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Identification procedures based on instrumented indentation and inverse 
analysis are traditionally coupled with Finite Element Modelling (FEM) to 
perform simulation of the test. However, this approach is not suitable for 
in-situ applications since it is rather time consuming due to material and 
geometrical nonlinearities required to be taken into account. This paper 
presents a novel technique for system response prediction based on Proper 
Orthogonal Decomposition and Radial Basis Functions. The developed 
technique gives the results of the same accuracy as those computed by 
FEM in computing times shorter by several orders of magnitude. 
Presented examples consider two different engineering applications. The 
first deals with the assessment of material parameters entering into the 
constitutive models of possibly damaged materials used for industrial 
plants. The second considers the identification of residual stresses which 
arise in components after surface treatments. 
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1. INTRODUCTION 
 

Numerical simulations have been established as a 
powerful tool used in practically all fields of engineering 
and science. A large number of commercial codes are 
developed to solve the so-called direct problems, which 
consist of finding the solution in terms of response fields 
when a complete set of input data defining uniquely the 
system is known. Since these codes require the 
knowledge of some parameters on which the solution 
depends, sometimes in engineering practice it is required 
to solve an inverse problem, defined as the one where 
some of the “effects” (responses) are known but not 
some of the “causes” leading to them, namely the 
parameters on which the system depends. These 
problems are tackled within, a relatively young and still 
growing scientific branch which in the modern literature 
(e.g. [1]) is found under the name of Inverse Analyses. 

Inverse analyses are combining experimental 
mechanics with numerical simulations and 
mathematical programming. In the first phase of these 
procedures a test is performed from which some 
measurable quantities are collected. In the subsequent 
phase, the same test is simulated. Then, mathematical 
programming is used to minimize the objective 
function, which quantifies the discrepancy between 
measured quantities and their computed counterparts as 
a function of sought parameters. The solution of the 
inverse problem is a set of parameters for which the 
discrepancy between the measured results and those 
simulated is having its minimum. 

In the last decade, approximately, the traditional 
hardness testing has been developed into a methodology 
of instrumented indentation apt to identify parameters 
which are needed for reliable computational analysis of 
structures and industrial products. In the instrumented 
indentation the process is performed quasi-statically, 
with constant monitoring of the applied force and 
resulting penetration. The result of this test is a so-called 
indentation curve (Fig. 1). Several authors (see e.g. [2-
4]) have proposed some semi-empirical approaches to 
correlate the data provided by indentation curves with 
Young’s modulus and yield stress of the material. 

 
Figure 1. Indentation curve 

The use of this experimental technique in the context of 
inverse analyses brought further improvements. Simulating 
the indentation test by a commercial finite element code it 
is possible to reproduce results of high accuracy. 
Combining these numerical results with those obtained 
from the experiments within inverse analysis procedure 
showed that material parameters can be assessed more 
accurately and in larger numbers. A number of such 
examples can be found in the literature (e.g. application on 
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functionally graded materials [5]; on thin films [6]; in [7] 
the exploitation of both indentation curve and residual 
imprint was proposed; the same method is successfully 
applied in [8] to assess residual stresses resulting from 
surface treatments; in [9] to assess anisotropic material 
properties, or quasi-brittle fracture properties in [10]). 

Inverse analyses based on instrumented indentation 
tests are recently becoming more and more interesting for 
diagnostic procedures of components in service. This is 
due to the fact that, at first, the indentation test is 
considered to be non-destructive since the volume of 
material involved in the test is quite small and residual 
depths that are left behind after the removal of the indenter 
are usually about 100 µm. In addition, indentation test can 
be performed completely in-situ on a working component. 

In order to have an operable diagnostic procedure 
completely executable in-situ, apart from portable 
instrumentation it is also required to have a fast 
computing tool to solve the inverse problem. Traditional 
approaches that are based on FE simulations are not 
suitable for the task, since due to non-linearities present 
in the model, computing times are elevated, and 
combined with repetitive computations required by the 
optimization algorithms, the whole identification process 
takes hours or even days in some cases. This paper 
shows a novel methodology based on Proper Orthogonal 
Decomposition (POD), by which the identification 
procedure becomes much faster, more economical and 
robust. The developed approach is bringing inverse 
analyses to a routine level by decreasing the computing 
time by several orders of magnitude. 

