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A Constant Wall Temperature
Microbearing Gas Flow

A non-isothermal two-dimensional compressible gas flow in a slider
microbearing with constant and equal wall temperature is investigated in
this paper analytically. The slip flow is defined by the Navier-Stokes and
energy continuum equations along with the velocity slip and the
temperature jump first order boundary conditions. Knudsen number is in
the range of 107 to 107, which corresponds to the slip flow. The gas flow
is subsonic and the ratio kM’/Re is taken to be a small parameter.
Moreover, it is assumed that the microbearing cross-section varies slowly,
which implies that all physical quantities vary slowly in x-direction. The
model solution is treated by developing a perturbation scheme. The first
approximation corresponds to the continuum flow conditions, while the
second one involves the influence of inertia as well as rarefaction effect.
The analytical solutions of the pressure, velocity and temperature for

moderately high Reynolds numbers are obtained.

Keywords: microbearing, non-isothermal, slip flow, inertia, analytical
solution, low Mach number, high Reynolds number.

1. INTRODUCTION

Gas lubrication is a component of most micro-electro-
mechanical systems (MEMS) such as microbearings,
micropumps, microvalves or magnetic disk storages [1].
The hard disc industry demands nanometer distances
between slider with read/write head and rotating
recording disk. The gas slider bearing flow is traditionally
modelled by the Reynolds lubrication equation which is
derived from the Navier-Stokes and continuity equations
under the no slip continuum boundary conditions. The
thickness of the lubricating film in microdevices is of the
order of the mean free path of gas molecules and the
continuum theory is not applicable. A wide range of
Knudsen numbers is possible in microdevice flows, but
the slip flow regime with 10° < Kn < 0.1 is the most
frequent. Therefore, solutions for such flow conditions in
microbearings are very useful.

Analytical and numerical investigations of the slip
gas flow in microbearings were performed. Burgdorfer
[2] made the Reynolds equation correction by including
the Maxwells first order slip conditions at the wall.
Mitsuya [3] set up 1.5-order slip model for ultra thin gas
lubrication. Hsia and Domoto [4] developed the second
order model by incorporating their second order
boundary condition in the Reynolds lubrication equation.
They also carried out experiments with different gases in
microbearings, and compared the obtained load carrying
capacity with analytical results. Sun et al. [5]
incorporated expression for the effective viscosity in the
Navier-Stokes equation and obtained modified Reynolds
equation. Bahukudumbi and Beskok [6] developed semi
analytical model for gas lubricated microbearings. They
remarked that the viscosity coefficient depends on the
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Knudsen number. Since the proposed relation is not
general, the rarefaction correction parameter is
introduced in this relation. Values of the rarefaction
correction parameter are defined for certain Knudsen
number and surface accommodation parameter values by
comparing obtained flow rate results with numerical
solutions of the Boltzmann equation under the same
conditions [7,8]. Finally, the derived function of the
viscosity coefficient is introduced in the model, and the
new modified Reynolds equation is obtained. Liu and Ng
[9] analysed the posture effects of a slider air bearing
and the influence of the lower plate velocity on the
pressure distribution and velocity field with a direct
simulation Monte Carlo method.

The model developed in this paper for non-
isothermal microbearing gas flow with constant and
equal wall temperature is based on already verified
results for a isothermal pressure driven gas flow in a
microchannel with slowly varying cross-section [10]
and isothermal gas flow in the microbearing [11,12].
The low Mach number gas flow is considered, which
enables a definition of the small parameter & = kM”/Re.
Moreover, it is assumed that the channel cross-section
varies slowly, which also implies that all physical
quantities vary slowly in the flow direction. All these
assumptions together with the defined relations between
the Reynolds, Mach and Knudsen number and the small
parameter &, enable a precise estimation of each term in
the dimensionless governing equations, as well as in the
boundary conditions. In the solving procedure, the
pressure, velocity and temperature are expressed as the
perturbation series of the Knudsen number. The system
of nonlinear second order differential equations is
obtained, and it is solved numerically.

2. PROBLEM DESCRIPTION
Two-dimensional and compressible gas flow in

microbearing with constant wall temperature (as
presented in Figure 1) is considered. Although the
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temperature of the walls is the same and constant, and
the distance between the walls is of the micron scale,
the gas flow is not treated as isothermal. In that way,
apart from the continuity, momentum, equation of
state, and slip boundary condition at the wall, the
energy equation and temperature jump boundary
condition has to be involved too. These equations are
transformed into a dimensionless form by the
introduction of the following scales: exit microbearing

height /Ie for all lengths, wall velocity u, for all

velocity components, walls temperature 7, for

w
temperature and the pressure and density are scaled
with the corresponding values p, and p, at the
channel outlet cross-section. Then the assumption of
the low Mach number flow conditions enables a
definition of the small parameter

¢ =KkM*/Re, (1)

where x = ¢,/c, is the ratio of specific heats, M, is the
referent Mach number value defined as

Me:’;w/\/’(ﬁe/ﬁe 2

and Re, is the referent Reynolds number

Re, = peiiyhe [fi 3)
i
f:////////’////
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Figure 1. Slider microbearing geometry

Dynamic viscosity # is assumed to be constant.

