation – 
superimposed contour lines for threshold of T = 0.65 

 

  
Figure 6. (a) mammogram r21.tif from clinical praxis, (b) 
superimposed contour lines after segmentation of 
mammogram part within white dashed square by 
multifractal method for 0 ≤ f(α) < 0.4 and (c) superimposed 
contour lines after segmentation of mammogram part 
within white dashed square by morphology method for 
threshold T = 0.65 

4.5 Comparison between multifractal and 
morphological method 

 
Both described methods emphasize anomalies in 
mammograms brighter than the surrounding tissue. The 
multifractal approach recognizes microcalcifications as 
“defects” in the surrounding tissue structure. 
Morphology based method uses appropriate 
combination of morphology transformations to enhance 
local contrast and reduce background tissue texture. 
Different basic principles of these methods cause 
different way of anomaly segmentation. 

Multifractal method extracts details have significantly 
lower multifractal dimension than their surrounding. 
Microcalcification, by itself, is a relatively homogenous 
small bright surface in a mammogram. As we already 
mentioned, a sharp change in gray-level arises just around 
the edge of microcalcification. First, we invert 
mammogram, moving bright anomalies to the dark region 
and putting them under strong influence of the 
“logarithmic amplifier”. This amplified local contrast 
causes suddenly changes in measure values by increasing 
measure domain, producing relatively high values of α 
coefficients just around the microcalcification. However, 
the pixels within strong textured tissue often have high α 
coefficients, too. To distinguish anomalies from highly 
textured tissue, we determine fractal dimension of α 
image. The pixels within textured tissue are frequent 
events in a mammogram, causing their fractal dimension 
be greater than 1, f(α) > 1, because by the decreasing of 
the covering box size overall number of the nonempty 
boxes proportionally increases [30]. On the other hand, 
the tissue anomalies are rare events, having small fractal 
values, f(α) ≤ 0.5, since by decreasing of the covering box 
size overall number of the nonempty boxes remains 
practically unchanged [30]. Microcalcification, by itself, 
occupies small area in a mammogram, and by splitting 
larger covering boxes into smaller ones, the overall 
number of nonempty boxes (e.g. boxes overlapping with 
microcalification area) increases very slowly. This causes 
small slope of fitting line in bi-logarithmic plot used for 
f(α) estimation. 

Mutifractal segmentation emphasizes the contour 
around microcalcification, because the points lying on 
this boundary have at the same time very high α and 
very low f(α) values. Therefore, microcalcifications are 
segmented from multifractal images as those area of 
pixels, which have both high α and low f(α) values. 

Morphology based method emphasizes 
microcalcifications by direct increasing of local contrast 
using appropriate combination of top-hat and bottom-
hat transformation. This method enhances the brightest 
area within the microcalcification surface in a 
mammogram. Although microcalcification represents 
small relatively homogenous surface, there is small 
brightness (gray-level) decreasing by moving from 
center of microcalcification toward its periphery. The 
presence of this brightness gradient has been exploited 
in [32] for successful simulation of microcalcifications. 
Morphological method enhances this brightness 
gradient, remaining its central (the brightest) part 
unchanged, while eroding its peripheral area. Due to 
this, morphology segmented details looks “eroded” and 
area under contour lines around them is smaller than in 

(a) (b) 

(c) (d) 

(a) 

(b) (c) 
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multifractal segmentation. This was expected, because 
multifractal method segments boundary line around 
microcalcification, while morphology method segments 
its brightest, central area. 

It should be noticed that, due to its simplicity, the 
morphological method is much faster than the 
multifractal one. Morphology method is suitable for real 
time mammogram processing. On the other hand, when 
once creating multifractal images, one can extract not 
only singular details (in this case microcalifications) 
from a mammogram, but also the other image features, 
like edges, texture areas, flat areas, etc., by appropriate 
selection of desired range of α and/or f(α). 

 
5. CONCLUSION 

 
Our research was addressed to the extraction of 
microcalcifications in digital mammograms. In original 
image domain, microcalcifications are represented by 
small bright spots not belonging to background tissue, 
usually in the form of clusters, and characterized by 
sharp change of local contrast just at their edges. 

In multifractal terminology these features are 
described both by high values of Hölder exponent α 
(high local changes) and low values of its distribution 
f(α) (rare events in global sense). Multifractal analysis is 
adapted to enhance small contrast changes permitting 
very good detection of calcifications even in radiology 
dense tissue when classical visual detection and/or 
image processing algorithms fall down. After obtaining 
multifractal image a radiologist has the freedom to 
change the level of segmentation in interactive way, by 
setting the range of f(α) values, and to find regions 
which may contain microcalcifications. 

It is also shown that the local contrast enhancement 
followed by high suppression of surrounding tissue can 
be achieved using an appropriate combination of 
morphological top-hat and bottom-hat transformations. 
By a proper choice of shape and size of structuring 
element, the proposed algorithm may be customized to 
the particular processing task. Iterative application of 
the proposed method highly enhances small, bright 
details and suppresses the background tissue. This is 
suitable for mammogram analysis, since tissue 
microcalcifications, which are often an early breast 
cancer sign, are usually displayed as bright areas in a 
mammogram due to their high attenuation of X-rays. 
The simulation of the proposed method suggested that 
three iterations are quite sufficient for extracting desired 
details. The final segmentation is obtained by 
thresholding the processed output image. By an 
appropriate choice of the threshold, one can extract 
desired bright details from the background and then 
segment their contour lines. 

By superimposing contour lines onto the original 
mammogram in both methods, visualization of the 
segmented bright details is highly improved. This 
procedure may be performed in an interactive manner to 
allow adjustment of threshold level for the best results. 

The efficiency of both proposed method was tested 
through public domain mammograms from MiniMIAS 
database and from clinical praxis. In all tested cases the 
proposed methods successfully detected 
microcalcifications, previously confirmed by a radiologist. 
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ИСТИЦАЊЕ МИКРОКАЛЦИФИКАЦИЈА У 

ДИГИТАЛНИМ МАМОГРАМИМА: 
МУЛТИФРАКТАЛНИ И МОРФОЛОШКИ 

ПРИСТУП 
 

Томислав Стојић, Бранимир Рељин 
 
Приказана су два метода истицања 
микрокалцификација у дигиталним мамограмима. 
Први метод заснован је на мултифракталној анализи 
дигиталне слике, а други на примени модерне 
математичке морфологије. У мултифракталном 
приступу креирају се мултифракталне „слике“ 
изворног мамограма, на основу којих се даље 
интерактивно бира ниво сегментације детаља. Други 
метод, погодном комбинацијом морфолошких 
операција, повећава локални контраст уз снажно 
потискивање позадинске текстуре, независно од 
радиолошке густине ткива дојке. Итеративним 
поступком морфолошки метод високо истиче само 
мале детаље сјајније од околног ткива, потенцијалне 
микрокалцификације. Интерактивни приступ код 
оба метода омогућава радиологу да контролише 
ниво издвајања детаља. Предложени методи су 
тестирани на референтним мамограмима из 
миниМИАС базе и из клиничке праксе. 

 
 
 
 
 