 
2. ON OPTIMIZATION ALGORITHMS 

 
Within the inverse analyses procedure the discrepancy 
function is constructed to quantify the difference 
between experimentally measured results and their 
computed counterparts from the numerical model that 
simulates the test. In a subsequent step this function is 
minimized with respect to sought parameters. In other 
words, the goal of this minimization is to find those 
parameters for which the computed response will match 
the one measured from the experiment. For this purpose, 
very effective minimization algorithms are used that are 
capable to find matching parameters after, sometimes, a 
surprisingly small number of iterations. 

A very popular optimization algorithm is a so-called 
Trust Region (TR) that belongs to a group of first order 
optimization algorithms. Without entering into the 
details of how it works, as can be found elsewhere 
[11,12], the main principles can be outlined as follows. 

Let us denote by ω(z) the discrepancy function that is 
going to be minimized with respect to sought parameters 
collected in vector z. In each iteration, k, the quadratic form 
is constructed to approximate the discrepancy function 

 ω( ) ω( ) ω( ) ( )z d z z z zT
k k k k+ ≈ +∇ − +   

 1 ( ) ( )( ) ( )
2

z z H z z z zT
k k k q+ − − =  (1) 

where the Hessian matrix H is usually approximated to 
avoid calculation of second derivatives. The next 
iteration is found by solving for d that minimizes the 
constructed quadratic approximation of the objective 

function. Since this approximation may not be accurate 
when z is far from zk, the search for a minimiser of q(z) 
is restricted to some region around zk, called the trust 
region inside which it is trusted that the approximation 
is fairly good. In practical terms the TR algorithm starts 
from some guess of sought parameters, then computes 
the value of discrepancy function and first derivatives 
with respect to each of the sought parameters collected 
in vector z. Based on these computations, the next 
iteration defined by zk + d is computed and the process 
is iteratively repeated until convergence criteria are met. 

The many multiple derivatives approximated by 
finite difference imply a sequel of direct analyses 
(namely of response computations based on a sequel of 
parameter vectors) and, hence, would require heavy 
computing times if carried out by FE test simulations. 
Clearly, these optimization algorithms involve in each 
iteration n + 1 simulations, where n is the number of 
parameters to be identified. 

Even though TR algorithm is a relatively powerful 
tool for the optimization and usually converges to a 
solution after about ten iterations, it is not that effective 
if the objective function to be minimized is strongly 
non-convex, characterized by a big number of local 
minima. The TR algorithm cannot distinguish between 
local and global minima, and will treat as a solution of 
the optimization problem all mathematical minima 
(those for which the first derivatives are equal to zero) 
within the range of optimization. 

The alternative to the first order algorithms, capable 
to overcome the problem of local minima are so-called 
Genetic Algorithms (GA). The GA represents an 
optimization tool based on constant modification of 
“population”. At each step, a GA randomly selects 
individuals from the current population to be “parents” 
and produce “children” for the next generation. Over 
successive generations, the population “evolves” toward 
an optimal solution. The detailed description on GA can 
be found in other references [13,14]. In what follows is 
just a brief description of GA together with how they 
were applied in the present context. 

In the context of employing GA to minimize the 
discrepancy function for diagnostic analyses, each member 
of the population represents a different combination of 
sought parameters collected in vector zi. The so-called 
“fitness function” that is used to distinguish different 
members here represents a scalar value of the discrepancy 
function. In the present context, the discrepancy function 
represents some norm of a difference between measured 
quantities and their computed counterparts, like 

 ( )z R RT
iω = ⋅ ,   EXP COMR Y Y= −  (2) 

where it is assumed that measurable quantities are 
collected in vector YEXP and their computed 
counterparts in vector YCOM. 

Optimization by GA proceeds according to 
following steps: 

• At the beginning, the algorithm generates a 
random set of individuals, let us say M of them, 
in this case different parameter combinations are 
collected in vectors zi, where i = 1,…, M. 