Now, the expression for the small parameter & follows:
&= iy, / (ﬁehe

The assumption of the slowly varying channel cross-
section ¢ = ¢ << 1, where a is the channel wall
inclination (Fig. 1) implies that all flow parameters
change vary slowly in the x-axes direction, which is
explicitly expressed by the introduction of the slow
coordinate ¢ = ex. Also, the crosswise velocity
component v is much smaller than the streamwise
component u, which leads to the following relation:
vixy) =el(&y), V'=0(1).

The continuity equation, the Navier-Stokes
equations for the stream-wise and cross-wise
directions and the equation of state in dimensionless
form are:

o(pu)loé+0(pV)/ay=0 4)
2 ou ou|_ op i 2
M p( o Vayj o +0(,s) (5)
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op (2
5—0(8 ) (6)
Kprrp[ua—TwaTJ M2Pr(-1)u
o oy o0&
2
8 (or ou )
+ay[a ]+M Pr (K-l)[aj +0(g ) 7
p=pT. (3

Further, all dimensionless parameters are denoted
without a bar, i.e. pressure as p, stream-wise velocity
component as u, temperature as 7, etc. The thermal

conductivity & is treated as constant. Therefore, the
Prandtl number Pr=c, i / k is constant, where ¢, is the

specific heat at the constant pressure. In accordance
with the slip flow theory, the gas velocity and the
temperature at the wall in the dimensionless form are
respectively:

( )Kn\/_ﬁu

y=0:u-u, = , V=0 (9
Oy1 p ay
y=h(£): u=- (2-0:2) KnNT ou =02 (10
02 p dg
2_
y:O,T:Tw+( or) 2k Kng NT 6T (11
or (xtl) Pr p oy
y=h(§),T:Tw—(2_0T) 2k Kn, \T oT (12

or (xtl) Pr p 8y

These are well-known Maxwell-Smoluchowski first-
order slip boundary conditions, where o, and oy are
momentum and thermal accommodation coefficients
and Kn, is the reference Knudsen number defined as

Kng = A / h. Since the molecular mean-free path is

defined as izﬁ\/nRTN/z/[? [6

local Kn = /i/ h and the reference Knudsen number K,

], the relation between
is Kn=KnNT / p . Furthermore, the relation between
Kn., M. and Re, is:

M, |nx (13)
Re, \ 2

Kn, =

(5]

The presumption of extremely subsonic flow in the
slip regime enables the relation between the Mach and
Knudsen numbers and the small parameter &: xM,” =
pe”, p = O(1) and Kn. = 5", n = O(1). Due to the
relation between the Reynolds, Mach and Knudsen
number (13) and the definition of the small parameter ¢,
the exact expression for the Reynolds number and
relations among introduced parameters m and n, as well
as f and 5 follows: Re. = fe™', 2n + m = 2 and
17 =+/7/2f . Supposition of the low Mach and Knudsen

number flow, limited m and n values to positive
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domain, which together with the relation 2n + m = 2
gives that this parameters must be in the following
ranges: 0 <m < 2 and 0 < n < 1. In this frame two
characteristic problems could be analysed: Re < 1 if 1 <
m<2 = 0<n<l12andRe>1if0<m<1 = 1/2<
n < 1. In derivation of the Reynolds equation for
lubrication theory, the inertia term is neglected which
corresponds to the low Reynolds number case which
was already obtained [11]. In this paper solution for Re
> 1 is presented. Values for parameters m and n are
chosen to enable attendance of the inertia effect together
with the rarefaction: m = n = 2/3. The relations for the
dimensionless numbers are: Re, = ﬁe'm, KM, = ﬁem,
Kn,= 7782/ 3