• In the second step, for each individual from the 
initial population a discrepancy function is 
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computed. This implies that for all M members, a 
simulation of the experiment needs to be 
performed. Subsequently, all members are sorted 
based on their value of the fitness function. 

• The new generation is created from the 
individuals contained in the current population by 
forming the following three groups: “elite kids”, 
“crossover kids” and “mutation kids”. “Elite 
kids” are taken as 2 – 5 % of all individuals with 
the best value of fitness function and are passed 
directly to the next generation. A certain number 
of remaining individuals are selected as parents to 
form crossover kids. The crossover is performed 
by the combination of “genes” (in this case 
parameter values) of two previously selected 
parents. The remaining group of individuals is 
created with the process called “mutation” by 
applying random changes to parameter vectors of 
individuals with the worst fitness function. 

With this procedure the new generation is formed 
and the old one is replaced by it. The process iteratively 
continues until convergence criteria are met. The 
solution of the minimization problem at the end is taken 
to be the best individual in the last generation. 

The main advantage of GA with respect to classical 
optimization algorithms (like TR) is found in the 
capability to find the global minimum. This nice feature, 
however, comes with a price of increased computational 
time. In the structural problems here presented, it turns 
out that the usual number of members of the population 
is equal to 50, while to reach the successful convergence 
it is required to have more or less 100 generations. This 
means that the total number of simulations is about 5000. 

Comparing it to the first order algorithms, the 
difference is quite evident. To assess, for instance, three 
parameters with TR algorithm in each iteration, it will 
be required to perform 4 (3 + 1) simulations. This 
number is further multiplied by the number of iterations. 
Even if the optimization is performed at different times 
(say 3 or 4) starting from different initializations to 
confirm that the solution really represents global 
minimum, still the total number of simulations is about 
150 which is one order of magnitude smaller than with 
GA. Therefore, this implies that it is computationally 
justifiable to use GA as the optimization tool only in 
those cases characterized by the discrepancy function 
with a large number of local minima. 

Coupling FE simulations with any optimization 
algorithm when it is desired to have a fast and robust 
procedure executable in-situ on “small” computers is not 
suitable due to elevated computing times. For instance, 
when the indentation test is used, one simulation 
approximately takes about 5 minutes (for a simple 2D 
case). It is therefore evident that even when TR is used, 
the computing time would be more than 10 hours. 

In the following section an alternative formulation 
will be presented with which practically the same results 
as those coming from FE simulations are obtained but 
for computing times shorter by even 5 orders of 
magnitude. This circumstance makes the identification 
process extremely fast and robust. Further, it also allows 
for employing computationally more expensive GA in 
those situations where they are highly desirable. 

3. POD-RBF APPROXIMATION FOR FAST 
APPROXIMATION OF SYSTEM RESPONSE 
 

Proper Orthogonal Decomposition (POD) is a powerful 
method of data analysis aimed at obtaining low-
dimensional approximate description of some high 
dimensional processes. Probably the best way to explain 
what POD is would be on a set of two dimensional vectors. 

Let us assume that we would like to construct one 
dimensional approximation of a set of almost parallel 
vectors (in POD jargon called closely “correlated” 
vectors) shown in Figure 2. Obviously, doing that in the 
original coordinate system will introduce a significant 
error since both components have the same order of 
magnitude. On the other hand, we can introduce a new 
coordinate system with axes rotated by approximately 
45° and perform this one-component approximation in 
the new system. Here the approximation is more 
accurate since the components to be neglected are for all 
of the vectors much smaller than the other ones. Finally, 
if we choose the new coordinate system in such way 
that the x’ axis will have a direction with respect to 
which the summation of projections of all the vectors 
from the set is giving the maximum, then we can say 
that in this basis the best possible (the most accurate) 
one-component approximation of the given set of 
vectors is obtained. In such case, the new coordinate 
basis represents a POD basis for the set of vectors. 

 
Figure 2. Closely correlated vectors and their projections in 
the original and new coordinate system 

To connect this geometrical interpretation with 
structural analysis, let us introduce a concept of 
“snapshots” which is a fundamental notion of POD 
analyses. In POD jargon, a snapshot represents a 
collection of N measurements ui of a certain state variable. 
In other words, one snapshot is one output of the system 
that corresponds to a certain input, defined with some 
parameters on which the system depends. In structural 
context, of interest here, the system can be represented by 
a numerical model and the snapshots can be any discrete 
values of fields of interest, like nodal displacements, 
values of stresses at integration points, velocities, 
temperatures, etc. On the other hand, parameters on which 
the system depends, are taken here to be those that are 
later going to be identified within inverse analyses. 