All dependant variables from (4) to (8), i.e. pressure,
temperature and velocity components, are presented in
the form of perturbation series

f=f+&f, (14)

where fy is the solution for the flow with no-slip
boundary conditions, and f; comprise the corrections for
the inertia effect and the slip on the wall. The systems of
equations for two approximations together with
corresponding boundary conditions are obtained by
substitution perturbation series for pressure and
velocities in (4) to (8) and (9) to (12). In order to catch
up the slip effect already in the second approximation,
the power for small parameter in the second term on the
r.h.s. of (14) is the same as for the Knudsen number
(¢””). As inertia in (5) is of the order xM,” = f&*?, for
the perturbation series in (14), the inertia effect is
included also in the second approximation. The
velocity, temperature and pressure perturbation
expressions, in the form of equation (14), are introduced
in the continuity equation (4), the momentum
conservation equation (5) energy equation (7), equation
of state (8) and the boundary conditions (9) to (12).
From these equations, the terms of the order O(1) and
O(e*) are extracted, and the following sets of equations
are obtained

o for O(1)
0 0 V
(Po“o)+ (o 0):0 (15a)
¢ y
6p0 62140
— = (15b)
o5 oy
2
6—7;):0 (15c¢)
y
Po = Pl (15d)
yZOZMOZI,VOZO,TOZI (156)

y=h(§):uO=O,V0=0,T0=1 (15f)
o for O(s™?)

0( pour + pitg ) N o(po¥i+ )
o0& oy

=0 (16a)
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8y2 K oy
po=pT (16d)
- T;
y=02u1=—2 UVI_U\/_O%aVlzoa
Oy Py oy
2-— Ty OT,
T - or 2k l\/_O_O (16¢)

or (KH) Pr py oy

2-0 Ty o dh

y=h(£): u :_Mﬂﬂ’ =iy
Oy2 Po 0 df
T = (2—O'T) 2K n \/%aTO
=— 270

= . 16
or (x+l)Pr py oy (16f)

The solution procedure for each system of these
equations is the same. The approximations of the
temperature 7,, 7 are derived from the corresponding
energy equations (15c) and (16c), then stream-wise
velocity component wu,, u; from the corresponding
momentum equations (15b) and (16b). The pressure
approximations py, p; are derived from the
corresponding continuity equations (15a) and (16a).
Temperature, velocity and pressure equations for the
first two approximations are obtained in the following
form

« the first approximation

Ty =1 (17)
w=1-2 1 2|4y 22 (18)
0=, Pozfl p02§,

(4 (port) | ~65 (poh) =0 (19)

o the second approximation

K-1 (P6)2 4 po[hpy 1) 3
T =—Prp—| =y - 2 — [+
K| 8& 2525 h

r ’ 2 2 ’
+ 2_p+[hpiJ +L2 y__[@+in (20)
g \2g )2 \25 2h

u :A(y6—h5y)+B(y5—h4y)+
+C(y4—h3y)+D(y3—hzy)+E(y2—hy)—

_2—0sz(P6h_ij PR TR
oyy hpo\ 25 h oy Po

where:
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where the stream-wise coordinate is X = ¢/&. The prime
denotes d/dX, while % is the channel cross-section in
dependence on X defined as: A(X) = h; — X(h; — 1), where
h; is dimensionless parameter defined as ratio of the

inlet and outlet microbearing height 4 =/, / h, .
The channel length expressed by the slow coordinate

is: &= gi/ﬁe = ,&ﬁwi/(ﬁefzez). The bearing number
definition is A =6/l [ / ( fyeﬁez) and it is evident
relation with parameter &

& =A/6 (29)

This means that pressure distribution and velocity
field which are obtained from (17) to (21) and (28) is
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defined by bearing number A, referent Knudsen number
Kn., channel geometry # and parameter #. The system
of the two second order differential equations (19) and
(28) that enables the prediction of pressure along the
microbearing, demands four boundary conditions at the
channel inlet — py, p1, po’, pi’. But, the first derivate of
pressure is not known. This problem is overcome by
using the known pressure at channel outlet instead of
the first pressure derivate at the inlet, which imposed the
application of the shooting method for the solving of
system of equations. The boundary conditions for
pressure, prescribed at the inlet and outlet are X =0, p =
po=Lp=0andX=1,p=py=1,p;=0.

3. RESULTS AND DISCUSSION

The defined perturbation analysis shows that the inertia
is already involved in the second order momentum
equation for the moderately high Reynolds number
flows (16b). Moreover, except for the sole conduction
term in the first approximation, the convection,
dissipation and rate at which work is done in
compressing the element of fluid terms appear in the
second approximation of the energy equation, too (16c¢).
Hence, the acquired gas temperature field is non-
isothermal.

In addition, it has been proven here that the
temperature solution does not comprise the temperature
jump effect at the wall even in the second
approximation. However, the velocity slip boundary
condition is present in the second approximation of the
problem solution. The obtained results for the pressure,
velocity and temperature field for the moderately high
Reynolds number flow conditions depend on the
Reynolds, Knudsen and Prandtl numbers.