The collection of M snapshots, generated by 
changing these parameters, can be stored in rectangular 
N by M matrix U, called the snapshot matrix. 

The snapshot matrix U can be interpreted as a set of 
M, N-dimensional vectors. Applying the same logic as 
the one previously presented for two-dimensional 
vectors, the POD basis for the snapshot matrix U can be 
constructed in the following steps: 



 

132 ▪ VOL. 38, No 3, 2010 FME Transactions
 

• Find the direction with respect to which the 
summation of projections of all the snapshots 
attains maximum. 

• Find the direction orthogonal to the previous. Of 
all possible choices, pick up the one that is giving 
the maximum projection of all the snapshots. 

• Find the direction orthogonal to all previously 
found, having the same optimal property 
(maximal projection). 

• Repeat previous step until the last direction is 
found. 

It can be shown that this maximization process is 
connected with the auxiliary eigenvalue problem within a 
process called Principal Component Analyses [15,16]. To 
construct POD basis of snapshot matrix with this process, 
one needs to compute eigenvalues (λi) and eigenvectors 
(vi) of the matrix D = UT · U. After the eigenvalue 
problem is solved, the generic formula for i-th POD 
direction is given by 

 
1
2φ U vi i

iλ
−

= ⋅ ⋅ . (3) 

Then the POD basis represents the N × M matrix 

 Φ φi⎡ ⎤= ⎣ ⎦  (4) 

where previously computed POD directions are sorted 
in descending order of corresponding eigenvalues. 

Now it is possible to express all the snapshots in the 
new basis by a linear transformation 

 U Φ A= ⋅  (5) 

where A represents “amplitude” matrix that, having in 
mind the orthogonality of the new basis, ФT · Ф = I, can 
be directly computed from 

 A Φ UT= ⋅ . (6) 

Transformation (5) gives the snapshot matrix in the 
new coordinate basis. At this stage no approximation is 
introduced, just the basis is changed. Having in mind 
the optimal feature of the new basis (i.e. the first 
direction gives the best possible one component 
approximation, the first two – the best possible two 
term, etc.) now it is easy to construct a low-order 
approximation by keeping the first couple of directions. 
Performing truncation based on a desired accuracy, by 
keeping the first P directions, a low-order 
approximation of the snapshot matrix is given by 

 U Φ A≈ ⋅  (7) 

where terms with a bar represent truncated matrices. In 
the same manner, approximation of any single response 
of the system is given by multiplying the truncated POD 
basis with corresponding vector of amplitudes 

 u Φ ai i≈ ⋅ . (8) 

The last equation gives an approximate response 
only for a finite number of cases that were generated in 
the original snapshot matrix. To pass from this type of a 
response to a rather continuous one, additional 
modification needs to be implemented, that defines 
amplitudes entering into vector ai  not as constants but 

as some nonlinear functions of parameters on which the 
system depends. It is done by assuming that each of the 
entries of the amplitude vector can be written as a linear 
combination of some non-linear functions of parameters 
in the following form 

 
1

( ) ( )z z
M

i
k k i

i
a b g

=
= ⋅∑  (9) 

or, written in the vector form it yields 

 ˆ( )a z B g(z)= ⋅  (10) 

where matrix B collects all interpolation coefficients. 
The choice of functions gi is arbitrary and in this 

study they are chosen to be Radial Basis Function 
(RBF) [17], defined as a function of some norm 
between argument of the function and a fixed point in 
parameter space ( )( )z z zi i ig g= − . Once the type of 
RBF is chosen, the only thing that remains is to 
determine the interpolation coefficients. This is done by 
writing (10) for all M pairs of parameters zi and 
corresponding responses expressed in new truncated 
POD basis by ai , and solving for matrix B. 