All results shown in Figures 2, 3 and 4 are obtained
for o, =1, 0r=1, k= 1.4 and Pr = 0.667. Besides, the
results are obtained for the ratio of inlet to outlet

heights A; / he =2, two bearing number values, A = 1

and A = 10, two Knudsen number values Kn. = 0.1 and
Kn. = 0.05. Besides the bearing number A, the inlet to

outlet ratio J; / he and the Knudsen number, which are

usually defined flow conditions in the microbearing
according with the Reynolds lubrication theory which
negligible the inertia influence, in this model the
parameter # is also need for the solving of the system
of differential equations (17) to (21) and (28). This is
the consequence of the incorporation of the inertia
effect in the model. All results presented in this paper
are obtained for = 1.

The inertia, slip and temperature influence on the
pressure distribution along the microbearing are
presented in Figure 2. It is evident that the inertia leads
to the pressure increase in the microbearing, while the
non-isothermal influence for the same and constant wall
temperature flow conditions leads to the pressure
decrease. Hence, for bearing number A = 1, calculation
which comprises non-isothermal effect together with
inertia lids to pressure lower then pressure obtained by
omitting non-isothermal and inertia influence. Effect of
the temperature field on the pressure distribution in the
microbearing is less pronounced for higher values of the
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bearing number (A = 10). On Figure 2 results obtained
for continuum flow condition (Kn = 0) are also
presented and it is obvious that slip effect at the wall
leads to the lower pressure in the microbearing. Figure 2
shows excellent agreement of presented model with no
inertia and non-isothermal effect (dashed line) with
Fukui and Kaneko numerical solution of the Boltzmann
equation [7,8], obtained also with inertia and non-
isothermal influence omit.

1.045
P 1
1 A=Lh=2,n=1 e~
1.04 ] ' e N
1 - Kn=0.05 \
1.035 7 \
: /l sk \\
] /s \
1.03 ] / \
/ .
1 ’,‘ N\
1025 7 LS ) “\
1 Y4 2\
1.02 ] 4 "\
1 s Y
] Y4 N\
1.015 4 4 AN
1 N/ Kn ~0.1 A
1.01 ] V4 “\b
B | /"'. i A
] Y - -~ continuum Wi
10051 48 A with out inertia effect i
1 4 with inertia effect
. ] —o— non-isothermal, with inertia effect, Tw1=Tw:
RS L s L s L B e
0 0.2 0.4 0.6 0.8 1
X
1.4
p
A=10, h =2, n=1
1.35 4
1.3 1
1.25 1
1.2 1
1.15
1.1 _ A\
¥~ —- continuum N
A with out inertia effect b
1.05 4 y —— with inertia effect
~ —O— non-isothermal, with inertia effect, Twl=Tw2 X
X Boltzmann eq.( Fukui and Kaneko, 1988) 1
0 0.2 0.4 0.6 0.8 1
X

Figure 2. Pressure distribution in microbearing for Kn, =
0.1, hi=2, n =1 and two bearing numbers: A=1and A=10

The temperature profiles in the microbearing gas
flow at various cross-sections are depicted in Figure 3.
These are obtained from the (17) and (20). The first
approximation corresponds to the continuum and
isothermal flow conditions, while in the second one
the non-isothermal effect appears as the influence of
the conduction, the dissipation and the rate at which
work is done in compressing the element of fluid
terms. The convection term wanes in the second
approximation of the temperature, since its first
approximation is 7y = 1 = const. Also, this caused no
temperature jump effect in (16e) and (16f) and the

while the

temperature values in the remaining flow field are
different than the wall temperature. The lowest
temperatures are at channel exit.

fluid temperature at the wall is T,
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Figure 3. Temperature profiles in microbearing with
constant and equal wall temperature at various cross-
sections, for Kn. = 0.1, h; = 2, n = 1, and different bearing
numbers: A=1and A =10

In Figure 4 velocity profiles for the flow condition
defined with Kn, = 0.1, hj/h, =2, A =1, 7 = 1 are
presented. The full lines present velocity profiles with
inertia influence, obtained by omitting non-isothermal
effect, while the dashed lines present velocity profile
with no inertia and non-isothermal effect. Full lines with
circles show velocity profiles in microbearing obtained
by including non-isothermal effect along with inertia.
The difference between velocity profiles calculated
from the four different models (continuum, slip flow
conditions, slip flow conditions with inertia effect and
slip flow conditions with inertia and non-isothermal
effect) is evident. The non-isothermal and inertia effect
have no influence on the slip at walls. Slip velocity at
the upper wall increase along the microbearing, while at
the lower decrease.

4. CONCLUSION

The analytical solutions for the non-isothermal subsonic
slip gas flow in the microbearing with constant wall
temperature have been obtained. The results for the
pressure, velocity and temperature fields have been
presented for the moderately high Reynolds number
flow conditions. The small parameter has been defined
by (1) and the Mach, Knudsen and Reynolds numbers
have been expressed with it. Moreover, the exact
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relation between these numbers has been used for a
precise estimation of each term’s contribution in the
continuum, momentum and energy equations, as well as
in the boundary conditions. All physical quantities have
been assumed with perturbation series. The first two
approximations have been taken into account. The first

1
Y /h ] —-—- continuum
094\ - with no inertia
] with inertia
0.8 1 non-isothermal, with inertia, Tw1=Tw2
0.7 *
0.6
0.5 *
0.4 *
0.3 ]
0.2 * X=0
0.1
1 Kn=0.1, A=1, h =2, n=1
0 i T T T
0 0.2 0.4 0.6 0.8 " 1
Jh 1 T
Y 1 '~ . —
0.9 . . X=0.8105
1 ’ Kn =0.1, A=1, h =2, n=1
0.8 ne=0.1, A=L hi=2,
0.7 ’
0.6 ’
0.5 ’
0.4 1
03 -
] N
0.2 1 = —- continuum N
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0 0.2 0.4 0.6 0.8 1
u
1 1~
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0.9 T~
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0 0.2 04 0.6 0.8 u 1

Figure 4. Velocity profiles in microbearing for Kn. = 0.1, h; = 2,
n=1, =1 at three cross-sections: X=0, X=0.8105 and X=1
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one corresponds to the continuum flow conditions,
while the second represents the contribution of the
rarefaction effect. In addition, for the moderately high
Reynolds numbers, the second approximation includes
the inertia effect, as well as a non-isothermal character
of the flow. Hence, although the temperature of the
walls is the same and constant, and the distance
between walls is of micron scale, the obtained gas
temperature profile is non-uniform. It has been shown
that, for the prescribed flow conditions, the
temperature  solution does not comprise the
temperature jump effect at the wall even in the second
approximation. However, the velocity slip boundary
condition is present in the second approximation of the
problem solution.

The presented method incorporates the energy
equation, which leads to the prediction of the
temperature field and its influence on the pressure and
velocity distribution. Besides, this analytical model
enables the inclusion of inertia effect on the pressure,
velocity and temperature fields. It is concluded that
inertia and non-isothermal effect have the opposite
influence on the pressure filed.
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CTPYJAILE 'ACA Y MUKPOJIEXKAJUMA CA
3UJOBUMA KOHCTAHTHUX TEMIIEPATYPA

Hesena /1. CreBanoBuh, Cuexxana C. Muauhe

VY pany je aHanM3UpPaHO HEM30TEPMCKO JIBOJMMEH3H]CKO
CTHIIJBMBO CTPYjame raca y MUKpPOJIEXajy KOHCTaHTHHX
U jefiHaKMX Temneparypa 3uga. Bpennoct KaynceHoBor
6poja je msmehy 10° m 107, mro oxmroeapa pexumy
cTpyjama ca kimm3ameM. OBaj peXuUM CTpyjama
neuHUIIE ce jegHaunHaMa KOHTWHyyma: Haswmje-
CTOKCOBOM ¥ jeZHAYWHOM CHEpruje W TpaHUIHIM
YCIIOBOM KJIH3ama M TEMIEPaTypCKOr CKOKa Ha 3UILy.
Crpyjame raca je IO3BYYHO, Ia CE MalH Iapamerap
neduanIIe Ka0 & = KM?/Re. OCHM TOTa MPETIOCTABIBEHO
j€ ce MOINpeYH! NpeceKk MUKPOKaHaja Meba CIopo, IITO
JIOBOAU JO CIOpE IPOMEHE CBUX BEIWYMHA y IPaBIy
cTpyjama. Pememe je m00HjeHO mepTypOAMOHOM
MerozioM. [IpBa anpokcumanuja nmpeacTaBba perene 3a
Cllydaj cTpyjama raca 0e3 KiM3ama, JIOK Ce y JAPYroj
anpOKCHMAIMjH jaBJjba YTHI] KIM3ama W HWHEpIHje.
JobujeHa cy aHaNWTHYKAa peIIema 3a PaCIOACITY
MIPUTHUCKA, Op3WHE U TEMIIEPaType Y MUKPOJIEXKajy TpH
yMEpEeHO BENMKUM BpeHocTUMa PejHosicoBor Opoja.
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