Once the interpolation coefficients are determined 
combining (10) with (8) we arrive to the formulation 
that is directly giving the approximation of the system 
response for any arbitrary parameter combination, 
which reads 

 ( )u z Φ B g(z)≈ ⋅ ⋅ . (11) 

The formulation given by (11), as it will be proved in 
the examples, gives results practically with the same 
accuracy as those computed by FE simulation. Obviously 
the determination of coefficients involves a series of 
simulations that are time consuming, but done once for 
all. After this phase, (11) instead of additional simulation, 
gives practically the same result in about 20000 times 
shorter computing time, an obvious fact considering that 
(11) involves a simple matrix multiplication. 

 
4. EXAMPLES OF PARAMETER IDENTIFICATION 

BY INSTRUMENTED INDENTATION AND POD-
RBF FORMULATION 
 

A practical procedure enclosed in small stand-alone 
software was developed based on two different 
optimization algorithms: TR algorithm and GA. In both 
cases the system response, repetitively required by the 
optimization algorithms was approximated by the POD-
RBF formulation, a circumstance that contributed to a 
huge reduction of overall computing time needed for the 
identification. 

The procedure is calibrated for a conical indentation 
with the indenter conforming to the standard DS/EN ISO 
6508-2. The set of simulations needed to construct matrices 
later used for determination of coefficients entering into 
(11) is done using commercial code ABAQUS [18] with 
an axially-symmetrical mesh visualized in Figure 3. 

In this section, results from two different 
engineering examples are presented. The first considers 
material characterization in metal plasticity, and the 
second – assessment of residual stresses resulting from 
surface treatments. 
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Figure 3. Axially symmetrical mesh used to generate the 
snapshot matrix 

 
4.1 Material parameter characterization in metal 

plasticity 
 

This part summarizes some results obtained in a 
calibration of material parameters of a popular and 
simple Huber-Mises plasticity material model with 
exponential hardening. The model is governed by the 
following parameters: Young’s modulus E, yield limit 
σY, hardening exponent n and Poisson’s ratio ν. The 
procedure was calibrated by keeping a fixed Poisson’s 
ratio equal to 0.3, as this value is not of much interest in 
diagnostic analyses of metals. 

The snapshot matrix was generated varying three 
material parameters in the following ranges: Young’s 
modulus between 120 and 210 GPa; yield stress between 
100 and 400 MPa and hardening exponent between 0.02 
and 0.2. The total number of analyses involved equalled 
910. Two different snapshot matrices were created, the 
one for the nodal displacements to be used later for a 
reconstruction of residual imprint, and the one for the 
indentation curve. On both snapshot matrices, the 
previously described POD analysis was performed to 
create truncated POD basis that is giving a high accuracy, 
low order approximation. In this particular case, the bases 
were created by keeping a very small number of 
directions – for the indentation curve 6, and for the 
residual imprint – 5 of them. This introduced a huge 
reduction of the dimensionality of the model without 
practically any loss of accuracy, since eigenvalues 
corresponding to kept directions were having 99.99 % of 
the summation of all of them. This information is directly 
connected with the low-order approximation accuracy 
[19], and practically means, that the difference between 
approximation by (8) differs from the full numerical 
model (in this case FE simulation) by less than 0.001 %. 

The discrepancy function was constructed to give 
quantitative information of the difference between, both 
indentation curves and residual imprints. It had a form 
given by 

2 2

1 1
( )

COM MES COM MES

MAX MAX
z

N NC I
i i i i

i i

d d u u
d u

ω
= =

⎛ ⎞ ⎛ ⎞− −
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . (12) 

The first part of (12) considers the indentation curve. 
The total applied load is divided in NC equal steps (Fig. 
4a), and for each of them the corresponding penetration 
depth di was taken both from the experiment (sup MES) 
and from the model (sup COM). All the differences are 
normalized with respect to maximal penetration depth 
obtained at the end of loading step of indentation. The 
second part quantifies the difference between the two 
residual imprints, here, due to axial symmetry, 
represented not by a surface, but with the upper line of 
the modelled piece that is in contact with the indenter 
(Fig. 4b). Along this line, NI heights from the horizontal 
specimen surface are taken both from the computed 
model and from the experiment, and the differences are 
normalized with respect to maximum residual depth 
uMAX that remains after the indenter is removed. 

 

 
Figure 4. Indentation curve and residual imprint as inputs 
for the inverse analyses 

This discrepancy function is further minimized with 
respect to three sought parameters that are uniquely 
defining the stress-strain curve of the indented material. 

To test the procedure, first a set of inverse analyses 
is solved using so-called pseudo-experimental data. 
These data represent computer generated indentation 
curves and residual imprints using different 
combinations of material parameters. The solution of 
inverse analyses fed by these pseudo-experimental data 
should equal the parameter values used to generate 
them, if the inverse problem is well posed. 

With the same FE model, additional 50 simulations 
were performed using only those parameter 
combinations that were not considered in the generation 
of the snapshot matrix. The results of these simulations 
are further used as inputs to the inverse analyses to 
identify three material parameters. Errors of assessed 
parameters resulting from each of 50 performed inverse 

(a)

(b)
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analyses are visualized in Figure 5. The fact that an 
average error on identified parameters was about 1 % 
proved, not only that the inverse problem was well 
posed, but also the fast formulation proposed in this 
paper has a so-called generalization feature meaning 
that it can also accurately reproduce the responses for 
the inputs not considered in the phase of “training” i.e. 
the process of generation of snapshot matrix. 

 
Figure 5. Results of inverse analyses performed on 50 
different pseudo-experimental inputs 

In the second phase the procedure was verified with 
real experimental data performed on copper using the 
instrumented indenter Fischerscope H100, by applying a 
maximum indentation force equal to 200 N. Results from 
five different indentation tests were used as inputs to 
inverse analyses and identified stress-strain curves are 
visualized in Figure 6. The discrepancy between different 
curves is very small suggesting that material parameters 
are assessed with good accuracy. A further check was 
performed by using identified parameters to simulate the 
indentation test on a larger scale, with maximum force of 
1500 N. The same indentation was performed 
experimentally, and Figure 7 visualizes the results from 
the simulation together with experimental data, measured 
with laser profilometer. It may be observed from the 
figure that the two profiles practically coincide proving 
that material parameters were assessed accurately. 

 
4.2 Assessment of the residual stress profile 

coming from surface treatment 
 

In this section some results considering the assessment 
of Residual Stresses (RS) resulting from surface 
treatments are presented. For a more detailed discussion 
on identification of RS based on instrumented 
indentation, the reader should refer to [8] and [20]. In 
the context presented here, the example is interesting 
since it is characterized by an extremely non-convex 
discrepancy function and as such, it is practically non-
solvable with the TR algorithm. 

Applying surface treatments to cylindrical parts 
creates an axisymmetric RS distribution, usually of the 
kind visualized in Figure 8 [21,22]. 

This type of stress distribution is assessed by a 
presented methodology based on the indentation test. In 
order to extract information on through-thickness RS 
distribution in the considered applications, indentation 
is performed repeatedly under displacement control, up 

to 3 different depths (to 20, 50 and 150 µm). In this 
section just some results considering pseudo-
experimental data are shown. 

 
Figure 6. Resulting stress-strain curves identified by 
inverse analyses from 5 different experiments performed 
with the same specimen 

 
Figure 7. Experimental residual imprint vs. computed one 
for the indentation with a force of 1500 N 

 
Figure 8. Usual stress distribution after surface treatments 

To test the robustness of the procedure, the RS in the 
considered case were relatively far from yield limit. This 
is already evidenced in the literature as a more difficult 
case to analyze [20]. Material parameters used in the 
simulations were the following: Young’s modulus 202 
GPa; Poisson’s ratio 0.3; yield stress 1060 MPa, while 
the introduced RS in the model used to generate pseudo-
experimental data had a profile visualized in Figure 9, 
having the maximum value at about 50 % of yield limit. 

After pseudo-experimental data were generated, they 
were used as inputs to the inverse analyses that used 
POD-RBF formulation “trained” with 768 simulations. 
The discrepancy function was created in the same way 
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as the one defined by (12), except that here it had three 
parts referring to three different indentation tests. First, 
the inverse problem was solved using TR algorithm. 
From the results, visualized in Figure 10 it is quite 
evident that the discrepancy function was characterized 
with a large number of local minima. This made the 
problem practically unsolvable with TR since the result 
turned out to be dependent on the initialization point. 

 
Figure 9. Target distribution of RS to be identified within 
inverse analyses procedure 

 
Figure 10. Results of three different optimizations by TR 
corresponding to different initializations 

The same problem was then solved using GA. Figure 
11 shows results from four different optimizations. It can 
be noted that in all the cases, the obtained RS 
distribution was quite close to the target, confirming the 
advantage of GA with respect to first order algorithms 
when the minimization function is characterized by a 
presence of a large number of local minima. 

 
Figure 11. Results of four different optimizations by GA 

5. CONCLUDING REMARKS 
 

This paper presented a novel methodology that combines 
POD with RBF into a fast formulation that can be used 
to compute system responses in situations in which 
repetitive simulations are required of the same system by 
changing just some parameters on which the system 
depends. This circumstance is frequently encountered in 
optimization procedures, like diagnostic analyses based 
on instrumented indentation, discussed here. 

Examples treated in this paper show that material 
parameter characterization becomes more robust and 
much faster if the developed technique is applied, since 
the computing times are cut down by several orders of 
magnitude. Combining the software based on this 
technique with nowadays existing portable indenters it 
is possible to create a powerful stand-alone device for 
in-situ material characterization. 

In the second example presented in this paper it is 
proved that, by having such a fast procedure to compute 
system response, it is possible to use more “expensive” 
optimization algorithms, like GA, which in some 
situations are inevitable. The use of GA in the present 
context when the test simulation is performed by FEM 
is possible only theoretically, since one identification 
process would last for about half a year. 

Even though this work is engineeringly motivated by 
a need of several industrial companies to perform 
material characterization on working components, it 
should be mentioned that the developed method is not 
by any means limited to this purpose only. Today, 
practically all laboratory-based instrumented indenters 
have the possibility to evaluate some material 
parameters usually by using semi-empirical formulae 
(e.g. Oliver and Pharr [23]). On the other hand, previous 
works devoted to instrumented indentation, simulation 
and inverse analysis ([5-9]) showed the possibility to 
solve more complicated parameter identification 
problems, but they are more time-consuming and less 
robust with respect to semi-empirical formulae. Using 
the once-for-all trained POD-RBF procedure to perform 
simulations of the indentation test, a simple software 
can be generated and routinely used in combination with 
instrumented indenters to assess material parameters in 
larger numbers and in a more accurate way, since the 
time needed to assess material properties, when the 
POD-RBF procedure is used becomes shorter than the 
time needed to perform the indentation test itself. 
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АЛГОРИТАМ БАЗИРАН НА ПРАВИЛНОЈ 
ОРТОГОНАЛНОЈ ДЕКОМПОЗИЦИЈИ И 

РАДИЈАЛНИМ БАЗИСНИМ ФУНКЦИЈАМА 
ЗА ПРОЦЕДУРЕ У ДИЈАГНОСТИЦИ НА БАЗИ 

ИНВЕРЗНЕ АНАЛИЗЕ 
 

Владимир Буљак 
 
Процедуре карактеризације материјала базиране на 
тестовима инструментираног утискивања и 
инверзним анализама, традиционално користе 
Методу коначних елемената (МКЕ) за симулирање 
теста. Тај приступ међутим није адекватан за 
примене на терену, обзиром да ове симулације трају 
релативно дуго као последица нелинеарности 
присутних у моделу. Овај рад представља нови 
приступ предвиђања одговора система базиран на 
Правилној ортогоналној декомпозицији (Proper 
Orthogonal Decomposition) и Радијалним базисним 
функцијама (Radial Basis Functions). Развијена 
техника даје резултате на истом нивоу тачности као 
и МКЕ, за време краће за 4 до 5 реда величине. 
Приказани примери третирају две различите 
инжењерске примене. Прва се односи на 
карактеризацију металних, потенцијално 
оштећених, материјала од којих су израђене 
различите индустријске компоненте у активној 
употреби. Други пример разматра идентификацију 
заосталих напона који се јављају као последица 
различитих површинских обрада. 

 


